
Single-Seek Data Layout for Walkthrough
Applications

Shan Jiang, Behzad Sajadi, M. Gopi
University of California, Irvine Irvine, USA

Web page: graphics.ics.uci.edu

Fig. 1. Images rendered in real-time. Left: a Boeing 777 airplane model with over 350 million triangles, which occupies 20GB of
secondary storage space; Right: a city model with 110 million triangles occupying 6GB of secondary storage space.

Abstract—With increasing speed of graphics rendering, the
bottleneck in walkthrough applications has shifted to data
transfer from secondary storage device to main memory. While
techniques designed to reduce the data transfer volume and
amortize the transfer cost are well-studied, the disk seek time,
which is one of the most important components of the total
rendering cost is not reduced explicitly.

In this work, we propose an orthogonal approach to address
the disk seek time bottleneck, namely single-seek data layouts.
This is a solution in one end of the spectrum of solutions
that guarantee an upper bound on the number of disk seeks.
Using this approach, we can reduce the number of disk seeks
required to load the data for any viewpoint in the scene to
no more than one. We achieve this single seek layout using
data redundancy. We provide a theoretical proof on the upper-
bound of this redundancy factor, and analyze its trade-off with
the rendering performance through an implementation that uses
this data layout for walkthrough applications of datasets with
hundreds of millions of triangles.

Keywords-Out-Of-Core algorithms; Data Layouts;

I. INTRODUCTION

With increasing data sizes and need for more rendering
effects in large datasets, real time rendering is still challenging.
Interactive rendering of large datasets involves optimizing
different stages of data-handling during its journey from the
secondary storage device to pixels on the display. These in-
clude disk seek time, data transfer time, online data processing
time, and finally rendering time. Together they constitute the
processing time for each rendered frame.

In the context of ever increasing capabilities and speed
of CPUs and GPUs, both the quality and the speed of the
online data processing and rendering have been improved sig-
nificantly. The fundamental bottleneck in real-time rendering
is in transferring the required large amount of data from the
secondary storage to the main memory. In order to minimize

the effects of this bottleneck, usually the data brought once
to the main memory is reused to render as many consecutive
frames as possible. Such reusability requires collective use of
various techniques including effective cache-management and
cache-coherent data layouts on the secondary storage. These
layouts reduce the total cost of data transfer time. Furthermore,
many predictive data prefetching methods are used to reduce
the perceived latency in the data transfer. These techniques can
amortize seek and data transfer times over a few consecutive
frames at the cost of loading possibly unnecessary data.
Finally, cache oblivious layouts try to reduce the number of
disk seeks that are needed to fetch the required data to some
extent. However, even for a well-arranged cache oblivious
layout, there is no guarantee that for each viewpoint the
required data blocks will be coherent on the hard drive [24].

Seek time reduction is important when a consistent frame
rate is required even in the worst case, since each disk
seek takes 10 ms in average for commodity hard drives, and
can even be slower in other slow secondary storage devices.
Assuming the goal is to render 30 frames per second, in the
worst case, there would be frames in which the seek time takes
nearly one-third of the time-budget for rendering those frames.
Since the layouts are optimized for efficient cache utilization
but not to reduce the seek time, even the best disk layouts can
cause disturbing delays between two consecutive frames in the
worst case when frame-to-frame coherence based prediction
is not effective. Furthermore, Sajadi et al. [24] showed that
any data layout of a geometric dataset that provides a linear
ordering of the data over the disk results in frequent disk
seeks and some of these seeks will be inevitably long and
therefore cannot be skipped. This is usually where the worst
case happens for all the layouts discussed above. One solution
to this problem is to use Solid State Drive (SSD) as secondary
storage device which significantly reduces the bottlenecks led

http://graphics.ics.uci.edu/


by data seek time [24]. However, regardless of the fact that
SSDs have become more popular during the last few years,
because of their limitations such as restrictive number of write
operations and relative cost, many applications still rely on
slow secondary storage devices which are cheaper and with
much larger capacity, such as hard drives, DVDs, and Blu-rays.
For these devices, bounding number of disk seeks remains an
open problem.

Main Contributions: In this work, we explore one of the
extreme cases in the spectrum of the solution space of the
data layout problem that has an upper bound on the number
of disk seeks to fetch the required data. We present a novel
data layout to limit the number of disk seeks per frame to
one. The key observation that enables bounded number of
seeks is to store the data redundantly at appropriate places
in order to fetch all the required data in fewer seeks. We call
this a non-linear data layout scheme since there is no linear
ordering of the data. In other words, in a linear layout, each
geometric primitive (except for the first and last ones) appears
after one primitive and before another primitive; however, in
our non-linear layout, multiple copies of each primitive can
appear before and after different primitives. We also show
that many online processing techniques can be incorporated
in our layout computation as preprocessing stages. Thus, non-
linear data layout not only reduces the disk seek time, but also
reduces the online processing time. Thus, our achievements
are:
• We introduce a single-seek data layout scheme which

can be built in to common large 3D dataset walkthrough
applications to improve the worst case performance.

