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Abstract—The swallowing process affects several aspects of
one’s welfare, as nutrition, hydration, respiration and hearing.
Magnetic resonance imaging (MRI) has been a valuable tool
to study swallowing, since it is a non-invasive procedure that
can dynamically capture the shapes of the tongue and other
elements involved in the process. The resolution enhancement of
the MRI frames support directly diseases diagnoses, helping the
visual analysis, or can be a pre-processing tool to segmentation,
classification, recognition or modelling. MRI frames with better
resolution, with less blurring or noise can be obtained changing
the acquisition process, or using more powerful devices, but
the cost of this solution is higher than applying computational
Super-Resolution (SR) techniques. This paper studies a Bayesian
approach to provide a Wiener filter to regularize the conjugate
gradient solution, and promote an adaptation of an iterative SR
method for non-rigid registration that can be generalized to other
iterative SR methods.

Keywords-Super-Resolution; Swallowing MRI; Wiener Filter;
Conjugate Gradient; Bayesian Regularization;

I. INTRODUCTION

Swallowing problems are fairly common and have a preva-
lence of 16− 22% among individuals older than 50 years. A
growing interest in real-time magnetic resonance techniques
for assessing swallowing has been generated by the projec-
tional nature of the technique in conjunction with excellent
soft tissue contrast. Magnetic resonance imaging (MRI) has
several advantages compared with conventional X-ray tech-
niques: No harmful side effects like radiation; variable slice
orientations without changing the position of the patient; soft
tissue contrast [1].

One of the first works to address a SR method to MRI was
developed by Peled et al. [2]. They applied the Irani-Peleg’s
Iterative-Back-Projection (IBP) method [3] to original and
synthetic images obtained by downsampling, blurring, shifting
and adding gaussian noise to human white matter fiber tract
MRI. To produce an experiment with original images, the
author acquired 72 images: eight shifted images for each of
nine diffusion weightings. According to the paper, the resulting
SNR was about 20% better than the original one. Although it
was an initial step, Scheffler [4] observed that the images
were acquired with an in-plane shifted in phase encoding
some subpixel displacements, using the same field-of-view
(FOV) and resolution. This means that the sampled data in k-

space was identical for all images, they were just sampled at
different positions in image space. So, despite the Signal-Noise
Ratio (SNR) increasing, the resolution enhancement could be
obtained directly from the original data.

In order to create a real SR method for MRI it is necessary
that the observed images present some kind of real redundance,
as the similarity of two different but contiguous slices of a
3-D MRI or dynamic MRI frames. In both cases the image
registration is more complex, since the difference between
two frames is not uniform. Because of this, most work has
concentrated on brain MRI [5], [6], [7], [8], where a simple
global uniform motion registration can be applied.

To consider MRI of structures not so still as the brain, like
the tongue [9] or the vocal tract [10], [11], [12] a more
complex registration is needed.

Martins et al. [10] developed a method for spatio-temporal
resolution enhancement of vocal tract image sequence, in a
two stage approach. In the first stage the displacements and
deformations, estimated by a non-rigid registration method,
were used in an interpolation to generate intermediate images.
In a second stage, the SR image reconstruction, applying a
maximum a posteriori probability estimation based on Markov
random field prior model. The iterated conditional modes
(ICM) algorithm was used sequentially to update the high
resolution (HR) images, making the solution computationally
costly. Later in [11], Martins et al. proposed a refinement
of the second stage by a novel discrete Wiener filter based
on statistical interpolation of [13] (described in section II-B).
Another upgrade of the same authors was made in [12],
changing and comparing the separable Markovian model with
the isotropic model, that empirically represents the estimated
image autocorrelation.

A promising research line in MRI-SR is the sparse methods
exploration. Manjon et al. [14] propose to recover some
of the high frequency information in an upsampling method
that uses data-adaptive patch-based reconstruction combined
with a subsampling coherence constraint. In a recent work
Rueda et al. [15], presents a sparse-based super-resolution
method, adapted for easily including prior knowledge, which
couples up high and low frequency information so that a
high-resolution version of a low-resolution brain MR image
is generated. The sparsity based methods of SR, as in many



others subjects in image processing as denoising, compression,
impainting, restoration etc, have outperformed the pre-existing
state-of-art SR methods.

