
Image Segmentation by Image Foresting Transform

with Non-smooth Connectivity Functions

Lucy A. C. Mansilla, Paulo A. V. Miranda

Department of Computer Science,

University of São Paulo (USP),

05508-090, São Paulo, SP, Brazil.

Email: lucyacm@vision.ime.usp.br, pmiranda@vision.ime.usp.br

Fábio A.M. Cappabianco

Instituto de Ciência e Tecnologia,

Universidade Federal de São Paulo,

São José dos Campos, SP, Brazil.

Email: cappabianco@unifesp.br

Abstract—In the framework of the Image Foresting Transform
(IFT), there is a class of connectivity functions that were vaguely
explored, which corresponds to the non-smooth connectivity
functions (NSCF). These functions are more adaptive to cope with
the problems of field inhomogeneity, which are common in MR
images of 3 Tesla. In this work, we investigate the NSCF from the
standpoint of theoretical and experimental aspects. We formally
classify several non-smooth functions according to a proposed
diagram representation. Then, we investigate some theoretical
properties for some specific regions of the diagram. Our analysis
reveals that many NSCFs are, in fact, the result of a sequence of
optimizations, each of them involving a maximal set of elements,
in a well-structured way. Our experimental results indicate that
substantial improvements can be obtained by NSCFs in the 3D
segmentation of MR images of 3 Tesla, when compared to smooth
connectivity functions.

Keywords-graph search algorithms; image foresting transform;
non-smooth connectivity functions

I. INTRODUCTION

Quantitative analysis of brain structures from magnetic

resonance images (MRI) has played an important role in

research in neurology and can be very useful in the diagnosis

and treatment of diseases related to changes in the anatomy of

the human brain [1]. Analysis techniques, however, require a

precise definition of the extent of the three-dimensional struc-

tures under study. This operation called image segmentation

is one of the most fundamental and challenging problems in

image processing and computer vision [2]. In medical image

analysis, accurate segmentation results commonly require the

user intervention because of the presence of structures with

ill-defined borders, intensity non-standardness among images,

field inhomogeneity, noise, artifacts, partial volume effects,

and their interplay [1], [3].

Methods based on the Image Foresting Transform (IFT) [4]

have been successfully used in the segmentation of 1.5 Tesla

MR datasets [5], [6], [7]. However, inhomogeneity effects

are stronger in higher magnetic fields, and it is extremely

important to define the optimal solution for these images. In

the framework of the IFT, there is a class of connectivity

functions that were little explored, which corresponds to the

non-smooth connectivity functions (NSCF). These functions

are more adaptive to cope with the problems of field inho-

mogeneity, which are common in MR images of 3 Tesla [8].

Their solutions could also be useful in the handling of natural

images with strong variation in brightness/shadow.

Historically, the usage of non-smooth connectivity functions

(NSCF) has been avoided, because their optimality, in terms of

the paths computed by the IFT, may not be guaranteed accord-

ing to [4]. Early studies only considered the usage of NSCFs,

such as feuc (Eq. 3 with 8-connected adjacency), to compute

an approximation of the Euclidean distance (EDT) [9], [10],

although some other studies by Herman et al. have suggested

some practical advantages of using NSCF in the context

of image segmentation [11], [12]. More recently, Strand et

al. proposed the Minimum Barrier Distance (MBD) [13],

which, in digital setting, leads to a non-smooth connectivity

function. In empirical comparisons, a favorable outcome has

been reported for MBD [13] 1. Also, in other recent works, it

has been proven that some non-smooth connectivity functions

can lead to optimum results according to other optimality

criteria, such as a graph-cut measure [14], [15], or an energy

function for optimum boundary tracking [16]. This brought

new lights to the research involving NSCF.

In this work, we investigate the NSCF from the standpoint

of theoretical and experimental aspects. We formally classify

several non-smooth functions according to a proposed diagram

representation. Then, we investigate some theoretical proper-

ties for some specific regions of the diagram. Our analysis

reveals that many NSCFs are, in fact, the result of a sequence

of optimizations, each of them involving a maximal set of

elements, in a well-structured way. This process resembles the

original definition of Iterative Relative Fuzzy Connectedness

(IRFC) [17], which was defined as the result of a sequence of

optimizations by Relative Fuzzy Connectedness (RFC) [18].

Our experimental results, using a robot user [19], indicate that

substantial improvements can be obtained by NSCFs in the

segmentation of MR images of 3 Tesla, when compared to

smooth connectivity functions, and their related methods [17],

[20].

For the sake of completeness in presentation, Section II

includes the relevant previous work of image segmentation

by IFT. Our analysis of non-smooth connectivity functions

1In [13], an algorithm that finds an approximation of the Minimum Barrier
Distance was considered, by computing two IFTs separately, one for each
term in Eq. 5.

mailto:lucyacm@vision.ime.usp.br
mailto:pmiranda@vision.ime.usp.br
mailto:cappabianco@unifesp.br

is presented in Section III. In Section IV, we evaluate the

NSCFs in the segmentation of MR images of 3 Tesla, and our

conclusions are stated in Section V.