• We derive the relationship between the object space
subdivision for navigation, redundancy factor, and the
average transfer volume and hence the frame rate. This
enables the user to choose an appropriate level of redun-
dancy and still have a single disk seek layout.

• Through a set of experiments with two large models with
different data density properties, we demonstrate how
different data processing operations including simplifi-
cation, visibility culling, and back-face culling can be
included as preprocessing stages in our data layout and
achieve much better worst case performance than current
rendering systems.

• In practice, we explore in which ways our layout can
improve rendering performance of existing orthogonal
techniques like using predictive pre-fetching of data.

Our generic formulation of this problem of data layouts
has, depending on the application, three different parameters
to be traded-off – maximum number of disk seeks, maximum
data transfer volume, and maximum redundancy factor. This
work is the first step to explore this spectrum of data layout
solutions by providing a solution for one extreme instance of
this problem, in which the upper bound on disk seeks is set to
one. In our solution, keeping this constraint on the number of
seeks, we can trade-off transfer volume to redundancy while
designing the layout. A generic solution for optimizing the
layout for different bounds on the above three parameters is

left open for future investigation.

II. RELATED WORK

Interactive massive model rendering has a long history and
a large body of literature focussing on various stages of the
pipeline including fetch time reduction, online processing, and
rendering. We only briefly discuss this literature as our current
work is almost orthogonal and complementary to all the other
relevant works, and can be used along with these works.

Data Transfer Time Optimization: Data transfer time or
fetch time is the time spent on loading the data required for
rendering from the secondary storage devices to the main
memory. Although reducing the amount of data that needs
to be fetched (e.g. through operations such as simplification)
should be the primary focus at this step, since the problem is
that of massive model visualization, usually the amount of data
to fetch cannot be reduced beyond a certain level. Therefore,
the focus has shifted from reducing the amount of data directly,
to improving the use of the data that is already fetched by
utilizing frame-to-frame consistency. In other words if the
cache coherency is improved, fetch time is amortized over
multiple frames. Many algorithms use space-filling curves [22]
to compute cache-friendly layouts of grids. These layouts
have been widely used to improve the performance of image
processing [27] and terrain visualization [15], [20]. Isenburg
et al. [14] proposed processing sequences as a generalization
of the rendering sequences for various kinds of large-data
processing. This processing sequence can be stored as an
indexed mesh, called streaming mesh. Streaming meshes are
represented as interleaved triangles and vertices that can be
streamed through a small buffer [13]. These representations
are particularly useful for offline applications like compres-
sion, which can adapt their runtime computations to a fixed
ordering. Yoon et al. [28] proposed a generalized cache-
oblivious layout of a mesh or a graph for efficient rendering
and processing of massive models. Diaz-Gutierrez et al. [6],
[7] presented a graph based algorithm for generalized cache-
oblivious layouts of triangles for rendering and geometry
processing. Sajadi et al. [23] proposed a graph-based cache-
oblivious data layout scheme called the 2-factor layout and
showed its benefits in a rendering method.

Online Processing Time Optimization: Usually, the num-
ber of primitives directly determines the online processing
time required by the application. Various multi-resolution
hierarchies have been designed to reduce the number of
primitives and thus improve the performance of rendering
of massive models [18]. There are a few approaches to use
a dual hierarchy that can serve as a spatial hierarchy and
multi-resolution hierarchy [19]. Primitive culling techniques,
including back-face and view-frustum culling, are also effec-
tive ways to reduce the number of primitives and to improve
the performance of rendering [29]. For models with high depth
complexity, visibility culling accelerated by graphics hard-
ware are proposed [3]. Other techniques on this domain use
image-based [2], [16], [11] or geometry-based multiresolution
representations [8], [4] to achieve interactive performance.



These methods also use explicit out-of-core data management
techniques [26] and pre-fetching mechanisms [5] to efficiently
deal with the massive models.

Rendering Time Optimization: The most popular ap-
proach to reduce the rendering time is to take advantage of the
architecture of the GPUs more effectively. Hoppe [12] cast the
computation of rendering sequences as a discrete optimization
with a cost function derived for a specific vertex buffer size
used in a GPU. Sander et al. [25] designed a fast triangle
reordering method to compute a cache-aware layout for a
vertex cache size depending on a GPU. Parallelism in GPU is
exploited by Eilemann and Pajarola [9] through a framework
for parallel rendering. There is a large body of work on
using GPU features to reduce the rendering time and at the
same time increase the realism of the rendered image. Since
rendering time optimization is not the focus of the current
work, we refer to [10] for further details on this topic. Peng
and Cao [21] combined mesh simplification algorithm towards
GPU architecture and GPU out-of-core approach to utilize the
power of high performance GPU. We have a close comparison
with this approach in Section V-C.

