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Fig. 1. Example of digital voxel art obtained from [1]. (a) Original volumetric data displayed in a voxel editor. (b) Polygonal mesh from it
extracted by our method.

Abstract—This work presents a method to extract polygonal
surfaces from volumetric models created by artists, proposing a
way of using voxel modeling tools to build B-Rep models.

The volumetric data created by voxel editors usually contain
topological features that do not describe solid structures. Hence,
the main objective of this work is to solve the problem of
extracting triangle meshes from volumes that contain these
topological features.

In order to extract surfaces successfully, a methodology was
conceived to resample any volumetric model, in a way that it
is possible to reconstruct a tridimensional manifold that can be
polygonized without generating a surface with gaps or topological
problems.

The meshes generated by this technique have good properties,
satisfying some of the main criteria used to measure the quality
of meshes, such as aspect ratio, smoothness and skewness.

Keywords-Mesh extraction; Voxel Art; Polygonization of Vol-
umetric Data; Mesh reconstruction;

I. INTRODUCTION

Voxel art is a form of digital art in which the details and the
geometry of a digital model are specified by means of voxels
and its properties [2]. A model depicted by voxel art is usually
described as a tridimensional array of voxels representing a
uniform grid. An attribute function defines which voxel in the
grid belongs to the geometric support of the volume by means
of a binary valued density function which can be understood
as a characteristic function. Other properties associated to
each voxel can also be defined by means of functions as, for
example, a color function that associates a rgba color to each
voxel that defines the shape of the model. Empty spaces can
be associated to a full transparent color. Figure 1a shows an
example of voxel art.

Such form of digital art was present in several games in the
end of the 90’s as an alternative solution for the representation

of 3D objects which were composed of only one material and
that could be manipulated using euclidean transformations [3].
The use of such objects made possible to run 3D games at that
time in computers with no hardware acceleration. The use of
voxel based representation fell into a kind of ostracism as
soon as hardware accelerated graphics APIs such as OpenGL
and Direct3D became available in the twenties, together with
the advent of programmable and parallel GPUs. Further on,
it was much easier and efficient to represent and deal with
texturized polygonal meshes than with volumetric data usually
relying on raycasting algorithms for visibility and illumination
computation. Thus, nowadays, the use of voxel art has become
a form of art used by few enthusiasts although some games
have nostalgically revived such aesthetics as, for example, 3D
Dot Game Heroes by Silicon Studio of Japan [4].

The problem we definitely deal with here is to extract
a texturized mesh representation from a voxel art model
produced in voxel editors. Such tools enable the user to
edit each part of the volume manually, voxel by voxel, or
using techniques for voxel carving. In this work the texture is
inferred only from the colors of the voxels in the volumetric
data which means that no texture atlas is built in the process.

Mesh extraction from volumetric data has been thoroughly
investigated in the literature as it will be shown in the related
works section. Nevertheless, differently from other graphical
objects considered in computer graphics, voxel art has its own
idiosyncrasies that have led to the way we tackle the mesh
extraction problem in this work. Aliasing and discontinuities
which are usually seen as an alien and undesirable artefact in
many models produced by geometric modeling and computer
graphics are an inherent aspect of voxel digital art. These
aspects arise naturally when the artist uses his expression to



describe the shapes and details in the boundary of the volume.
Hence, we may expect that aliasing and discontinuities will not
be outlier cases in the modeling process associated to voxel
art but a natural and frequent phenomena that arises when the
artist tries to express his ideas of shape by means of simple
volumetric elements, similarly to someone that paints an art
picture in any pixel drawing tool.

Mesh extraction in the presence of topological degeneracies
is a problem not very explored in the literature. Here we
present a new technique to deal with such problem that we
have tested and considered very satisfactory, producing quite
good results.

This work has two main relevant contributions: (1) it
proposes a new method to resample volumetric models in such
a way that it is possible to reconstruct 3-manifolds which can
be later polygonized without introducing any artifact such as
holes in the surface or other topological problems usually seen
in conventional techniques such as Marching Cubes [5] and its
variations as in [6]. (2) we present an algorithm that generates
a triangle mesh from volumetric data which is an orientable
combinatorial manifold that is consistent with the geometry of
the original voxel model. Besides, the mesh produced by the
method is robust considering important mesh quality metrics.