Contributions: The computational SR techniques for
MRI provides lower cost and higher flexibility than device
changes or exposure time increase. This paper proposes an
iterative MRI-SR method with a locally adapted Bayesian
approach for the Conjugate Gradient (CG-SR) solution that
considers the correlation between the frames. The Conjugate
Gradient solution provide faster convergence rate and the
Bayesian approach implements a stronger regularization than
the traditional Laplacian method.

A. Technique Overview

This method applies the iterative CG-SR method to up-
sampling, deblurring and denoising swallowing images ob-
tained with MRI. It provides a more reliable and flexible
regularization, that allows to change it as necessary. We take
this advantage to choose a Bayesian approach to formulate
a Wiener filter, considering not just the pixel neighborhood
but the influence of the nearest frames on it. The algorithm
algebraic formulation has to be changed to accommodate
the non-rigid registration, since it is appropriate to matrix
formulation. To better understand this technique in section II
we present the origin of the ideas applied in this work. The
developed technique is described in section III. In section IV
the experiments are presented and discussed. And finally, in
section V, the final conclusions will be exposed.

II. TECHNICAL BACKGROUND

A. The Conjugate Gradient for Super-Resolution

Irani-Peleg’s IBP regularization is created during the high
resolution (HR) composition by the low resolution (LR) im-
ages and is just the elimination of the outliers values in this
process. The CG-SR has the same regularization as Tikhonov-
Miller-SR method, but the convergence rate is higher.

In general terms, the strategy that characterizes SR can be
represented by the block diagram of Figure 1.

Fig. 1: Block diagram of SR image degradation process.

The degradation process responsible for the kth LR image
can be described as:

g(k) = AHR(k)f + ω(k), ∀k = 1, 2, · · · , N (1)

where A is the downsampling matrix, H the blurring matrix,
R(k) the displacement from kth LR image, g(k) the lexico-
graphic representation of kth observed LR image and f is the
lexicographic representation of the HR image.

Choosing matrices D(k)
AHR in a way to represent the blurring,

displacement and downsampling, such as D(k)
AHR = AHR(k),

equation (1) can be rewritten as in [16]:

g(k) = D
(k)
AHRf + ω(k), ∀k = 1, 2, · · · ,K (2)

The system described by (2) is an ill-conditioned inverse
problem and therefore, the iterative solution must be regular-
ized.

There are several iterative restoration methods suitable to be
adapted to SR. Aguena and Mascarenhas in [17] presented
iterative SR based on Van Cittert , Tikhonov-Miller and
Conjugate Gradient (CG) restoration methods. In this work,
the iterative CG-SR method is described as:

ri = − αCtI(k)rg Cfi

+ cD
(k)t
AHRI

(k)
db

n∑
k=1

(g(k) −D(k)
AHRfi)

pi = ri + γipi−1,

fi+1 = fi + βipi. (3)

with

γi =
‖ri‖2

‖ri−1‖2
(4)

βi =
rtipi

‖(D(◦)
AHR)pi‖2Idb + α‖Cpi‖2Irg

, (5)

where C is a Laplacian operator to regularize the noise
amplification, inherent to the deblurring process, and t is the
transpose matrix notation. c is a constant to normalise the
columns of A and divide the summation to obtain the mean.
The (◦) is the image whose high resolution lattice is been used
as reference to register all other images. So, the matrix D(◦)

AHR

represents the degradation process suffered by the (◦) image.
It is very common that iterative restoration methods pro-

duces ringing artifact like an echo of the high frequencies.
The matrices Idb and Irg are two diagonal matrices applied to
reduce this artefact. The elements of the main diagonal of Idb
and Irg are lexicographical representation of the coefficients
matrices rg and db respectively. The elements of matrices rg
and db are calculated as:

rg(i,j) =
1

1 + µmax
[
0, σ2

g − σ2
ω

] (6)

db(i,j) =
1

1 + (µmax
[
0, σ2

g − σ2
ω

]
)−1

, (7)

where σ2
g is the local variance around g(i, j) pixel and σ2

ω

the variance of the whole image g. The operation || · ||2Q is a
weighted `2 norm with qij coeficients of diagonal matrix IQ.
In regions with smooth intensity transitions the local variance
is approximately the noise variance, the rg(i,j) coefficients will
not interfere with regularization but db(i,j) coefficients will



inhibit the deblurring process. In edge regions with larger local
variance, the rg(i,j) coefficients will inhibit the regularization,
and db(i,j) coefficients will allow a larger deblurring process.