Our Approach: Single-seek layout is complementary to
any of the previous approaches, and is designed to bound the
number of disk seeks to be one at each time data is loaded from
secondary storage devices. This is motivated by the fact that
a large chunk of total rendering time is spent on seeking over
the disk. We guarantee that the number of disk seeks required
for each frame is limited to one. Such ideas have already
been used and ad hoc solutions that are highly implementation
dependent are employed by a few game companies to reduce
the large latency due to disk seek time of Blu-ray drives
on PlayStation 3 machines. Our work, in contrast, presents
a formal method for general walkthrough applications along
with theoretical analysis. Our method can work along with all
the primitives reduction and rendering optimization methods
described above. Specifically, our data layout can work with
multiple levels of detail (LOD) and still retrieve all the data
required to render each frame with a single disk seek. Other
online processing steps, like primitive culling, can also be done
off-line and stored using our layout. The proposed single seek
data layout significantly improves the worst case performance
of the rendering system without compromising on the best case
performance.

III. SINGLE-SEEK DATA LAYOUT

Let us consider a data-request state v as a state in which a
bounded size of data is requested by its application. In other
words, for the same state v, same bounded amount of data
is required by the application, independently of its access
pattern. Also, assume that there is a finite number of data-
request states. We define a single-seek data layout as a function
S(v) = (p, b) where p is the starting position on the disk from
which all the data required for the state v is stored, and b is the
contiguous number of bytes that is to be read to have all the
data required for state v in the memory. We call b the transfer
volume for state v. Assuming the number of states v and the

amount of data b for each v are bounded, the total amount of
storage required by single-seek data layout is bounded as well.
However, since part of the data requested by one state can be
requested by other states as well, this common data can be
repeated on the disk at the segments corresponding to each of
those different states. Thus single-seek layout is achieved at
the cost of redundancy in the storage. We will see in the rest
of the section that a larger redundancy can be traded off with
a smaller average transfer volume.

In a walkthrough application of static and bounded data,
the viewpoint and viewing direction may define a data-request
state v. If this user navigation space of viewpoints is dis-
cretized, then we have a finite number of data-request states
and further, since the visualized data is static and bounded,
this application is suitable for a single-seek data layout.

We observe that it is better to parameterize the data-request
state v using the transition between viewpoints instead of the
viewpoint itself. In other words, it can be parameterized as
v1 → v2, for which the requested data is the additional data
required when the viewpoint moves from v1 to v2. Such a
parametrization makes better use of the caching properties of
the system than just the viewpoint parametrization. In the rest
of this section, we present our method for single-seek data
layout for walkthrough applications.

We have three stages of offline preprocessing to create
a single-seek layout: discretization of the navigation space,
primitives reduction, and data layout computation. We also
describe the online data management and rendering process.

A. Discretization of the Navigation Space

As discussed above, in order to have a finite number of data-
request states v to enable a single-seek data layout, we divide
the navigation space into small contiguous regions called cells.

Any data that is visible from any viewpoint within a cell
but not already in the main memory is loaded once when the
user enters that cell. As a practical approach, we sample five
discrete viewpoints and eight discrete view directions within
a cell, collect the union of all the primitives visible from each
viewpoint and view direction combination, and consider it
as the data visible from that cell. View direction culling is
processed while rendering and is discussed in Section V-B.
In the single-seek layout parameterization, the state of the
system is given by (c1, c2) where the view point is crossing
the boundary from cell c1 to cell c2. The data that is visible
from c2 and not from c1 is laid out contiguously on the disk,
and hence is fetched in a single seek. In other out-of-core
walkthrough algorithms that use this cell-based approach, this
difference data may not be organized and can be anywhere on
the disk.

Note that such cell-based navigation space discretization
has been used before for LOD management [17] and texture-
substitution based simplification methods [1] for interactive
rendering. Our method is complementary to these prepro-
cessing methods and can work together with them. We can
store, using our single-seek data layout algorithm, the entire



geometry or simplified LOD models and/or texture bill-boards
built for each cell, depending on the application requirements.

B. Primitives Reduction

Theoretically, when the entire geometry in its full resolution
(with no simplification) can be seen from every cell, and
occlusion culling cannot be applied, the entire original model
must be treated as the data required for each cell. In this
extreme case, differences among cells become empty sets, with
the (initial) transfer volume equals to the data size, and the
redundancy factor is just 1.0 (because there is no repetition
of data). The entire model is fetched to the main memory in
one seek, and the rendering process becomes in-core rendering
method similar to [21]. In other words, the single-seek layout
solution space spans both in-core rendering and out-of-core
rendering techniques. Thus from the perspective of out-of-
core rendering, single-seek data layout, and in fact interactive
rendering of large data sets, becomes interesting only with
different levels of detail representation, and there are cells in
the navigation space with different visible primitive sets.

In our experiments, for LOD creation, we use [17] in which
the object space is subdivided using octree, and different
LODs are created by collapsing the vertices within the same
octree node at different levels in the hierarchy. Note that
one can substitute this method with any other simplification
method that is suitable for a specific application. To ensure
rendering quality, user can specify a screen space projection
error tolerance for coarser LODs. From a given viewpoint, if
the number of pixels spanned by the edges of an octree node is
less than this tolerance, then that node is collapsed. The LOD
of an object required by a cell is given by the finest LOD of
that object required by any sample viewpoint within that cell.
The total data required by that cell is the union of (required)
LODs of all objects of the scene visible from it.