II. IMAGE FORESTING TRANSFORM

An image can be interpreted as a graph G = (I,A) whose

nodes are the image pixels in its image domain I ⊂ ZN , and

whose arcs are the pixel pairs (s, t) in A (e.g., 4-neighborhood,

or 8-neighborhood, in case of 2D images, and 6-neighbors in

3D). The adjacency relation A is a binary relation on I. We

use t ∈ A(s) and (s, t) ∈ A to indicate that t is adjacent

to s. Each arc (s, t) ∈ A may have a weight w(s, t) ≥ 0,

such as a dissimilarity measure between pixels s and t (e.g.,

w(s, t) = |I(t)− I(s)| for a single channel image with values

given by I(t)).
For a given image graph G = (I,A), a path πt =

〈t1, t2, . . . , tn = t〉 is a sequence of adjacent pixels with

terminus at a pixel t. A path is trivial when πt = 〈t〉. A

path πt = πs · 〈s, t〉 indicates the extension of a path πs by

an arc (s, t). A predecessor map is a function P that assigns

to each pixel t in I either some other adjacent pixel in I, or

a distinctive marker nil not in I — in which case t is said to

be a root of the map. A spanning forest is a predecessor map

which contains no cycles — i.e., one which takes every pixel

to nil in a finite number of iterations. For any pixel t ∈ I, a

spanning forest P defines an induced path πP
t recursively as

〈t〉 if P (t) = nil, and πP
s · 〈s, t〉 if P (t) = s 6= nil.

A connectivity function computes a value f(πt) for any path

πt, usually based on arc weights. A path πt is optimum if

f(πt) ≤ f(τt) for any other path τt in G. By taking to each

pixel t ∈ I one optimum path with terminus t, we obtain

the optimum-path value V (t), which is uniquely defined by

V (t) = min∀πt in G{f(πt)}. The image foresting transform

(IFT) [4] takes an image graph G = (I,A), and a path-value

function f ; and assigns one optimum path πt to every pixel

t ∈ I such that an optimum-path forest P is obtained —

i.e., a spanning forest where all induced paths are optimum.

However, f must be smooth (Definition 1), otherwise, the paths

may not be optimum, as demonstrated in [4].

Definition 1 (Smooth path-value function). A path-value

function f is smooth if for any node t ∈ I, there is a simple

optimum path πt (no repeated vertices), which either is trivial,

or has the form πs · 〈s, t〉 where

(C1) f(πs) ≤ f(πt),
(C2) πs is optimum,

(C3) πs is optimum, and for any optimum path π′
s, f(π′

s ·
〈s, t〉) = f(πt)

2.

Any path πP
t encoded in an optimum-path forest P (i.e.,

the paths starting in a root node) is a complete-optimum path,

according to the following definition:

Definition 2 (Complete-optimum path). A path πtn =
〈t1, t2, . . . , tn〉 is complete optimum if all paths πti =

2Our condition C3 corresponds, in fact, to the intersection of the original
conditions C2 and C3 from [4], in order to keep the diagram easier.

〈t1, t2, . . . , ti〉, i = 1, 2, . . . , n are optimum paths.

The cost of a trivial path πt = 〈t〉 is usually given by

a handicap value H(t), while the connectivity functions for

non-trivial paths follow a path-extension rule. For example:

fmax(πs · 〈s, t〉) = max{fmax(πs), w(s, t)} (1)

fΣ(πs · 〈s, t〉) = fΣ(πs) + w(s, t) (2)

feuc(πs · 〈s, t〉) = ‖t−R(πs)‖
2 (3)

where w(s, t) ≥ 0 is a fixed arc weight, and R(πt) is the

origin/root of a path πt. The function feuc may not be smooth,

depending on the adjacency A [4].

We consider image segmentation from two seed sets, So

and Sb (So ∩ Sb = ∅), containing pixels selected inside and

outside the object, respectively. The search for optimum paths

is constrained to start in S = So ∪ Sb (i.e., H(t) = 0 for all

t ∈ S, and H(t) = +∞ otherwise). The image is partitioned

into two optimum-path forests — one rooted at the internal

seeds, defining the object, and the other rooted at the external

seeds, representing the background [21]. A label, L(t) = 1 for

all t ∈ So and L(t) = 0 for all t ∈ Sb, is propagated to all

unlabeled pixels during the computation [4].

A. General IFT Algorithm

Algorithm 1 obtains an optimum-path forest P by minimiz-

ing a smooth path-value function f , or a spanning forest P in

the case of a non-smooth function.

Algorithm 1. – GENERAL IFT ALGORITHM

INPUT: Image graph (I,A), seed sets So and Sb, and
path-value function f .

OUTPUT: Optimum-path forest P , the minimum path-value
map V and label map L.

AUXILIARY: Priority queue Q, variable tmp, and an array of
status.

1. For each t ∈ So, do L(t)← 1.
2. For each t ∈ Sb, do L(t)← 0.
3. For each t ∈ I, do

4. Set P (t)← nil and V (t)← f(〈t〉).
5. Set status(t)← 0.
6. If V (t) 6= +∞, then insert t in Q.
7. While Q 6= ∅, do

8. Remove s from Q such that V (s) is minimum.
9. Set status(s)← 1.
10. For each t ∈ A(s), such that status(t) = 0, do

11. Compute tmp← f(πP

s · 〈s, t〉).
12. If tmp < V (t), then

13. If V (t) 6= +∞, then remove t from Q.
14. Set P (t)← s, V (t)← tmp.
15. L(t)← L(s) and insert t in Q.

The “for” loops initialize maps and insert pixels with finite

trivial-path values in Q (Lines 1–6). The minima of the initial

map V compete with each other and some of them become

roots of the forest. The main loop computes optimum paths

from the minima to every pixel s in a non-decreasing order of

value (Lines 7–15). At each iteration, a path πP
s of minimum

value V (s) is obtained in P when we remove its last pixel

s from Q (Line 8). The rest of the lines evaluate if the path

πP
s · 〈s, t〉 that reaches an adjacent pixel t through s is cheaper

than the current path πP
t in P and update Q, V (t), L(t), and

P (t) accordingly.