B. The Bayesian Interpolation approach

Lagendijk [18] proposes a Wiener filter regularization for
restoration based on a priori knowledge that both noise pro-
cess (ω) and the original image (f ) are multivariate Gaussian,
with zero-mean and correlation matrices, Rωω = σ2

ωI and
Rff respectively. Thus, the direct Tikhonov-Miller model for
restoration, given by:

f =
[
HtH + αCtC

]−1
Htg, (8)

can be rewritten as:

f =
[
HtH +RωωR

−1
ff

]−1

Htg. (9)

Mascarenhas et al. [13] developed a Bayesian approach to
multispectral image data fusion that models Rff , which can
be easily invertible. In this work, interpolation was applied
to match images of 20x20m with 10x10m resolution, using
patches as shown in Figure 2, in three multispectral bands.

Fig. 2: Graphic representation of the Bayesian Interpolation

The vector f , is the (27 × 1) lexicographic ordering of
the HR estimated image, and g is the (27 × 1) vector of
the lexicographic ordering of the observed LR images. By
the orhogonality principle, the interpolation process can be
expressed as:

f = E[f ] + ΣfgΣ−1
gg (g − E[g]) (10)

where E[.] is the statistical expectation, Σfg is the cross-
covariance of f and g and Σgg the auto covariance of g. Since
the expected values must not be changed in the interpolation
process, E[f ] = E[g].

Assuming separability of the covariance matrices, they can
be given by:

Σfg = Chfg ⊗ Cvfg ⊗ ΣS (11)
Σgg = Chgg ⊗ Cvgg ⊗ ΣS (12)

Under the Markovian structure the Ch matrices are given
by:

Chgg =

 1 ρh ρ2h
ρh 1 ρh
ρ2h ρh 1

 , (13)

and

Chfg =

[
ρ
3/4
h ρ

1/4
h ρ

5/4
h

ρ
5/4
h ρ

1/4
h ρ

3/4
h

]
, (14)

where the Cv matrices have the same structure as Ch, but
using ρv . The ρ value is the correlation coefficient of horizon-
tal or vertical direction and they can be global or adapted
to the local roughness. Zaniboni and Mascarenhas [19]
implemented the local correlation coefficient to this data fusion
framework. The horizontal and vertical correlation coefficients
were calculated locally and with k-means algorithm they were
clustered in five groups represented by its central value. Each
patch of the multispectral images was mapped to one of the
five groups of ρ for vertical and horizontal direction. If the
neighbourhood of a pixel is smooth, the ρ value must be low,
and the interpolated pixel will suffer more influence of the
neighbourhood. If it is a rough area, the value of ρ is higher,
and the interpolated pixel will receive less influence of the
neighbourhood.

The covariance matrix between the three multispectral bands
and is given by:

ΣS =

 σ2
11 σ2

12 σ2
13

σ2
21 σ2

22 σ2
23

σ2
31 σ2

32 σ2
33

 , (15)

where σ2
ij is the covariance between the bands i and j, and

σ2
ii is the variance of the band i.
The covariance matrix of the vector f is easily found:

Σf = BΣggB
t = ΣfgΣ−1

gg Σt
fg, (16)

where is B is given by:

B = ΣfgΣ−1
gg . (17)

It should be observed that the (12× 12) covariance matrix
carries not only spectral information, but also information
about the interpolated pixels.

Using equation (16), we can formulate Rff as:

Rff = σ2
fΣff , (18)

where σ2
f is the variance of f .

C. Non-Rigid Registration

To map pixels from one frame/slice to another, the corre-
sponding anatomical and function locations must be properly
found. In other words, it means to find the optimal geometric
transformation that minimizes de differences between the
images. The transformation model defines how this mapping,
or image registration, will work. This process usually require
three components:



• A transformation model to define a geometric non-rigid
transformation across the images.

• A similarity metric to measure the alignment between the
images.

• An optimization method to maximize the similarity met-
ric.