Moreover, similar to simplification, other online processing
methods that are dependent on viewpoint (not necessarily
on viewing direction) such as visibility culling can also be
precomputed and stored in our data layout. These operations
reduce both the data transfer requirements and the online
processing time during rendering.

C. Data Layout

Page Unit of Data: Given the above data required by
(visible and rendered from) a cell, this data is partitioned into
different clusters such that all the primitives in the same cluster
have the same property that is required for processing, so that
accessing and processing can be done at the resolution of a
cluster. In our system, we define pages of fixed size, i.e. 16KB,
such that all the primitives (usually vertices and triangles) in
the same page are spatially close to one another and have
similar normal directions. A similar approach has been used
by Sajadi et al. in [23]. Using a fixed size for the pages helps us
in data management during the rendering (Section III-D) and
the spatial and normal direction coherency allow us to perform
efficient view-frustum and back-face culling on the bounding
box and normal cone of the disk pages instead of individual

primitives. Furthermore, two triangles are added to the same
page only if they belong to the same LOD and have at least
two of their vertices in the same cell. These constraints ensure
that two triangles representing the same object but belonging
to different levels of detail are not in the same page, and hence
are not rendered together at the same time.

Final Data Layout: Each seek in the layout is indexed
by (ci, cj), where ci is the current cell in which the view point
exists, and cj is the edge-adjacent cell to which the viewpoint
is moving. At a steady state, the pages required by ci are
already in the main memory, and for (ci, cj), all the pages
of data required by cj but not by ci are stored. In addition,
the IDs of the pages that were used by ci, but are no longer
required by cj is also stored. The data pages that need to be
loaded to or removed from the memory are illustrated in Fig. 2
for a pair of adjacent cells in 2D.

D. Data Management
The previous three subsections described the off-line pro-

cessing steps. In this section, we detail the online processing
steps for interactive rendering – data fetching, online data
processing, and rendering. Assuming that all the data required
for the viewpoint in the current cell is present in the main
memory, when the viewpoint moves to an adjacent cell, the
difference data from the current to the new cell, which is stored
contiguously in a linear order in the disk as described above,
is fetched with a single seek. The pages in the main memory
that are not required for the new cell are tagged dirty. The new
data pages that are loaded, first replace the dirty pages, and
to accommodate additional pages, if any, the main memory
buffer size is expanded.

Since we push online processing methods to preprocess-
ing as much as possible, the actual implementation using
our method can end up with very limited online processing
requirements. However, we can still perform some online pro-
cessing such as view-frustum culling (at the page level using
the bounding box information of the primitives in that page)
and back face culling, to further improve the performance.

Finally, all the triangles in the remaining pages are ren-
dered. Note that, while model simplification is important
and required, other page culling techniques are optional. For
example, if the entire model has to be rendered in transparency
mode, performing back-face culling will decrease the image
fidelity, and hence should be avoided. Single-seek disk layout
replaces a major part of tranditional online processing with
preprocessing, resulting in the availability of much more time
for the final rendering step. Furthermore, note that, with our
technique, we have all the required geometry at every frame
even for faraway objects, and we do not use texture subtitution
techniques to achieve interactive rendering. With additional
time in hand, we can use the available geometry to achieve
sophisticated rendering effects such as transparency, shadows,
and realistic lighting and shading.

IV. ANALYSIS OF THE PERFORMANCE PARAMETERS

Data layout can be optimized to the applications require-
ments through three parameters – average number of disk



seeks, redundancy factor, and average data transfer volume.
We set the number of data seeks to be one here, and find
a layout that optimizes the other two parameters to meet
the applications requirements. Redundancy affects the storage
requirements, and the data transfer volume affects the time
(frame rate) requirements. In this section we show that these
two parameters, are in, turn related to one single design
parameter, namely the cell size.

Let us assume the given model is referred as level 0 and is
simplified to m levels of details where level m is the coarsest
one. We assume this simplification is processed via an octree-
based technique, and the edge length of the octree nodes that
are collapsed in the (i + 1)th LOD is twice the edge length
of the octree nodes collapsed in the ith LOD. For the purpose
of this analysis, we assume the navigation space of the user
is a 2D grid of cells each of size a × a units. For each
cell the primitives located within a distance of approximately
a/
√

2+r from the center of the cell are rendered in the original
resolution (0th LOD), and the primitives located between
distances a/

√
2+2i−1r and a/

√
2+2ir are rendered in the ith

LOD as illustrated in Fig. 3(Left). The value of r is determined
by the size of the leaf nodes and the screen spaces pixel error
tolerance requirements.

- - - - - 
- ---- 
- - - - - 

- 

- 

- ---- - - 

- - 
- - - 
- 

- 

+ + + + + 
+ + + + + 

+ + + + + 

+ 

+ 

+ + + + + + + 

+ + 
++ + 

+ 

+ 

0th LOD 
1st LOD 
2nd LOD 
3rd LOD 

Current cell, c1 
Next cell, c2 
Coarser LOD 
Finer LOD + 

- 

Fig. 2. Illustration of the data fetching. LODs are shown in different colors.
The cells marked with ’+’ are loaded at a finer LOD and the cells marked
with ’-’ are loaded at a coarser LOD.