III. NON-SMOOTH CONNECTIVITY FUNCTIONS

Clearly, from Definition 1, we have that a connectivity

function is not smooth if it doesn’t satisfy at least one of the

conditions C1, C2 or C3. Note that, if a function f does not

satisfy C2, this implies that the condition C3 is not satisfied

either. In order to further distinguish between different classes

of non-smooth functions, we also evaluate the functions with

respect to the condition C4, which is defined below:

Definition 3 (Condition C4). A path-value function f satisfies

the condition C4, if for any node s ∈ I the following condition

is verified ∀t ∈ A(s):

• For any paths πs and π′
s ending at s, if f(πs) = f(π′

s),
then we have f(πs · 〈s, t〉) = f(π′

s · 〈s, t〉).

For a general image graph, the classification of various non-

smooth functions into the sets C1, C2, C3, and C4 (such that a

function f is in a set Ci if and only if it satisfies the condition

Ci) is shown in the proposed diagram illustrated in Figure 1.

The functions f bkg
max, fω, f	

ω , fi,ω, and fo,ω were studied

in [16], [14], [15] 3. The other functions (i.e., fΣmax, fl,

fmax |△I|, fΣ|△I|, fI , and f lex
Σmax) are defined in the Appendix

section, including a proof of their respective positions in the

proposed diagram.

Fig. 1. Schematic representation of the relations between smooth and non-
smooth connectivity functions: C1, C2, C3, and C4 are sets of connectivity
functions that satisfy these respective conditions for a general graph.

The next propositions reveal some interesting theoretical

properties of any non-smooth connectivity function f ∈ (C1∩
C4) \C2.

Proposition 1. Consider a connectivity function f , classified

as f ∈ (C1∩C4)\C2 for a general graph. If for a given image

3The proof of their positions in the diagram were omitted due to the lack
of space.

graph G = (I,A) and set of seeds S, there exists an optimum-

path forest for f , then any spanning forest P computed in G
by Algorithm 1 for f is an optimum-path forest.

Proof: Although, in the general case, the connectivity

function f violates C2, for this particular graph, f actually

satisfies the condition C2. Note that, for all t ∈ I we can

take an optimum path πt = πs · 〈s, t〉 where πs is optimum

from the existing optimum-path forest. Hence, f behaves as a

smooth function for this particular graph, leading to optimum

results.

When, on previous works, it is said that Algorithm 1

computes a spanning forest that may not be optimum for

non-smooth functions, you might think that there was such an

optimum-path forest, but the algorithm was not able to find it.

However, as a consequence of Proposition 1, we have that for

any connectivity function f ∈ (C1 ∩ C4) \ C2, Algorithm 1

only fails to find an optimum-path forest, if no such forest

exists. Thus, it is not a fault of the algorithm itself, but a fault

of the problem specification which has no valid solution in the

form of an optimum-path forest.

Proposition 2. Consider a function f ∈ (C1∩C4) \C2. For

a given image graph G = (I,A), and set of seeds S, let O be

the set of all pixels t ∈ I, such that there exists a complete-

optimum path πt for f . In any spanning forest P computed

in G by Algorithm 1 for f , all the paths τPt with t ∈ O are

optimum paths.

Proof: Let πt = 〈t1, t2, . . . , ti, . . . , tn = t〉 be a given

complete-optimum path for f , and τPt = 〈s1, s2, . . . , sm = t〉
be the computed path in the spanning forest P . We have the

following proof by mathematical induction:

• The basis: Show that the statement holds for n = 1. In

this case, we have t = t1, and therefore πt = 〈t1〉. Since

f(〈t1〉) is a finite value, t1 is inserted into the priority

queue Q (Line 6 of Alg. 1). Since f(〈t1〉) is optimum,

we can safely assure that it won’t leave Q (Line 8) with

a cost V (t1) worse than f(〈t1〉), therefore, the computed

path τPt must be optimum.

• The inductive step: Assume that the statement is true for

the complete-optimum path πti , i ≥ 1. We must prove

that it also holds for the complete-optimum path πti+1
=

πti ·〈ti, ti+1〉. By the hypothesis we have that the path τPti
in P is optimum. Given that the condition C4 is satisfied

(f ∈ (C1 ∩ C4) \ C2), we may conclude that f(τPti ·
〈ti, ti+1〉) = f(πti · 〈ti, ti+1〉) = f(πti+1

), so we may

conclude that τPti · 〈ti, ti+1〉 is optimum. By algorithm

construction, if ti+1 was not yet conquered, we have that

this extended path τPti · 〈ti, ti+1〉 will be evaluated by

the Algorithm 1 (Lines 10-15), and since it is optimum,

it won’t be posteriorly replaced by any other path (as

guaranteed by the strict inequality in Line 12). If ti+1

was already conquered by following a different path in P ,

its cost cannot be worse than f(πti+1
), because f ∈ C1.