The most common registration methods are based only on
transformations as translations, scale or rotation. These trans-
formations can be completely described by a fixed global set of
linear weights. If no global linear model can be formulated, we
have a non-linear registration. The non-linear registrations just
aims to preserve the topology, avoiding tearing or collapsing
regions and allowing a smooth and invertible transformation
[20]. It should be noted that, registration is a critical part of
the SR.

Rueckert et al. [20] developed a non-rigid image registration
based on free-form deformation (FFD) and cubic B-splines
interpolation. FFD is defined by a discrete three-dimensional
mesh of uniformly spaced control points, each one associated
with a displacement vector. A blend of this vectors define
the displacement at a general location, with the nearer vector
having greater influence in a region. The weight blend are
determined by a weighting function and B-spline functions.

A non-rigid registration was proposed by Myronenko and
Song [21], [22], and implemented in MIRT - Matlab Image
Registration Toolboox (available on [23]). In this toolbox, a
non-rigid registration using B-splines control points is imple-
mented, but the goal is the variety of similarities measures
as sum-of-squared differences (SSD), correlation coefficient
(CC), correlation ratio (CR), and mutual information (MI).
These similarities measures are based on the intensity re-
lationship of the corresponding pixels without considering
their spatial dependencies. The gradient descent optimization
method is used to iteratively update the parameters of the
registration.

III. MRI ITERATIVE SR WITH WIENER FILTER
REGULARIZATION

This is a novel method that adapts the iterative CG-SR
method to MRI frames, replacing the registration matrix by
a non-rigid registration function . A Wiener filter, based on
the separability of spatial correlation structure, is also used as
an adaptive regularization.

A. The algorithm

As explained by equations (1) and (2), D(k)
AHR holds the

registration information. When the registration is a linear
transformation as translation or rotation, it can easily be
represented by a matrix, and to obtain the inverse registration
transformation, the transpose matrix can be used. This property
is not valid for non-rigid registration, and for this reason, the
formulation of (3) has to be changed, representing the regis-
tration transformation as a function, instead of a matrix. The
registration function R(l(ref), v) represents the transformation
of v, an image vector, over l(ref), a reference lattice. Thus,

from equation (3) and (9), if the LR images are zero-means,
we have:

ri = −RωωR
−1
ff fi

+

n∑
k=1

cR
(
l(◦), D

(k)t
AH I

(k)
db

(
g(k) −D(k)

AHR
(
l(k), fi

)))
pi = ri + γipi−1,

fi+1 = fi + βipi, (19)

with

γi =
‖ri‖2

‖ri−1‖2
(20)

βi =
rtipi

‖D(◦)
AHpi‖2Idb + ptiRωωR

−1
ff pi

. (21)

The symbol (◦) emphasizes that a vector (or matrix) are
associated with the reference lattice. But if the vectors (or ma-
trix) have no explicitly indication of which lattice it belongs,
it means that they are associated with the reference lattice too.

A detail that must be observed is that the adaptive constraint
matrix Irg , used in (3) and (5) is no more suitable to (19) and
(21), but the adaptive constraint is preserved in regularization
using an adaptive ρ. To simplify the method of Zaniboni and
Mascarenhas [19], instead of finding five groups for horizontal
and vertical directions, a mean between the value of both
directions was used to calculate a single ρ for each patch, and
these values were clustered and mapped for the interpolation.
Figure 3 shows the ρ and Irg mapping1 to comparison.

(a) ρ for noise SD=0; (b) Irg for noise SD=0;

Fig. 3: Representation of ρ and Irg mapping used in regular-
ization process.

B. Initialization and tunning

The initial guess of f0 is obtained taking the initial LR
images, upsampling, registering and calculating the mean of
them.

The method described in III-A has just the parameter µ to
be adjusted, that in this case affects just the deblurring process,
increasing the effect of the rg(i,j) coefficient as was explained

1Technically, the Irg is a diagonal matrix and the Figure 3 is a map of the
Irg coefficients to the image.