This work is organized as follows: section 2 describes the
related works associated to our proposal; in section 3 we
present some theoretical fundamentals about combinatorial
topology used to describe our method; section 4 describes the
method in details and section 5 presents results and analysis;
finally, in section 6 we present a conclusion and possible works
to be pursued in the future.

II. RELATED WORKS

Marching Cubes [5] is the most known method to ex-
tract a polygonal surface from volumetric data. It scans the
whole model creating triangles at cubic regions that intersect
the surface that delimits the model. This method uses a
lookup table that describes how these triangles are generated
according to the configuration of each cubic region. The
signal of the implicit function describing the surface at the
vertices of each cubic region determines the local triangulation
configuration associated to the mesh that will be created. The
lookup table of Marching Cubes has ambiguous configurations
which may create cracks in the generated mesh. The work in
[6] has implemented a lookup table from [7] that prevents
that problem from happening, generating polygonal models
that are manifold for any input data. Marching Cubes has
received numerous extensions such as Extended Marching
Cubes [8] and several polygonization methods have appeared
in the literature as, for example, Dual Contouring [9], Dual
Marching Cubes [10], among others [11]. These methods may
not generate appropriate results for degenerate solids. The
polygonization of such models will either result in holes or
non-manifold components as shown in figure 2.

Topological problems from degenerate voxel art objects
can be removed at voxel level or polygonal mesh level. The
work in [12] subdivides critical volumetric cells into 125
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Fig. 2. Example of polygonization of a voxel art: (a) is the original
model where each voxel is represented as a cube. (b) is how [6]
polygonizes it, which generates gaps between voxels. (c) situation
where the polygonization generates non-manifold components. (d)
is the desirable result as a manifold polygonal model with no gaps
between voxels.

smaller cells fixing degenerate connections between the input
voxels, however making the mesh extraction process much
more expensive in terms of memory and processor usage. On
the other hand, [13] has an extensive methodology to repair
a myriad of problems on polygonal meshes, including the
presence of non-manifold edges and vertices. Both methods
work by replacing non-manifold edges with cylinders and the
non-manifold vertices with spheres. The geometry generated
by this kind of approach is not coherent with the connectivity
between the elements from a digital voxel art. Differently, the
method we propose works at voxel level by re-sampling the
discrete scalar field that describes the volume of the object,
subdividing critical elements in 8 parts and it generates a
geometry that is coherent with the topology of the original
volumetric model.

The work in [2] solves a problem in 2D that resembles the
problem that is being investigated in this work. Their work
converts digital images used in video-games from the 80’s
and early 90’s into a set of closed curves with no intersection,
allowing them to rescale these images into any resolution.
Their method eliminates the topological problems that were
derived from the aliasing that exists in digital images and
it respects the connectivity between the original elements
of the image. Voxel art stores a description of the surface,
distinguishing the object from the background, unlike digital
images derived from old video games. The author of that
work circumvents this limitation by treating different colors
as multiples materials, thus, increasing the complexity of the
solution. The similarity graph of their method has inspired
the connectivity graph of our method, which is an important
concept to understand how it resamples the scalar field that
describes the volume of the object, before its triangularization.
It also guarantees the reconstruction of a 3-manifold whose
boundary will yield a two manifold represented by the desired
mesh to be extracted.



III. THEORETICAL FRAMEWORK

Here we define some concepts of combinatorial topology
[14] and the concept of connectivity graphs which are the
fundamentals of our proposal.

A. Basic Combinatorial Topology Concepts

Let an affine cell immersed in <n be the convex hull of a
finite set of points and define a cell of dimension p in <n, or
simply p–cell, as the homeomorphic image of an affine cell in
<n. We define a cell γ generated from a subset of points of a
cell σ as a subcell of γ. We also define a cell complex Σ as a
finite set of cells where the intersection of two cells σ, γ ∈ Σ
also belongs to Σ. Moreover, we call the complex d-regular
if every p-cell with p < d is a subcell of at least one cell of
dimension p. Two cells σ and γ are connected if there is a
sequence of cells (γi)

n
i=0 connecting them. A subcomplex Σ∗

of a cell complex Σ is a connected component of Σ if all its
cells are connected.

A cell complex Σ is a combinatorial manifold of dimension
d if it satisfies the following properties:

1) Σ is a connected d–regular complex.
2) Every cell with dimension (d− 1) of Σ must be subcell

to a maximum of two cells with dimension d.
3) The neighborhood of a vertex in Σ is homeomorphic to
<d or <d

+.
A combinatorial manifold is orientable if it is possible to

choose a coherent orientation for all of its cells, in other words,
two adjacent k-cells always induce opposite orientations at the
(k − 1)-cells that are shared by them.