So in the end, τPti+1
will be an optimum path.

The successive application of the previous proposition gives

a characterization of Algorithm 1 for f ∈ (C1 ∩ C4) \ C2,

as the result of a sequence of optimizations, where each

optimization step involves a maximal set of elements, in a

well-structured way.

Consider the following definitions: Let Eset(X) =
{∀(s, t) ∈ A | s ∈ X ∧ t ∈ X} denote the set of all arcs

interconnecting nodes in the set X , Epath(π) denote the set

of all arcs in the path π (i.e., Epath(π) = {∀(ti, ti+1) for 1 ≤
i ≤ k − 1| π = 〈t1, t2, . . . , ti, ti+1, . . . , tk〉}), Ecut(X,Y) =
{∀(s, t) ∈ A|s ∈ X∧t ∈ Y }, Epred(X) =

⋃

∀t∈X Epath(πP
t).

In the first optimization step, optimum paths τPt are com-

puted for all t ∈ O (Proposition 2). Let’s denote O as O1 for

this first step. In the next optimization step, consider the sub-

graph G2 = (I, Eset(I \O1)∪Ecut(O1, I \O1)∪Epred(O1)).
A second path optimization is performed, by computing a

second IFT, but now in G2 4. Since the arcs interconnecting

nodes in O1, are reduced to the arcs in the previous forest

P (i.e., Epred(O1)) in G2, we have that the optimum paths

τPt , computed on the previous step, will remain optimum in

the new graph G2. So the optimum paths τPt with t ∈ O1

will start a new competition, seeking for their best extensions

to the other pixels in I \ O1. By applying the Proposition 2

on this new optimization problem one more time, we have

that this second IFT will conquer a new maximal set of pixels

O1 ∪ O2 that can be reached by optimum paths in G2. We

can then repeat this process over again. The condition C15

guarantees that at least one new element will be conquered at

each step, so that this process will repeat until
⋃

∀iO
i = I.

IV. EXPERIMENTS

In this section, we present the quantitative analysis of the

accuracy for segmenting the brain in 3D, in experiments

involving a 3 Tesla MR-image dataset, containing ten T1-

weighted 3D images. The image dataset included the head

and, at least, a small portion of the neck of male and

female adults with normal brains. A specialist delineated the

ground-truths (GT)s. The seeds were chosen by a robot user,

the method introduced by Gulshan et al. [19], to simulate

user interaction of interactive segmentation by placing brush

strokes automatically to iteratively, and interactively, complete

the segmentation task. The procedure, including the choice of

seeds (based on the knowledge of the ground truth) and the

successive delineations, is iterative. The initial seeds for the

object are placed at the point(s) in the object farthest from the

boundary; similarly, for the background. At each successive

iteration, the robot always places a spherical brush stroke in

the largest connected component of the segmentation error

area (placed at the point(s) farthest from the boundary of

the component), and updates the segmentation. The process is

4 By Algorithm 1, the pixels s ∈ O1 have status(s) = 1, and their paths
can’t be changed. Therefore, we consider a new graph G2, where the edges
interconnecting nodes in O1 which are not in the forest P are disregarded.

5By the hypothesis, we know that f satisfies the condition C1.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 5 10 15 20 25

D
ic

e
 c

o
e

ff
ic

ie
n

t

No. of Robot Iterations

IRFC

PWq=2

IFT-f
Σ

IFT-f
lex
Σ|∆I|

IFT-f
lex
max|∆I|

IFT-f
lex
↕

Fig. 2. Results using a robot user for segmenting the brain dataset.

repeated up to 25 times, generating a sequence of 25 simulated

user strokes.

We used a spherical brush with a diameter of 10 voxels.

Figure 2 shows the experimental curves, where IRFC and

PWq=2 represent different algorithms related to the smooth

function fmax [17], [20], and we used w(s, t) = G(s)+G(t),
where G(s) is the magnitude of Sobel gradient at a voxel s.

Clearly, f lex∑
|△I| presented the best accuracy. Figure 3 shows

one example for user-selected markers. These results empha-

size the importance of non-smooth connectivity functions. The

non-smooth connectivity function f lex∑
|△I| is a variation of

f∑ |△I| (Equation 9), in order to guarantee that f lex∑
|△I| ∈

(C1∩C4)\C2. This transformation is similar to the one used

to get f lex
Σmax ∈ (C1 ∩ C4) \ C2 from fΣmax (see Appendix

section). The function f lex∑
|△I| gives pairs of values that should

be compared according to the lexicographical order. The first

component is the non-smooth function f∑ |△I| (Equation 9),

and the second is the priority level of the seed/root for that

path. The lower its value the higher is its priority. In interactive

segmentation, we give lower priority for new inserted seeds,

since they are used mainly for corrective actions, so that we

can keep their effects more locally. The same process was done

for f lex
max|△I| ∈ (C1 ∩ C4) \C2 and f lex

l ∈ (C1 ∩ C4) \ C2,

in relation to fmax|△I| (Eq. 8) and fl (Eq. 5), respectively.

Although the results obtained by the smooth function fmax

(e.g., IRFC) could be improved by using a better gradient-

like image, this would require an undesirable training step

(implicitly or explicitly) in order to enhance the object bound-

ary [22]. IFT using f lex∑
|△I| not only avoids any training

stage, but it can also better handle the inhomogeneity effects

(Figure 4).