Redundancy Factor: We define the average number of
times the primitives in the ith LOD are stored in the disk as
the redundancy factor Ri. The expected redundancy factor for
the ith LOD, E(Ri) is derived below.

Lemma 1. Assuming the primitives are very small compared
to the cell size, E(R0) = 4d

√
2 + 2r/ae, E(Ri) = 4d

√
2 +

2i+1r/ae+4d
√

2+2ir/ae, 0 < i < m, and E(Rm) = 4d
√

2+
2mr/ae, where E denotes the expected value.

Proof: Let us assume that we are navigating from cell
c1 to an adjacent cell c2. Let us assume that cell c′ is within
distance r

′

i = a/
√

2 + 2ir, i < m from the center of c2 but
outside distance r

′

i from the center of c1. We call this a forward
navigation towards c′. When navigating from c1 to c2 we need
to load the content of the ith LOD of c′. For each such tran-
sition, the ith LOD of c′ needs to be stored on the disk once.

Fig. 3. Left: Illustration of the radii of the 0th and first LODs for a viewpoint
within the red cell, a/

√
2+ r and a/

√
2+2r respectively. Right: The green

cells demonstrate the cells for which the red cell needs to be rendered at the
ith LOD. The blue cells demonstrate the cells for which the red cell needs to
be rendered at an LOD finer than the ith LOD. Each arrow shows a transition
for which we need to load the ith LOD of the red cell. This equals to the
number of cells covered in a Manhattan traversal around a circle of radius r

′
i

without getting inside any cell that has an overlap with the circle.

The number of such transitions is equal to the number of cell
edges that form the outline of the circle with radius r

′

i, which is
8r

′

i/a, after cell quantization (Fig. 3(Right)). Thus, the number
of times we need to store c′ in the ith LOD due to forward
navigation is Fi = 8d

√
2/2 + 2ir/ae = 4d

√
2 + 2i+1r/ae.

However, we may also navigate from c2 to c1 in which case we
need to load the (i+1)th LOD of c′ (the coarser representation
of c′) from the disk. We call this a backward navigation away
from c′. We denote the number of times the (i+ 1)th LOD of
c′ needs to be stored due to a backward navigation Bi+1 which
is equal to Fi. Moreover, we know that we always load the 0th
LOD of a cell either in a forward navigation towards it and
the last LOD or in a backward navigation away from it. The
other LODs can be loaded in either of forward or backward
navigation. Therefore, we can compute the average number of
times a cell has to be stored (redundancy factor) as follows:

R0 = F0 = 4d
√

2 + 2r/ae. (1)

Ri = Fi + Bi = 4d
√

2 + 2i+1r/ae+ 4d
√

2 + 2ir/ae, (2)

0 < i < m.

Rm = Bm = 4d
√

2 + 2mr/ae. (3)

Let us assume the number of primitives in the ith LOD
without any redundancy is equal to Ni. We define the total
redundancy factor as

R =
Σm

i=1RiNi

Σm
i=1Ni

. (4)

Transfer Volume: The average transfer volume is the
average amount of data that needs to be loaded to the main
memory when going from one cell to another. We define it as
V . The expected transfer volume E(V ) is derived below.

Lemma 2. E(V ) = (d(
√

2 + 2r/ae+ 1)N0 + Σm−1
i=1 (d

√
2 +

2i+1r/ae + d
√

2 + 2ir/ae + 2)Ni + d(
√

2 + 2mr/ae +
1)Nm)a2/A, where E denotes the expected value.



Proof: When entering cell c2, the data of the finer LOD
of all the cells that are marked by ′+′ in Fig. 2 are loaded.
The number of such cells is bounded by 2r

′

i/a + 1 = d
√

2 +
2i+1r/ae+1 for the ith LOD. Based on the similar theory from
Lemma 1, while leaving from cell c1, the data of the coarser
LOD of the cells with ′−′ signs in Fig. 2 are loaded as well.
This number is bounded by 2r

′

i−1/a+ 1 = d
√

2 + 2ir/ae+ 1
for the ith LOD.

Let us assume the total area of the model is A units and the
density of the triangles over the whole model is uniform. Then
the triangle density of the ith LOD is Ni/A. Furthermore, we
know that the area of each cell is a2. Let C = a2/A, using
these we can approximate the total transfer volume as:

V0 = d(
√

2 + 2r/ae+ 1)N0C. (5)

Vi = (d
√

2 + 2i+1r/ae+ d
√

2 + 2ir/ae+ 2)NiC, (6)

0 < i < m.

Vm = d(
√

2 + 2mr/ae+ 1)NmC. (7)

V = V0 + Σm−1
i=1 Vi + Vm. (8)

In summary, Equations 2 and 8 show that increasing the cell
size reduces the redundancy factor, but quadratically increases
the transfer volume, which in turn reduces the frame rate.
Therefore, we need to find the appropriate cell size to avoid a
very large redundancy factor and at the same time bound the
transfer volume.