B. Connectivity Graph

Let V ⊂ <3 be a volumetric region, described by a
uniform cell decomposition, and Ω a combinatorial 3-manifold
associated to V . The geometric support of the non-degenerate
digital voxel art models is represented by regular complexes
Σ ⊂ Ω, while the geometric support from degenerate volu-
metric models is Σ′ ⊂ Ω. If a cell σ is such that σ ∈ Σ or
σ ∈ Σ′, then σ /∈ ∂Ω.

Let Σ ⊂ Ω be a non-degenerate solid. We define the
dual connectivity graph associated to Σ, denoted by DCG =
(VE,ED), where VE is a set of vertices and ED is the set of
edges of the graph. The sets VE and ED are defined by two
bijections: ηc : σ → v, where σ ∈ Σ and v ∈ VE ; ηf : τ → e
that for each 2-subcell τ ∈ Σ, adjacent to two 3-cell σ and
σ′, associates an edge e = (u, v) ∈ ED, u ∈ VE and v ∈ VE,
where ηc(σ) = u and ηc(σ′) = v.

Let Σ′ ⊂ Ω be a degenerate solid. In this work, we will
denote a critical 1-face or critical edge ε, every edge that
is incident to two cells σ and σ′, σ ∩ σ′ = ε. Analogously, a
critical 0-face or critical vertex υ is a vertex that is incident to
two cells σ and σ′, σ∩σ′ = υ . Observe that the definitions of
critical vertices and edges are particular for the combinatorial
structure of Ω.

We define the extended dual connectivity graph associated
to Σ′ denoted by EDCG = (VE′,ED′) where VE′ is the set
of vertices and ED′ is the set of edges of the graph. The set

VE′ is defined by the bijection ηc : σ → v, where σ ∈ Σ′ and
v ∈ VE′. The set of edges is defined by three different types
of bijections that depend on the neighborhood system between
the cells of Σ′:

1) For each 2-subcell τ ∈ Σ′, adjacent to two cells σ and
σ′, ηfe : τ → e associates an edge e = (u, v) ∈ ED′,
where ηc(σ) = u and ηc(σ′) = v;

2) For each critical edge ε ∈ Σ′, ηee : ε→ e associates an
edge e = (u, v) ∈ ED′ , where ηc(σ) = u, ηc(σ′) = v,
σ, σ′ ∈ Σ′;

3) For each critical vertex υ ∈ Σ′,υ 6⊂ ε, where ε is
a critical edge, ηve : υ → e, associates an edge
e = (u, v) ∈ ED′, where ηc(σ) = u, ηc(σ′) = v,
σ, σ′ ∈ Σ′.

Case 3 affirms that we only create an edge in the EDCG
corresponding to two cells incident to a critical vertex when
such vertex is not already a member of a critical edge.
This avoids by construction that crossed edges arise in the
considered graph.

Figure 3 illustrates an example of EDCG being constructed
from a degenerate regular complex Σ′.

(a)

(b)

(c)

Fig. 3. (a) Example of a regular complex Σ′ that contains critical edges
and vertices. (b) The centroid of each cell induces a vertex in the graph
EDCG. (c) The graph EDCG is generated from Σ′; the filled edges
correspond to the bijection ηfe : τ → e, the dashed edges correspond
to ηee : ε → e and the ones with a thin dotted line correspond to
ηve : υ → e.

In this work, the cells from the regular complex Ω will
receive four distinct classifications. First, define Ω = Ω − Σ.
A cell σ ∈ Σ is interior if every 2-subcell τ ⊂ σ is adjacent
to exactly two distinct cells of Σ. A cell ω ∈ Ω is exterior if
ω∩σ = ∅ or ω∩σ = τ , τ ⊂ σ is 0,1,2-subcell, for every cell



σ ∈ Σ and ω does not contain any critical vertex or edge. A
cell σ ∈ Σ is a boundary cell if ∃ω ∈ Ω, σ∩ω 6= ∅ and σ∩ω
contains one or more 2-cells. Finally, a cell ω ∈ Ω is called a
refinement cell if ∃σ1, σ2 ∈ Σ, σ1 ∩ ω 6= ∅, σ2 ∩ ω 6= ∅ and
σ1∩σ2 is a 1-subcell or 0-subcell, i.e, ω is incident to a critical
vertex or edge. The same definitions are valid if we consider a
degenerate solid represented by the regular complex Σ′. This
classification will be used later to select the regions that will
be part of the boundary of the object that will be generated
by the method proposed at this document.