V. CONCLUSION

We have shown a promising subset of non-smooth con-

nectivity functions (i.e., f ∈ (C1 ∩ C4) \ C2), including a

theoretical analysis of its properties. In particular, the function

f lex∑
|△I| demonstrated very good results for the 3D segmenta-

tion of MR images of 3 Tesla. We intend to combine it with

statistical models for automatic segmentation, and to extend

this analysis to other non-smooth connectivity functions.

(a) (b)

Fig. 3. Brain segmentation results for the same user-selected markers by (a)
fmax, and (b) f lex∑

|△I| .

(a) (b)

Fig. 4. White matter segmentation in 3D for the same user-selected markers.
Results by (a) fmax over an enhanced gradient, and (b) f lex∑

|△I|
.

ACKNOWLEDGMENT

The authors thank FAPESP (2012/06911-2), and CNPq

(305381/2012-1) for the financial support.

REFERENCES

[1] P. Suetens, Fundamentals of Medical Imaging. Cambridge University
Press, 2009.

[2] M. Sonka, R. Boyle, and V. Hlavac, Image Processing, Analysis and

Machine Vision. ITP, 1999.
[3] A. Madabhushi and J. Udupa, “Interplay between intensity standard-

ization and inhomogeneity correction in MR image processing,” IEEE

Transactions on Medical Imaging, vol. 24, no. 5, pp. 561–576, 2005.
[4] A. Falcão, J. Stolfi, and R. Lotufo, “The image foresting transform:

Theory, algorithms, and applications,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 1, pp. 19–29, 2004.
[5] A. Falcão, F. Bergo, F. Favretto, G. Ruppert, P. Miranda, and F. Cappabi-

anco, Neurociências e epilepsia. Capı́tulo: Processamento, Visualização

e Análise de Imagens Anatômicas do Cérebro Humano. Plêiade, 2008,
vol. 1, série CInAPCe.

[6] A. Falcão and F. Bergo, “Interactive volume segmentation with differ-
ential image foresting transforms,” IEEE Trans. on Medical Imaging,
vol. 23, no. 9, pp. 1100–1108, 2004.

[7] P. Miranda, A. Falcão, and J. Udupa, “Cloud bank: A multiple clouds
model and its use in MR brain image segmentation,” in Proc. of the IEEE

Intl. Symp. on Biomedical Imaging, Boston, MA, 2009, pp. 506–509.
[8] F. Cappabianco, P. Miranda, J. Ide, C. Yasuda, and A. Falcão, “Un-

raveling the compromise between skull stripping and inhomogeneity
correction in 3T MR images,” in SIBGRAPI 2012 (Conference on

Graphics, Patterns and Images), Aug 2012, pp. 1–8.

[9] A. Falcão, L. Costa, and B. da Cunha, “Multiscale skeletons by image
foresting transform and its applications to neuromorphometry,” Pattern

Recognition, vol. 35, no. 7, pp. 1571–1582, Apr 2002.

[10] R. Torres, A. Falcão, and L. Costa, “A graph-based approach for
multiscale shape analysis,” Pattern Recognition, vol. 37, no. 6, pp. 1163–
1174, 2004.

[11] G. Herman and B. Carvalho, “Multiseeded segmentation using fuzzy
connectedness,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, pp. 460–474, May 2001.

[12] P. Miranda, A. Falcão, A. Rocha, and F. Bergo, “Object delineation
by κ-connected components,” EURASIP Journal on Advances in Signal
Processing, pp. 1–14, 2008.

[13] R. Strand, K. Ciesielski, F. Malmberg, and P. Saha, “The minimum
barrier distance,” Computer Vision and Image Understanding, vol. 117,
pp. 429–437, 2013.

[14] P. Miranda and L. Mansilla, “Oriented image foresting transform seg-
mentation by seed competition,” IEEE Transactions on Image Process-
ing, 2013, accepted, to appear.

[15] L. Mansilla and P. Miranda, “Image segmentation by oriented image
foresting transform: Handling ties and colored images,” in 18th In-
ternational Conference on Digital Signal Processing (DSP), Santorini,
Greece, Jul 2013, accepted, to appear.

[16] P. Miranda, A. Falcão, and T. Spina, “Riverbed: A novel user-steered
image segmentation method based on optimum boundary tracking,”
IEEE Transactions on Image Processing, vol. 21, no. 6, pp. 3042–3052,
Jun 2012.

[17] K. Ciesielski, J. Udupa, P. Saha, and Y. Zhuge, “Iterative relative
fuzzy connectedness for multiple objects with multiple seeds,” Computer

Vision and Image Understanding, vol. 107, no. 3, pp. 160–182, 2007.

[18] P. Saha and J. Udupa, “Relative fuzzy connectedness among multiple
objects: Theory, algorithms, and applications in image segmentation,”
Comp. Vision and Image Understanding, vol. 82, no. 1, pp. 42–56, 2001.

[19] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman,
“Geodesic star convexity for interactive image segmentation,” in Proc.

of Computer Vision and Pattern Recognition, 2010, pp. 3129–3136.

[20] C.Couprie, L.Grady, L.Najman, and H.Talbot, “Power watersheds: A
unifying graph-based optimization framework,” Trans. on Pattern Anal.

and Machine Intelligence, vol. 99, 2010.