Fig. 4: Diagram of the experiment.

in II-A. Several values of µ were tested and the best results
were achieved in the interval µ = [10−2, 104]. As we will
discuss in more detail in section IV, two similarity measures
were tested and the results for each measure were taken in
two points: the best point of all iterations and the last one. In
general, the values of µ to achieve best results increase when
the degradation (blur and noise) is higher. The choice of the
measure point also influences the value of µ: to the obtain
the highest similarity reached in the lasts iterations, the value
of µ tends to decrease. Table I shows, the values of µ that
maximize the target value.

Table I: Values of µ

Blur/Noise best SSIM best ISNR final SSIM final INSR
R=2/SD=0 102 102 100 10−2

R=2/SD=8 102 102 101 102

R=2/SD=16 104 103 101 101

R=4/SD=0 103 102 103 100

R=4/SD=8 103 103 - -
R=4/SD=16 104 104 - 101

The registration procedure provided by MIRT was tested
empirically and have the following parameters chosen:

• The sum of square differences (SSD) was selected as
similarity measure;

• The chosen mesh windows size was 5 .The smaller the
window the more complex deformations are possible, but
also more regularization is required;

• 3 Hierarquical Levels were used;

IV. EXPERIMENTS

The initial data for the experiments is a set of five synthetic
images of 128x128 pixels, obtained from a degradation process
of downsampling, blurring and additive noise, applied to a set
of five 256x256 original images. Figure 5 shows the set of
original frames (the central one is the reference frame witch
lattice is used for registration (◦)). Figure 6 (a), (f), (k) and (p)
show the synthetic degraded central frame from the set that is

used as initial guess to perform the experiment. The diagram
of Figure 4 outlines the experiment.

The tested degradations were a combination of:
• Uniform out-of-focus blurring, with a kernel of 2 and 4

pixels of radius;
• Additive zero-mean Gaussian noise, with standard devi-

ation (SD) of 0, 8 and 16;
• Downsampling by a factor of 2.
To compare the results of the Wiener filter (WReg) a

typical Laplacian (LReg) regularization was tested with the
same conditions (CG-SR method, and non-rigid registration
provided by MIRT).

The quality of the process was measured by the Structural
Similarity Index (SSIM) and Improvement in Signal-Noise-
Ratio (ISNR). In both measures, the maximum value reached
and the final value are compared.

A. Performance

The implementation was made with Matlab. The perfor-
mances of the Wiener filter regularization always reach the
best values, and when the degradation increases, the method
tends to have a faster convergence than the Laplacian regu-
larization. As the size of the blur grows, the process become
slower, because it increases the size of the involved matrices.
The same does not happen with the noise: the amount of noise
does not interfere in performance.

B. Quality

The method with Wiener regularization reaches better re-
sults in most cases, but it seems to work better when the blur
is small (R=2), as we can see in Figure 7 and 6. We can
observe the difference between the numerical results of the
methods looking at Table II and III.

Another improvement that is clearly observed but is better
quantified visually is the reduction of a kind of noise, very
common in MRI frames, that is not punctual but happens
in spots. Figure 8 shows two frames acquired in different
moments of a still person and the difference between them, to
characterize this noise. Visually, the SR process reduced this
noise mainly because the mean used to regroup the LR images,
but we can see better results in Wiener filter regularization.

C. Limitation

A strong limitation inherent to the algebraic formulation of
this method is the size of the involved matrices. To implement
these methods with a reasonable amount of memory (the tests
were executed in a computer with 16 GB of memory), the im-
ages were cut in 16 blocks during the debluring/regularization
tasks, and put together again to register the whole image. This
is time consuming, but is a safe solution.

Another point to be stressed is that the model traditional SR
(equation 1) may not be the best way to express MRI image
process, but the deblurring that was applied (based uniform
out-of-focus blurring) can enhance the egdes of blurred images
in general way, and the same can be said for the denoising
process.



Fig. 5: The five original frames: the central one is the reference frame (◦).