From now on, in this text, the term voxel will be used to
reference three dimensional cells of the cell complex.

IV. MANIFOLD MESH EXTRACTION FROM VOXELS

The aim of this work is to extract meshes that represent
the boundary of volumetric data built by artists described by
uniform spatial decomposition. Such data are the analogous in
3D to the pixel art in 2D. The extraction of meshes from volu-
metric data is a problem that has been thoroughly investigated
in the literature. On the other hand, the problem we tackle
here involves volumetric data which do not correspond in the
majority of the cases to 3D-combinatorial manifolds. In other
words, such data correspond to degenerate solids. Extracting
meshes representing boundary surfaces of such solids while
preserving the original expression of the artist is a non trivial
problem with challenges that have led to the development of
this work.

A. Problem definition

Let V ′ be a volumetric model represented by a cell complex
Σ′ ∈ Ω. Extract a 2D combinatorial manifold mesh represent-
ing the boundary ∂Σ of a 3-manifold Σ reconstruction of V ′.
The 3-manifold reconstruction of V ′ does not need to preserve
the original combinatorial structure of V ′.

B. The proposed method

The solution for the mesh extraction problem we tackle here
is based on a constructive approach that relies on concepts
of combinatorial manifolds and discrete data resampling. The
method proposed subsumes two macro steps: the first step
consists in obtaining a 3-manifold reconstruction Σ from the
original volumetric data V ′, not necessarily with the same
combinatorial structure; the second step is the one that finally
extracts a combinatorial 2-manifold ∂Σ which is the boundary
of the reconstructed volume.

The 3-manifold reconstruction of V ′ is obtained by con-
structing the primal connectivity graph from the extended dual
connectivity graph of the regular complex Σ′ associated to V ′.
The primal connectivity graph guarantees by construction that,
in the new cellular complex, each face is adjacent to exactly
two cells if it is interior to the volume or to one cell if it is
part of the boundary. Hence, such cellular complex is bound
to be a 3-manifold. The final mesh is then extracted from the
boundary of the 3-manifold reconstructed cellular complex.
The extracted mesh is guaranteed to produce a manifold as a
consequence of the result of combinatorial topology that states

that the boundary of a 3-manifold is a 2-manifold without
boundaries.

In the proposed method, the connectivity graph is not
constructed explicitly as it will be shown in more details in the
sequel. We use a resampling process followed by the assembly
of affine cells, which are locally defined by the convex hull of
the new computed samples. The resampling process enables
the correction of the topology in the degenerate neighborhoods
of the solid so that in final stage each region will be locally
homeomorphic to the sphere. The resampling process is de-
fined in such a way that the topology is modified and corrected
only near the critical vertices and edges preserving the original
topology of the non-degenerate regions.

The overall method can be organized and detailed in three
steps as shown in the fluxogram in figure 4.

Fig. 4. Fluxogram of the proposed method.

The first step consists in classifying the cells in the cell
complex Ω embedded in the Euclidean R3 space in inte-
rior, exterior, boundary and refinement cells, considering the
volumetric model represented by Σ′. A set of polygons will
be produced for the cells classified as boundary and for the
refinement cells which are in the frontier between the interior
and exterior of the considered volumetric object. Conversely,
no polygons will be associated to cells classified as interior or
exterior. There are two reasons for considering the refinement
cells which are located out of the object in the polygonization
substep: the first one is to locally modify the topology of Σ′

in order to enable the extraction of a 2-manifold which will
bring forth the desired mesh; the second reason is to enhance
the geometric quality of the polygonized region. Here we built
a intermediary complex Σ from which ∂Σ will be extracted.