[21] P. Miranda and A. Falcão, “Links between image segmentation based
on optimum-path forest and minimum cut in graph,” Journal of Math-
ematical Imaging and Vision, vol. 35, no. 2, pp. 128–142, 2009.

[22] P. Miranda, A. Falcão, and J. Udupa, “Synergistic arc-weight estimation
for interactive image segmentation using graphs,” Computer Vision and
Image Understanding, vol. 114, no. 1, pp. 85–99, Jan 2010.

APPENDIX A

A. Function fΣmax (sum of fmax)

Let fΣmax be the function defined by:

fΣmax(πt = 〈t〉) =

{

0, if t ∈ S,

+∞, otherwise.

fΣmax(πt = πs · 〈s, t〉) = fΣmax(πs) + fmax(πt), (4)

where S is a set of seeds.

From the diagram, we have that fΣmax ∈ C1 \ (C2∪C4).
Proof:

C1. There is an optimum path πt = πs · 〈s, t〉, such that

fΣmax(πs) ≤ fΣmax(πt).
For ω(s, t) ≥ 0 we have that fmax(πt) =
max {fmax(πs), ω(s, t)} ≥ 0, then fΣmax(πs) ≤
fΣmax(πs) + fmax(πt). So, from (4) we obtain

fΣmax(πs) ≤ fΣmax(πt). Therefore, fΣmax satisfies this

condition.

C2. There is an optimum path πt = πs · 〈s, t〉, where πs is

optimum.

The proof that fΣmax does not lie in C2 can be demon-

strated by the following counterexample. In Fig. 5, for

the optimum path πt = πs · 〈s, t〉, we have that πs is

not an optimum path to s. There is another path π′
s

that offers a better cost to s than πs (i.e.fΣmax(π
′
s) =

9 ≤ fΣmax(πs) = 10). So the condition C2 may not be

verified for fΣmax.

Fig. 5. Counterexample of the second and third conditions (C2 and C3)
for the function fΣmax, where πt = πs · 〈s, t〉 is an optimum path, and
π′
t
= π′

s · 〈s, t〉 is a non-optimal path, from seeds s1 and s2, respectively.

C3. For any optimum path π′
s ending at s, fΣmax(π

′
s ·

〈s, t〉) = fΣmax(πt).
In Fig. 5 we can observe that fΣmax(π

′
s · 〈s, t〉) = 16 6=

fΣmax(πt) = 15. Hence, C3 is violated by fΣmax.

C4. For any paths πs and π′
s ending at s, if fΣmax(πs) =

fΣmax(π
′
s), then we have fΣmax(πs ·〈s, t〉) = fΣmax(π

′
s ·

〈s, t〉).
In Fig. 6, for the optimum paths πs and π′

s we have

fΣmax(πs · 〈s, t〉) = 15 6= fΣmax(π
′
s · 〈s, t〉) = 16.

Therefore, clearly we have that fΣmax doesn’t satisfy

property C4.

Fig. 6. Counterexample of the property C4 for the function fΣmax, where
πt = πs · 〈s, t〉, πs, and π′

s are optimum paths, π′
t
= π′

s · 〈s, t〉 is a non-
optimal path, and s1, s2 are seeds.

B. The barrier distance function

Let fl be the function defined by:

fl(πt = 〈t〉) =

{

0, if t ∈ S,

+∞, otherwise.

fl(πt = πs · 〈s, t〉) = fImax(πt)− fImin(πt), (5)

where S is a set of seeds, and fImax and fImin are functions

that take the maximum and minimum intensity values along

the path, respectively:

fImax(πt = 〈t〉) = I(t)

fImax(πt = πs · 〈s, t〉) = max{fImax(πs), I(t)}, (6)

and

fImin(πt = 〈t〉) = I(t)

fImin(πt = πs · 〈s, t〉) = min{fImin(πs), I(t)}, (7)

where I(t) is the intensity of a pixel t.

From the diagram, we have that fl ∈ C1 \ (C2 ∪ C4).
Proof:

C1. fl(πs) ≤ fl(πt).
Since fImax(πs) ≤ fImax(πt), and fImin(πt) ≤
fImin(πs), then, fImax(πs) + fImin(πt) ≤ fImax(πt)+
fImin(πs) and, fImax(πs) − fImin(πs) ≤ fImax(πt) −
fImin(πt). So, from (5) we obtain fl(πs) ≤ fl(πt).
Hence, fl satisfies the condition C1.

C2. πs is optimum.

In Fig. 7, for the optimum path πt = πs · 〈s, t〉, we have

that πs is not optimum, since there is another path π′
s

which offers a better cost than πs to s (i.e., fl(π
′
s) =

6 ≤ fl(πs) = 7). Hence, C2 does not hold for fl.

Fig. 7. Counterexample for the second and third conditions (C2 and C3) for
the function fl, where πt = πs·〈s, t〉 is an optimum path, and π′

t
= π′

s·〈s, t〉
is a non-optimal path, from seeds s1 and s2, respectively.

C3. For any optimum path π′
s, fl(π

′
s · 〈s, t〉) = fl(πt).

In Fig. 7 we have fl(π
′
s · 〈s, t〉) = 9 6= fl(πt = πs ·

〈s, t〉) = 8. Hence, we have that fl /∈ C3.