Fig. 4. Trade-off between the number of frames per second for different
redundancy factors. Left: the City model; Right: the Boeing model. Different
data point in the graph is collected at different cell sizes. The cell size
corresponding to the knee of the graph is chosen as the optimum operating
point beyond which there are diminishing returns for increased redundancy.

Computing the Cell Size: Since in Equations 1, 2, and 3
the ratio of r/a determines the redundancy factor, we set
the cell size a proportional to r rather than absolute values
in our experiments. In order to determine a proper cell size
a, experiments with different cell sizes were performed, and
we monitored the trade-off between the redundancy factor
and the frame rate (which is inversely proportional to the
transfer volume). Fig. 4 is such a graph for the City model. In
general, we can see that decreasing the cell size increases the

Fig. 5. The different steps through which we decide on the proper size of
the leaf nodes and also the cell size, a. During this process, the radius of
the zeroth LOD, r, is automatically determined based on the size of the leaf
node, the desired screen resolution, and the pixel error threshold.

redundancy factor, reduces the transfer volume and increases
the frame rate. In the initial stages, when the redundancy factor
is low, and the transfer volume is still high, any reduction in
the cell size and hence the transfer volume directly translates
to improvement in the frame rate. After the knee of the graph,
the cell sizes are small enough that for the same navigation
distance and speed, the cell boundaries are crossed more often.
Although the number of seeks for every boundary crossing is
just one, the total number of disk seeks for the same distance
navigation is large enough to counter the speed up gained by
smaller transfer volume. Any further reduction in the cell size
and hence the transfer volume has only marginal effect on the
frame rate. This shows the significance of number of disk-
seeks on the frame rate. In our implementation, we choose
the cell size to be the knee of the graph, although any other
cell size that satisfies an application specified bound on the
disk space usage can be used.

V. IMPLEMENTATION AND RESULTS

We used two models in our experiments. The first one is
a Boeing 777 airplane model, which is partially displayed
in Fig.1 (left). It includes 350 million triangles, with total
11.8GB storage space in binary uncompressed format with
one LOD and 20GB with 4 LODs. For this model, in addition
to visibility and back-face culling (Section III-B) we also
store an ordering of the disk pages for each cell based
on the distance of the pages from the center of the cell.
Using this, we can allow the user to select any object in the
scene and make it transparent with a small online processing
overhead (Section V-B). Fig. 6 shows the Boeing model with
the transparency effect. The entire preprocessing takes 336
minutes.

The second one is a city with 110 million triangles shown
in Fig.1 (right), with total storage space of 3.7GB in binary
uncompressed format with one LOD and 6.0GB with 3 LODs.
No preprocessing other than the simplification was performed
to this model. The preprocessing time for this model is 34
minutes.

For our experiments with use a Dell T5400 Workstation
with Intel(R) Core (TM) 2 Quad with 4GB of Main memory,
we used a 1 TB Seagate Barracuda hard drive with 7200 RPM
and an nVIDIA Geforce GTX 260 graphics card with 896 MB
dedicated memory in our system. Finally, all the statistics are
gathered for rendering at 600× 600 image resolution.



A. Experimental Parameters

In the experiment setup, all the parameters that are required
for single seek data layout are computed. The computation
pipeline is shown in Fig. 5. For octree construction, we used
15 bits to represent each of the x and z coordinates and 8 bits
to represent the y values since the model is relatively flat. The
number of levels in the octree, or, in other words, the size of
the leaf node of the octree is determined by the average of
edge length of triangles in the model.

Next, the value of r in Fig. 5, Equations 1, 2, and 3 is
computed as the smallest distance from the cell at which the
leaf node of the octree can be collapsed and still maintain the
visual fidelity of the rendering up to the user specified screen
space threshold. Given the redundancy factor threshold, cell
size a is calculated based on Equation 4 and then applied to
the layout.

Fig. 6. Rendering of the Boeing model before (left) and after (right) making
part of the body transparent. The user can interactively choose any part of the
model and make it transparent.Discarding the visibility flags combined with
the extra overhead of sorting the close by objects reduced the average frame
rate of our system from 13fps to 4fps when allowing only one pixel error
in the screen space.

B. Rendering

During rendering, we first load the required data and the
visibility flag table we created during pre-processing. We
preserve a 32 KB array buffer for marking dirty pages. The
visibility flag table consumes approximately 6 MB memory
space. Based on our experiments, the visibility culling for
the Boeing model can cull-out 82.4% of the primitives in
average. On the remaining data, we perform a low cost view
frustum culling on the bounding box of each disk page. This
online view-frustum culling for a 90◦ field-of-view culls-out
around 75% of processed primitives, and back face culling
culls roughly 40% of the remaining primitives. The actual
memory usage of the Boeing model is 2.8 GB.

For rendering with the transparency effect, we order the
pages based on following three rules before sending them to
the renderer: first, coarser LODs are rendered earlier than finer
LODs; second, within each LOD, the pages are rendered based
on the pre-computed order of page IDs stored for each cell;
finally, the primitives that are rendered in their finest LOD
are sorted online before rendering. Also we do not use the
visibility flags in the transparency mode. This does not lead to
changes in the redundancy factor or transfer volume. However,
since back face culling and visibility culling are not available

any more, and view frustum culling takes more time, frame
rate drops when compared to rendering without transparency.
In our experiment, the frame rate in tranparency mode is about
1/9 of opaque mode for the Boeing model.