The second step aims at the resampling of the scalar field
given by the characteristic function of the volume defined on
the cellular complex Σ′ associated to V ′. The resampling is
the step that yields a new set of vertices. A new intermediary
regular complex Σ will be constructed from the new set of
vertices obtained. This step consists of two substeps:
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Fig. 5. (a) Example of data provided by the user with black cells
being the ones the user has painted, while the white ones are not
painted. (b) Classification of the cells in interior (black) and exterior
cells (white). (c) Zoom in at the lower left part of second image. Cell
5 is a refinement cell because the boundary cells 2 and 6 are neighbors
of cell 5; cells 2 and 6 have no edges (2-subcells) in common but they
are connected by a vertex (1-subcell) that is incident to the cell 5. The
other cells are not refinement cells.

1) A vertex is generated for each centroid of the boundary
cells from Σ′. Vertices are also generated for each
centroid at all d-faces, d = 0, . . . , 2, incident to two
boundary cells.

2) A dilation operator is applied at all new vertices created
in order to yield additional six new vertices for each
new vertex created.

1) Voxel classification: Voxel classification starts with the
detection of interior and exterior voxels. We must be aware that
the user may leave interior voxels unpainted (hollow regions)
so it is necessary a pre-processing step to correct this problem.
This can be simply solved by using a region growing based
method.

The next classification step detects border voxels and voxels
in the refinement regions which are exactly what we defined
as refinement cells (section III.B). An example of refinement
voxel can be seen in figure 5.

2) Volume resampling: After all voxels are classified, those
who were classified as border voxels or refinement voxels are
subdivided in eight (8) new voxels, as shown in the 2D exam-
ple in figure 6a. Then, each new voxel, after the subdivision
is considered as a cubic region containing 8 vertices which
are initially labeled as internal or external according to the
following criterion:
• Internal: new elements created in the center of the subdi-

vision of a original border cell and in the central positions
in the adjacent elements(vertices, edges or faces) between
two border cells

• External: all other created elements
In the application of the dilation operator, vertices at an

unitary distance from each original vertex initially labeled
as internal are relabeled as internal, independently of their
original labeling. This results in a propagation of internal
labels in the four main directions (six directions in the 3D
case). This can be seen in figure 6b. This is the step that
defines the resampling operation that corrects the topology of
the critical vertices and edges.

(a) (b)

(c) (d)

(e)

Fig. 6. Example of a slice of a scalar field where dark cells are
internal/boundary and white cells are external/refinement. (a) is the
scalar field before resampling. (b) is the scalar field after the dilation
operation. (c) Dual lattice rotated in 45 degrees. The center of the cells
of this lattice are the vertices created before the dilation operation. The
remaining vertices intersects with multiples cells from the reticulate.
(d) ilustrates how a cell is generated in regions with no critical vertices.
(e) illustrates how a cell is generated in regions with critical vertices.

It is possible to present a geometric and topological argu-
ment that explains how this resampling process removes all
critical vertices and edges without changing the combinatorial
topology of the topologically correct regions of the cell com-
plex. This argument considers a 45 degree rotated dual version
of the original grid and shows that the dilation operation
at critical vertices and edges locally produce triangulated 2-
manifolds.

We pose the conjecture that a similar argument can be
presented for the tridimensional case, considering a dual grid
formed by octaedric cells subdivided in tetrahedra. Similarly,
one tetrahedra will be considered internal if its vertices are all
labeled as internal and otherwise it will be considered external.

3) Mesh extraction: The mesh extraction is done in two
stages: first, we generate a set of affine cells (polyhedra)
that define a new cell complex associated to the intermediary
volume Σ; second, we determine among all affine cells created,
those that contain faces that are on the surface that bounds the
volume represented by a mesh associated to the boundary of
∂Σ.

Affine cell generation - Each new voxel produced in the
subdivision step is considered as a volumetric region that
will generate an affine cell, that is, a polyhedron (see figure
7). Each cubic region associated to a given voxel will be
associated to a 8 bit binary number, where each bit is equal to
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Fig. 7. The six cases of the Lookup Table of our polygonization step.
Blue vertices are inside the volume of the mesh, while black ones are in
the exterior. (a) Tetrahedron, with 10 rotations. (b) Squared pyramid,
with 24 rotations. (c) Triangular prism, with 12 rotations. (d) Union
of two squared prisms, with 12 rotations. (e) The geometric dual of a
tetrahedron inside a cubic region, with 8 rotations. (f) Cube (case 255
of the Lookup Table) used only to remove internal faces.

1 if the associated vertex is interior to the volume or zero in
the case the vertex is external. The binary numbers are used
to query a Lookup Table which defines the final configuration
of the affine cell inside the cubic volumetric region.