C4. For any paths πs and π′
s ending at s, if fl(πs) = fl(π

′
s),

then fl(πs · 〈s, t〉) = fl(π
′
s · 〈s, t〉). In Fig. 8, for the

optimum paths πs and π′
s we have:

fl(πs · 〈s, t〉) = 5 6= fl(π
′
s · 〈s, t〉) = 7.

Consequently, fl doesn’t satisfy this property (fl /∈ C4).

C. Peak amplitude of the relative intensity (fmax|△I|)

Let fmax|△I| be the function defined by:

fmax|△I|(πt = 〈t〉) =

{

0, if t ∈ S,

+∞, otherwise.

fmax|△I|(πt = πs · 〈s, t〉) = max{fmax|△I|(πs),

|I(t) − I(R(πs))|},(8)

Fig. 8. Counterexample of the property C4 for the function fl, where

πt = πs · 〈s, t〉, πs, and π′
s are optimum paths, π′

t
= π′

s · 〈s, t〉 is a non-
optimal path, and s1, s2 are seeds.

where R(πs) is the root pixel (origin) of the path πs.

From the diagram, we have that fmax|△I| ∈ C1\(C2∪C4).
Proof:

C1. fmax|△I|(πs) ≤ fmax|△I|(πt).
Suppose that this condition is true, then from (8) we have:

fmax|△I|(πs) ≤ max{fmax|△I|(πs), |I(t) − I(R(πs))|},

which is clearly right, because of the max function on

the second term. Hence, fmax|△I|(πs) satisfies C1.

C2. πs is optimum.

In Fig. 9, for the optimum path πt = πs · 〈s, t〉, we

have that πs is not optimum, since there is another

path π′
s which offers a better cost than πs to s (i.e.,

fmax|△I|(π
′
s) = 7 ≤ fmax|△I|(πs) = 8). So, fmax|△I|

violates the condition C2 (fmax|△I| /∈ C2).

Fig. 9. Counterexamples of the second and third conditions (C2 and C3)
for the functions fmax|△I| and fΣ|△I| . The path πt = πs · 〈s, t〉 is an

optimum path, and π′
t
= π′

s · 〈s, t〉 is a non-optimal path, from seeds s1 and
s2, respectively.

C3. For any optimum path π′
s, fmax|△I|(π

′
s · 〈s, t〉) =

fmax|△I|(πt)
We can see a counterexample in Fig. 9, where this

condition is violated (i.e., fmax|△I|(π
′
s · 〈s, t〉) = 16 6=

fmax|△I|(πt) = 14).

C4. For any paths πs and π′
s ending at s, if fmax|△I|(πs) =

fmax|△I|(π
′
s), then fmax|△I|(πs · 〈s, t〉) = fmax|△I|(π

′
s ·

〈s, t〉).

In Fig. 10, we can observe that: fmax|△I|(πs · 〈s, t〉) =
14 6= fmax|△I|(π

′
s ·〈s, t〉) = 16. Hence, fmax|△I| doesn’t

satisfy this property (fmax|△I| /∈ C4).

Fig. 10. Counterexamples of the condition C4 for the functions fmax|△I|
and fΣ|△I| . The paths πt = πs · 〈s, t〉, πs, and π′

s are optimum, π′
t
=

π′
s · 〈s, t〉 is a non-optimal path, and s1, and s2 are seeds.

D. Sum of the absolute value of relative intensities

Let f∑ |△I| be the function defined by:

f∑ |△I|(πt = 〈t〉) =

{

0, if t ∈ S,

+∞, otherwise.

f∑ |△I|(πt = πs · 〈s, t〉) = f∑ |△I|(πs) + |I(t)− I(R(πs))|,

(9)

where R(πs) is the root pixel (origin) of the path πs.

Proof:

C1. fΣ|△I|(πs) ≤ fΣ|△I|(πt).
Suppose that this condition is true, then from (9) we have:

fΣ|△I|(πs) ≤ fΣ|△I|(πs) + |I(t)− I(R(πs))|
As |I(t) − I(R(πs))| ≥ 0 this relation is right, so the

condition C1 is satisfied (fΣ|△I| ∈ C1).

C2. πs is optimum.

In Fig. 9, for the optimum path πt = πs · 〈s, t〉, we

have that πs is not optimum, since there is another path

π′
s that has a better cost than πs (i.e., fΣ|△I|(π

′
s) =

12 ≤ fΣ|△I|(πs) = 13). So, this condition is not

satisfied (fΣ|△I| /∈ C2).

C3. For any optimum path π′
s, fΣ|△I|(π

′
s·〈s, t〉) = fΣ|△I|(πt)

The counterexample in Fig. 9 shows that this condition

is violated (i.e., fΣ|△I|(π
′
s · 〈s, t〉) = 28 6= fΣ|△I|(πt) =

27).

C4. For any paths πs and π′
s ending at s, if fΣ|△I|(πs) =

fΣ|△I|(π
′
s), then fΣ|△I|(πs · 〈s, t〉) = fΣ|△I|(π

′
s · 〈s, t〉).

In Fig. 10, for the optimum paths πs and π′
s we have:

fΣ|△I|(πs · 〈s, t〉) = 27 6= fΣ|△I|(π
′
s · 〈s, t〉) = 29.

Hence, fΣ|△I| doesn’t satisfy this property.