Fig. 7. Comparison of maximum delay between two consecutive frames
when data loading happens for single-seek layout and cache-oblivious layout.
Solid lines are the results without applying prediction, and dash lines are the
results where prediction is available. All experiments are done on the Boeing
model and in the same navigation path.

C. Comparison

In order to show the advantage of the single seek time
achieved by our method we build another version of the City
and the Boeing models with a cache-oblivious layout [28].
The data required for each cell is computed in the exact same
way as the single-seek data layout. The only difference is that
the data is not stored with redundancy. Instead, for each cell,
there is a list of page IDs that need to be loaded from the disk.
Thus, this data may be loaded with multiple seeks. For the
City model, the worst case frames (plural) per second (FPS) is
improved from 4.3 (cache-oblivious layout) to 7.0 (single-seek
layout), which is an improvement of 62.8%. The average FPS
in this case is improved from 48.5 (cache-oblivious layout) to
51.0 (single-seek layout). For the Boeing model, the worst case
performance is improved from 1.5 fps (cache-oblivious layout)
to 2.4 fps (single-seek layout), which is an improvement of
60.0%. The average FPS in this case is improved from 10.8
(cache-oblivious layout) to 13.1 (single-seek layout). These
statistics are collected under 1 pixel error threshold, and the
cell size a is measured as 1/4 with respect to r. This result
shows that the single-seek layout significantly improves the
worst case frame rates, and also improves average frame rate.
In Fig. 7, solid lines illustrate the maximum delays for the
single-seek data layout and the cache-oblivious data layout
for the Boeing model with one pixel error for same navigation
sequence. Since the amounts of data to be loaded and rendered
at each point P are the same, the lower delays are clearly due
to the guaranteed single-seek.

The single-seek data layout is orthogonal to existing data
prefetching techniques. We did the same experiment with
prediction, which requires one more thread and a second
buffer in the main memory. Dash lines in Fig. 7 demonstrate



the result. There are three different cases: (1) the predictions
are correct and the data fetching finishes before reaching the
destination cell: data transferring is completely avoided at cell
boundaries, hence delays are eliminated, e.g. P2, P8; (2) the
predictions are perfect but the data fetching cannot be done
before reaching cell boundaries: single-seek data layout can
improve the frame rates, e.g. P4, and is even possible to
completely remove delays, e.g. P3, P6; (3) the predictions
are proved to be incorrect: data fetching is still required at
cell boundaries, and prefetching can only reduce delays in a
portion, which makes single-seek data layout is useful in this
worst case scenario, e.g.P1, P5, P7, P9.

Comparing our method with the GPU based approach
introduced by Peng and Cao [21], in their work, they use an
Intel Core i7 2.67GHz PC with 12 GB of RAM, and a Nvidia
Quadro 5000 graphics card with 2.5 GB of GDDR5 device
memory, which is a high performance computer and usually
not available for common use. They also tested their algorithm
on the same Boeing model that we use. By utilizing the large
size of the main memory and the power of the GPU, they can
load the entire Boeing model into the main memory and render
it with only simplification rather than culling on an average
of 9.8 fps. It is reasonable to say that this performance is the
best current technology can accomplish without redundancy. In
contrast, we use a relatively low cost PC and by employing the
idea of preprocessing and single seek layout, we can achieve
on an average 13.1 fps without GPU based acceleration. Since
our method is complementary to other GPU based methods,
there is further room for acceleration.

VI. CONCLUSION

In summary, we showed that the seek time for slow sec-
ondary storage devices is a major performance bottleneck for
out-of-core interactive applications and can directly affect the
frame rate and more importantly the maximum delay between
two consecutive frames. Therefore, we proposed a data layout
that utilizes redundant storage of the data to prevent more than
one disk seek for fetching the data required for each frame.
We have provided an analysis of the amount of redundancy
resulting from our approach. Furthermore, we showed that
a higher redundancy can be traded off with smaller fetch
time (lower data transfer volume) and therefore higher frame
rate in the worst cases. Using this analysis and a series of
experiments, we showed how the user can choose the best
redundancy factor based on the applications requirements and
the available resources. Finally, we demonstrated how view-
dependent pre-processing stages can be incorporated in our
data layout to allow interesting rendering effects such as
transparency with a small overhead on the system.

The main concern of single-seek data layout is the large
storage space it consumes. Furthermore, it is not flexible
enough when users are willingly to sacrifice performance
slightly to save storage space requirement partially. There is
a spectrum of data layout solution for different trade offs
between number of disk seeks, amount of data transfer volume,
and the redundancy factor. Single-seek layout is only the first

work in this direction we have explored. In the future we
would like to explore the generic problem of varying caps
on number of disk seeks.