(a) blur=2, noise SD=0; (b) Best SSIM for LReg.; (c) Best SSIM for WReg.; (d) Best ISNR for LReg.; (e) Best SSIM for WReg.;

(f) blur=2, noise SD=16; (g) Best SSIM for LReg.; (h) Best SSIM for WReg.; (i) Best ISNR for LReg.; (j) Best SSIM for WReg.;

(k) blur=4, noise SD=0; (l) Best SSIM for LReg.; (m) Best SSIM for WReg.; (n) Best ISNR for LReg.; (o) Best SSIM for WReg.;

(p) blur=4, noise SD=16; (q) Best SSIM for LReg.; (r) Best SSIM for WReg.; (s) Best ISNR for LReg.; (t) Best SSIM for WReg.;

Fig. 6: Best experiments results: The first column is the initial synthetic image; the following columns are respectively the
results of: the best SSIM for Laplacian regularization, the best SSIM for Wiener Filter regularization, the best ISNR for
Laplacian regularization, the best ISNR for Wiener Filter regularization



Fig. 7: Graphics comparing the behavior of the two methods for different blur and noise. The first graphic shows the total
process of 500 iterations, and the second one show the details of the first 10 iterations.

Table II: Best SSIM and ISNR for Laplacian Regularization (LReg)

best SSIM best ISNR final SSIM final INSR
Blur/Noise value iteration value iteration value iteration value iteration
R=2/SD=0 0.7800 6 0.0001 2 0.7798 500 -0.0333 500
R=2/SD=8 0.7751 3 0.0005 2 0.7727 500 -0.0897 500
R=2/SD=16 0.7663 2 0.0000 1 0.7573 500 -0.2491 500
R=4/SD=0 0.7755 50 0.0738 8 0.7755 500 0.0575 500
R=4/SD=8 0.7723 50 0.0750 5 0.7723 500 0.0547 500
R=4/SD=16 0.7612 65 0.1003 4 0.7608 500 0.0424 500

Table III: Best SSIM and ISNR for Wiener Filter Regularization (WReg)

best SSIM best ISNR final SSIM final INSR
Blur/Noise value iteration value iteration value iteration value iteration
R=2/SD=0 0.7827 10 0.0227 6 0.7802 500 -0.0034 500
R=2/SD=8 0.7790 4 0.0401 3 0.7708 500 -0.0381 500
R=2/SD=16 0.7711 3 0.0441 2 0.7603 500 -0.0525 500
R=4/SD=0 0.7782 18 0.1346 6 0.7766 500 0.1221 500
R=4/SD=8 0.7771 11 0.1658 5 0.7701 500 0.0083 500
R=4/SD=16 0.7660 6 0.1965 3 0.7558 500 -0.0234 500

V. CONCLUSION

This paper proposed an iterative MRI-SR, based on Con-
jugate Gradient solution method, with a Bayesian approach



Fig. 8: Characterization of a particular kind of noise of MRI
images. The first line shows two images and the difference be-
tween them. The second line shows the Wiener and Laplacian
regularization results.

to provide a regularization, locally adapted to the correlation
between the frames of swallowing dynamic MRI. The iterative
CG-SR method had to be adapted, replacing the algebraic
formulation by a function in order to perform a non-rigid
registration. The Wiener filter regularization reaches better
results than the Laplacian, with just a few interations, although
the Wiener filter is less stable after several iterations.

Two measures of fidelity were used, the SSIM and the
ISNR. The results show that the Wiener filter works better
in experiments with less blur, and in this condition it was
very effective to denoise the image. These characteristics
are compatible with the kind of images generated by the
swallowing MRI.

An undesirable characteristic of the MRI frames is a kind
of deforming noise shown in Figure 8. Our method visually
decreased this effects. This happens due to the nature of this
SR method, that uses means to regroup the LR frames in one
frame, but visually speaking the Wiener filter method also
produce smoothers images.

Finally, the framework created by this method can be easily
generalized to be adapted to other kinds of regularization and
registration.

ACKNOWLEDGMENT

The authors would like to thank CAPES for the scholarship,
and the DFAIT-CAPES program that funded the exchange
program of Marcia L. S. Aguena at the University of British
Columbia.

REFERENCES

[1] J. Barkhausen, M. Goyen, F. von Winterfeld, T. Lauenstein, D. Arweiler-
Harbeck, and J. F. Debatin, “Visualization of swallowing using real-time
true FISP MR fluoroscopy,” European radiology, vol. 12, no. 1, pp. 129–
133, 2002.

[2] S. Peled and Y. Yeshurun, “Superresolution in MRI: application to hu-
man white matter fiber tract visualization by diffusion tensor imaging,”
Magnetic resonance in medicine, vol. 45, no. 1, pp. 29–35, 2001.