E. Function of intensity

Let fI be the function defined by:

fI(πt = 〈t〉) =

{

0, if t ∈ S,

+∞, otherwise.

fI(πt = πs · 〈s, t〉) = I(t), (10)

where S is a set of seeds.

Proof:

C1. fI(πs) ≤ fI(πt).
In Fig. 11 we have fI(πs) = 30 � fI(πt) = 20. So,

this condition is violated.

Fig. 11. Counterexample of the first condition (C1) for the function fI ,
where πt = πs · 〈s, t〉 is an optimum path, and s1 is a seed.

C2. πs is optimum.

This can be proved by contradiction as follows:

For πt = πs · 〈s, t〉 optimum, if πs is not optimum then

it is true that there exists an optimum path π′
s, such that

fI(π
′
s) = I(s) < fI(πs) = I(s), which is false, leading

to a contradiction. Therefore, C2 is satisfied by fI .

C3. For any optimum path π′
s ending at s, fI(π

′
s ·

〈s, t〉) = fI(πt).
This condition is also satisfied, since fI(π

′
s ·〈s, t〉) = I(t)

and fI(πt) = I(t).
C4. For any paths πs and π′

s ending at s, if fI(πs) = fI(π
′
s),

then fI(πs · 〈s, t〉) = fI(π
′
s · 〈s, t〉).

This property is satisfied, because for any πs,

fI(πs · 〈s, t〉) = I(t).

Thus, function fI violates condition C1, and is not smooth.

F. Function lexicographic sum of fmax

Let f lex
Σmax be the function defined by:

f lex
Σmax(πt = 〈t〉) =

{

(0, 0), if t ∈ S,

(+∞,+∞), otherwise.

f lex
Σmax(πt = πs · 〈s, t〉) = (fΣmax(πt), fmax(πt)). (11)

where S is a set of seeds.

This function f lex
Σmax gives pairs of values that should be

compared according to the lexicographical order. The first

component is the non-smooth function fΣmax, and the second

is the smooth function fmax.

Proof:

C1. f lex
Σmax(πs) ≤ f lex

Σmax(πt).
Suppose that this is true. Then, from (11) we have:

(fΣmax(πs), fmax(πs)) ≤ (fΣmax(πt), fmax(πt)). (12)

By comparing the ordered pairs we obtain:

fΣmax(πs) < fΣmax(πt), (13)

or

fΣmax(πs) = fΣmax(πt) and fmax(πs) ≤ fmax(πt)
(14)

Since both fΣmax and fmax satisfy condition C1 for

w(s, t) ≥ 0 (see Section V-A), we may conclude that

f lex
Σmax ∈ C1 for w(s, t) ≥ 0.

C2. πs is optimum.

In Fig. 12, for the optimum path πt = πs · 〈s, t〉, we

have that πs is not optimum, since there is another path

π′
s that offers a better cost than πs (i.e., f lex

Σmax(π
′
s) =

(9, 7) ≤ f lex
Σmax(πs) = (10, 5)). Therefore, this condi-

tion is not satisfied by f lex
Σmax.

Fig. 12. Counterexample of the second and third conditions (C2 and C3)
for the function f lex

Σmax
, where πt = πs · 〈s, t〉 is an optimum path, and

π′
t
= π′

s · 〈s, t〉 is a non-optimal path, from the seeds s1 and s2, respectively.

C3. For any optimum path π′
s, f lex

Σmax(π
′
s·〈s, t〉) = f lex

Σmax(πt)
In Fig. 12 we have

f lex
Σmax(π

′
s · 〈s, t〉) = (16, 7) 6= f lex

Σmax(πt) = (15, 5).
Hence, this condition is violated by f lex

Σmax.

C4. For any paths πs and π′
s ending at s, if f lex

Σmax(πs) =
f lex
Σmax(π

′
s), then f lex

Σmax(πs · 〈s, t〉) = f lex
Σmax(π

′
s · 〈s, t〉).

Given that f lex
Σmax(πs) = f lex

Σmax(π
′
s), from (11) we ob-

tain (fΣmax(πs), fmax(πs)) = (fΣmax(π
′
s), fmax(π

′
s)),

which implies that:

fΣmax(πs) = fΣmax(π
′
s), and (15)

fmax(πs) = fmax(π
′
s). (16)

Hence, by the definition of fmax and from (16)

fmax(πs · 〈s, t〉) = max {fmax(π
′
s), ω(s, t)},

fmax(πs · 〈s, t〉) = fmax(π
′
s · 〈s, t〉) (17)

and from (4), (15), and (17) we have

fΣmax(πs · 〈s, t〉) = fΣmax(π
′
s) + fmax(π

′
s · 〈s, t〉),

fΣmax(πs · 〈s, t〉) = fΣmax(π
′
s · 〈s, t〉) (18)

So, from (17) and (18) we have

f lex
Σmax(πs · 〈s, t〉) = (fΣmax(π

′
s · 〈s, t〉), fmax(π

′
s · 〈s, t〉)),

f lex
Σmax(πs · 〈s, t〉) = f lex

Σmax(π
′
s · 〈s, t〉) (19)

Therefore, the property C4 is satisfied by f lex
Σmax.

Thus, we have that the function f lex
Σmax is a non-smooth

function that violates only the conditions C2 and C3. Note

that f lex
Σmax does not violate C4, as opposed to fΣmax.