The Lookup Table, shown in figure 7 presents only 67 valid
configurations which can be seen as rotations of 6 fundamental
different cases. It must be made clear that the lookup table used
here is not a sub-case of the Marching Cubes lookup table
containing a completely different set of configurations. All
fundamental cases, shown in figure 7 are: tetrahedron, squared
pyramid, triangular prism, union of two squared prisms, the
geometric dual of a tetrahedron inside a cubic region and the
cube (for more details see [15]).

Mesh construction - The set of all faces belonging to the
generated affine cells determines a set of candidate faces to
define the final mesh that bounds the desired volume.

There are two conditions that establish when a candidate
face will be part of the resulting polyhedral surface;
• The candidate face must not be part of a face that bounds

a internal cubic region of the volume;
• Each face in the mesh must be created only once. If the

candidate face already exists, then it must be removed,
as it is part of the interior of the volume

The attributes of a face of the mesh must be computed
as soon as it is generated. The normal vector of the face
is trivially calculated by the cross product of the vectors
associated to two edges of the face in the counterclockwise
orientation. The color of each face is defined by a weighted
mean of the color of the voxels that are adjacent to the
region that contains the considered face. We associate different
weights that depend on the type of the voxel adjacency to
the voxel that contains the considered face. Here we used the
following weights: 8 for the color of the voxel that contains
the considered face, 4 to the voxels that share a face with the
voxel in which the face is embedded and 1 for voxels that
share on vertex with the considered region.

After the generation of all faces of the mesh, we remove
all vertices that are not incident to any faces that were not
removed from the generated object.

V. RESULTS

This section presents the results obtained in each step of the
proposed method to validate it. For this reason, strategic steps
of the process will be analyzed separately, describing some of
its limitations and how to avoid them.

A. Voxel Classification

The solution adopted to detect the internal regions of the
volumetric model may not work correctly when the artist
creates an object where the boundary is a surface without
border. In this case, the model may have tunnels and there
will be mesh generated inside these tunnels regardless if they
will be visible or not, which may be an undesirable result in
several situations. The recognition of internal regions in this
case is an unsolved problem [16] and it is beyond the scope
of this work. These cases may be avoided if the artist closes
the holes using a transparent color or black.

The proposed method do work correctly with models that
do not have genus zero as seen in figure 8.

(a) (b)

Fig. 8. Model that does not have genus zero. (a) Original volumetric
data. Each voxel is a cube. (b) Mesh generated from it, with colors and
normals per face.

B. Volume Resampling

Here we present some results of the resampling process
and its effect at the mesh extracted by our method and other
methods of the literature.

Figure 9 illustrates a volumetric data that has critical vertices
while figure 10 shows a volumetric model that has a critical
edge. In both cases, it shows the model resampled by our
technique and polygonized using our technique and the method
from [6].

Our resampling method guarantees that most of the am-
biguous cases from Marching Cubes are eliminated, except
one that is treated by our Lookup Table as the union of two
prisms, which shows up at refinement regions near critical
edges. This is the reason why Lewiner’s implementation of
Marching Cubes did not generate a mesh with a geometry
coherent with the one from the volumetric model, while it
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Fig. 9. Example of volumetric data with critical vertices. (a) Original
volumetric data. (b) Volumetric data resampled by our technique. (c)
Result of our mesh extraction process with the original volumetric
data. (d) Result of [6]’s mesh extraction process with the original
volumetric data. (e) Result of [6]’s mesh extraction process with the
volumetric data resampled by our method.

works correctly with resampled objects that have no critical
edges. On the other hand, the results obtained by our mesh
extraction method are appropriate on both topological and
geometrical points of view.

C. Mesh Extraction

This section analyzes the performance of the proposed
technique and the quality of the meshes extracted by our
method. The test environment consisted of an AMD Phenon
x3 (3 cores) 8750 (2.4ghz) and 8gb RAM, although the code
uses only one core and it did not use the GPU. Figure 11
illustrates three of the high resolution models that were tested
with our method while table I shows the dimension and counts
the amount of user painted (solid) voxels and the total of
voxels in the input data; it displays the amount of vertices
and triangles of the output data; it displays the time elapsed
to extract the mesh and it uses some metrics to analyze the
quality of the mesh.

TABLE I
Statistics of the models illustrated at figure 11.