[3] M. Irani and S. Peleg, “Super resolution from image sequences,” in
Pattern Recognition, 1990. Proceedings., 10th International Conference
on, vol. 2. IEEE, 1990, pp. 115–120.

[4] K. Scheffler, “Superresolution in MRI?” Magnetic resonance in
medicine, vol. 48, no. 2, pp. 408–408, 2002.

[5] A. Gholipour, J. A. Estroff, and S. K. Warfield, “Robust super-resolution
volume reconstruction from slice acquisitions: application to fetal brain
MRI,” Medical Imaging, IEEE Transactions on, vol. 29, no. 10, pp.
1739–1758, 2010.

[6] X. Zhang, E. Y. Lam, E. X. Wu, and K. K. Wong, “Application of
tikhonov regularization to super-resolution reconstruction of brain MRI
images,” in Medical Imaging and Informatics. Springer, 2008, pp.
51–56.

[7] R. R. Peeters, P. Kornprobst, M. Nikolova, S. Sunaert, T. Vieville, G. Ma-
landain, R. Deriche, O. Faugeras, M. Ng, and P. Van Hecke, “The use of
super-resolution techniques to reduce slice thickness in functional MRI,”
International Journal of Imaging Systems and Technology, vol. 14, no. 3,
pp. 131–138, 2004.

[8] Y. Bai, X. Han, and J. L. Prince, “Super-resolution reconstruction of
MR brain images,” in Proc. of 38th Annual Conference on Information
Sciences and Systems (CISS04), 2004, pp. 1358–1363.

[9] J. Woo, Y. Bai, S. Roy, E. Z. Murano, M. Stone, and J. L. Prince, “Super-
resolution reconstruction for tongue MR images,” in SPIE Medical
Imaging, vol. 8314, 2012, pp. 83 140C–83 140C–8.

[10] A. L. Martins, N. D. Mascarenhas, and C. A. Suazo, “Spatio-temporal
resolution enhancement of vocal tract MRI sequences based on image
registration,” Integrated Computer-Aided Engineering, vol. 18, no. 2, pp.
143–155, 2011.

[11] A. L. Martins and N. Mascarenhas, “Spatio-temporal resolution en-
hancement of vocal tract MRI sequences based on the wiener filter,”
in Graphics, Patterns and Images (Sibgrapi), 2011 24th SIBGRAPI
Conference on. IEEE, 2011, pp. 242–249.

[12] ——, “Wiener based spatial resolution enhancement of MRI sequences
of the vocal tract: A comparison between two correlation models,” in
Image Processing (ICIP), 2012 19th IEEE International Conference on.
IEEE, 2012, pp. 869–872.

[13] N. D. A. Mascarenhas, G. J. F. Banon, and A. L. B. Candeias, “Image
data fusion under a bayesian approach,” in IGARSS’92, 1992, pp. 675–
677.
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correlação localmente adaptáveis,” Anais do IX SBSR (CDRom:\ sbsr\
8 135o. pdf), Santos, SP (in Portuguese), 1998.

[20] D. Rueckert and P. Aljabar, “Nonrigid registration of medical images:
Theory, methods, and applications [applications corner],” Signal Pro-
cessing Magazine, IEEE, vol. 27, no. 4, pp. 113–119, 2010.

[21] A. Myronenko and X. Song, “Image registration by minimization of
residual complexity,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 49–56.

[22] ——, “Intensity-based image registration by minimizing residual com-
plexity,” Medical Imaging, IEEE Transactions on, vol. 29, no. 11, pp.
1882–1891, 2010.

[23] A. Myronenko. (2010) MIRT - medical image registration toolbox.
Online; accessed 25-April-2013. [Online]. Available: https://sites.
google.com/site/myronenko/research/mirt

https://sites.google.com/site/myronenko/research/mirt
https://sites.google.com/site/myronenko/research/mirt

	Introduction
	Technique Overview

	Technical Background
	The Conjugate Gradient for Super-Resolution
	The Bayesian Interpolation approach
	Non-Rigid Registration

	MRI Iterative SR with Wiener Filter regularization
	The algorithm
	Initialization and tunning

	Experiments
	Performance
	Quality
	Limitation

	Conclusion
	References