REFERENCES

[1] Automatic image placement to provide a guaranteed frame rate. Aliaga,
D., and Lastra, A.:ACM , 1999.

[2] An interactive massive model rendering system using geometric and
image-based acceleration. Aliaga, D., Cohen, J., Wilson, A., Baker, E.,
Zhang, H., Erikson, C., Hoff, K., Hudson, T., Stuerzlinger, W., Bastos,
R., Whitton, M., Brooks, F., and Manocha, D.:ACM , 1999.

[3] Coherent hierarchical culling: Hardware occlusion queries made useful.
Bittner, J., Wimmer, M., Piringer, H., and Purgathofer, W.:Eurographics
, 2004.

[4] TetraPuzzles – efficient out-of-core construction and visualization of
gigantic polygonal models. Cignoni, P., Ganovelli, F., Gobbetti, E.,
Marton, F., Ponchio, F., and Scopigno, R., Adaptive:ACM , 2004.

[5] Visibility-based prefetching for interactive out-of-core rendering. Corrêa,
W. T., Klosowski, J. T., and Silva, C. T.:IEEE , 2003.

[6] Constrained Strip Generation and Management for Efficient Interactive
3D Rendering. Diaz-Gutierrez, P., Bhushan, A., Gopi, M., and Pajarola,
R.:Computer Graphics International Conference , 2005.

[7] Single Strips for Fast Interactive Rendering. Diaz-Gutierrez, P.,
Bhushan, A., Gopi, M., and Pajarola, R.:The Visual Computer , 2006.

[8] Roaming terrain: Real-time optimally adapting meshes. Duchaineau,
M., Wolinsky, M., Sigeti, D. E., Miller, M. C., Aldrich, C., and Mineev-
Weinstein, M. B.:IEEE , 1997.

[9] The equalizer parallel rendering framework. Eilemann, S., and Pajarola,
R.:Technical Report , 2007.

[10] GPU Gems: Programming Techniques, Tips and Tricks for Real-Time
Graphics. Fernando, R.:Pearson Higher Education , 2004.

[11] Far voxels: A multiresolution framework for interactive rendering of
huge complex 3d models on commodity graphics platforms. Gobbetti,
E., and Marton, F.:ACM , 2005.

[12] Optimization of mesh locality for transparent vertex caching. Hoppe,
H.:ACM , 1999.

[13] Streaming meshes. Isenburg, M., and Lindstrom, P.:IEEE , 2005.
[14] Large mesh simplification using processing sequences. Isenburg, M.,

Lindstrom, P., Gumhold, S., and Snoeyink, J.:IEEE , 2003.
[15] Visualization of large terrains made easy. Lindstrom, P., and Pascucci,

V.:IEEE , 2001.
[16] Geometry clipmaps: Terrain rendering using nested regular grids.

Losasso, F., and Hoppe, H.:ACM , 2004.
[17] View-dependent simplification of arbitrary polygonal environments.

Luebke, D., and Erikson, C.:ACM , 1997.
[18] Level of Detail for 3D Graphics. Luebke, D., Reddy, M., Cohen, J.,

Varshney, A., Watson, B., and Huebner, R.:Morgan-Kaufmann , 2002.
[19] CLODs: Dual hierarchies for multiresolution collision detection.

Otaduy, M. A., and Lin, M. C.:Eurographics , 2003.
[20] Global static indexing for real-time exploration of very large regular

grids. Pascucci, V., and Frank, R. J.:ACM/IEEE , 2001.
[21] A GPU-based approach for massive model rendering with frame-to-

frame coherence. Peng, C., and Cao, Y.:Computer Graphics Forum ,
2012.

[22] Space-Filling Curves. Sagan, H.:Springer-Verlag , 1994.
[23] A novel page-based data structure for interactive walkthroughs. Sajadi,

B., Huang, Y., Diaz-Gutierrez, P., Yoon, S.-E., and Gopi, M.:ACM , 2009.
[24] Data management for SSDs for large-scale interactive graphics applica-

tions. Sajadi, B., Jiang, S., Gopi, M., Heo, J.-P., and Yoon, S.-E.:ACM
, 2011.

[25] Fast triangle reordering for vertex locality and reduced overdraw.
Sander, P. V., Nehab, D., and Barczak, J.:ACM , 2007.

[26] Out-of-core rendering of massive geometric datasets. Varadhan, G.,
and Manocha, D.:IEEE , 2002.

[27] Digital halftoning with space filling curves. Velho, L., and de Mi-
randa Gomes, J.:ACM , 1991.

[28] Cache-oblivious mesh layouts. Yoon, S.-E., Lindstrom, P., Pascucci,
V., and Manocha, D.:ACM , 2005.

[29] Real-Time Massive Model Rendering. Yoon, S., Gobbetti, E., Kasik,
D., and Manocha, D.:Morgan & Claypool Publisher , 2008.


	Introduction
	Related Work
	Single-Seek Data Layout
	Discretization of the Navigation Space
	Primitives Reduction
	Data Layout
	Data Management

	Analysis of the Performance Parameters
	Implementation and Results
	Experimental Parameters
	Rendering
	Comparison

	Conclusion
	References