Model Name Mad Dog Kirov MKII War Miner
Size 100x97x71 42x67x140 29x26x65
Solid Voxels 24 570 29 558 6 409
Total Voxels 688 700 393 960 49 010
Vertices 93 983 75 838 28 004
Triangles 205 676 169 430 64 858
Aspect Ratio 1.478 1.492 1.482
Skewness 0.222 0.229 0.234
Smoothness 0.007 0.007 0.007
Execution Time 3 464 ms 2 356 ms 403 ms

The meshes extracted by this technique are more dense
and uniform than the ones from Marching Cubes, due to the
resampling process. However, they are well behaved according
to the metrics considered in this work. The first metric, the
aspect ratio, is the ratio between the longest and shortest
edges of each triangle of the mesh. Values near 1 happens on
meshes where equilateral triangles are predominant. Skewness

(a) (b)

(c) (d) (e)

Fig. 10. Example of volumetric data with critical edges. (a) Original
volumetric data. (b) Volumetric data resampled by our technique. (c)
Result of our mesh extraction process with the original volumetric
data. (d) Result of [6]’s mesh extraction process with the original
volumetric data. (e) Result of [6]’s mesh extraction process with the
volumetric data resampled by our method.

measures asymmetry of the distribution of the triangles in the
mesh. Let AT be the area of a triangle of the mesh, while ACT

is the area of an equilateral triangle T inscribed in a circle that
circumscribes T . Skewness is the ratio between the ACT −AT

and ACT . Values near zero correspond to more symmetric
meshes. The third metric is smoothness which measures the
difference between the area of a triangle and its immediate
neighbors. Smoother meshes have values near 0.

In our technique, the triangles are generated with vertices
at the border of cubic cells. This ensures that each triangle
will either have an aspect ratio of 1,

√
2 or
√

3 and the angles
between every edge are multiples of 45o. Most of the times that
will make the aspect ratio approach

√
2, while skewness and

smoothness will approach zero due to the similarity between
the triangles of the mesh.

VI. CONCLUSION

The objective of this work consists of extracting polyg-
onal meshes from volumetric models generating orientable
manifolds that are consistent with the connectivity between
the original voxels. The solution for this problem must take
into account the challenges of dealing with degenerate or low
resolution volumetric objects.

In order to do this, our technique classifies the voxels to
detect which regions will receive triangles. These regions are
refined, detecting the vertices that will be used to generate
volumes that will represent combinatorial 3-manifolds, without
discontinuities at the adjacencies of the original voxels.

The voxel classification step works correctly as long as the
boundary of the volumetric model is defined by a surface
without borders. The solution of this problem in the general
case is beyond the scope of this work, being up to the artist
to fill the empty spaces in the surface of the object.

The volume resampling step generates a discrete scalar field
that removes most configurations that causes ambiguities in the
original Marching Cubes, except for the one specified in the
case (d) of our Lookup Table at figure 7 in refinement cells



(a) (d)

(b) (e)

(c) (f)

Fig. 11. Examples of high resolution volumetric data before and after
the mesh extraction. In order to notice the differences between them,
use a 1200% zoom in at each image. (a) Original volumetric data
for Mad Dog [17]. (b) Original volumetric data for Kirov MKII [18].
(c) Original volumetric data for War Miner [19]. (d) Polygonal mesh
obtained for Mad Dog. (e) Polygonal mesh obtained for Kirov MKII.
(f) Polygonal mesh obtained for War Miner.

near critical edges. However, the resampled data is enough
for our mesh extraction step to obtain orientable combinatorial
manifolds for any input data.

During the construction of the mesh, the method suc-
cessively creates a set of affine cells defined by the sign
of the subdivided voxels and the configurations stored in a
lookup table that specifies all kinds of affine cells necessary
to assemble the desired combinatorial cell complex. Each
new affine cell is merged with the previously created affine
cells. Finally, the boundary of the 3-manifold cell complex is
extracted by removing internal and duplicated faces yielding
the final mesh.

The adjacency relationship between the original voxels are
preserved, independently of the genus of the input data. The
method is executed in interactive time and it generates a dense
mesh which also has a good quality considering the metrics
used to analyze it, due to the predictable size and angles of
the edges, discarding the need of a remeshing process.

The uniform distribution of the vertices allows them to be
mapped onto a 3D lattice that allows us to use a mix of
implicit data and boundary representation. We shall use this
information in our future works to obtain information from
models, optimize the mesh, etc.
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