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Fig. 1. From (a) recorded subjects, we create (b) personalized models that can be (c) rendered in a game or virtual world.

Abstract—Capturing and creating models of human subjects is
an ongoing effort in computer graphics. In this paper, we present
a framework to capture, model, simplify, and stylize an human
subject. We use a consumer 3D depth camera that captures
the appearance, shape, and pose of the recorded person. We
then fit this data with a parametric human model that is based
on 3D scans available from the CAESAR database. Once we
have a personalized 3D human model, we can apply stylization
techniques to create a variety of outputs. We present several
results obtained with our framework and verify that these models
remain recognizable as their human sources.

Keywords-morphable model, customized models, stylization,
animation

I. INTRODUCTION

Capturing human models has been a major effort in graphics
and modeling for more than a decade. Devices, such as single
and multiple-view cameras, camcorders, laser scanners, and
infrared depth cameras, have been employed to acquire both
photometric and geometric properties of human subjects. As
these devices become cheaper and more abundant (e.g., with
the advent of 3D cameras like Microsoft’s Kinect) it seems as
though anyone can capture a model of herself at home. How-
ever, most of these devices only provide low level readings
of a scene in the form of pixels or point-samples, and there
is still a gap between such outputs and an usable 3D human
model that can support advanced applications.

In this paper, we present a framework to capture, model,
simplify and stylize a personalized model of a subject (see
Figure 1). Such models can be rendered and used as avatars
in simple virtual worlds and games.

Our system starts by capturing the shape, appearance and
pose of a person positioned in front of a 3D camera. Next, a
parametric body shape model that is based on the CAESAR
database [1] is fitted to the recorded data, to separate the
pose and shape parameters such as height, hip circumference,
and face length. Once these parameters have been recovered,
we use them to reconstruct a simplified 3D human model
that closely matches the recorded subject. We can then apply
various stylization techniques to the 3D models. For example,
we can interpolate between the vertex positions of the subject’s
model and an artistic style to achieve a stylized version of the
person.

II. RELATED WORK

Our framework builds on advances in a number of research
areas, including parametric shape models, human pose estima-
tion, human shape estimation, and stylization.

Parametric Shape Models Our technique makes use of a
parametric model of human shape and pose similar to previous
work [2], [3], [4], [5], [6]. Our model is learned from a large
collection of 3D scans [1] and enables us to describe shape
variations linearly. We follow the original work of Allen and
colleagues and construct semantic parameters for body and
head shapes [2].

Human Pose Estimation Pose estimation in 3D has been
an important topic of research in both computer graphics and
computer vision (see [7] for a review). Recovering the pose,
particularly with a single camera, is a challenging problem [8].
For this reason, many methods require some form of user
assistance to boost performance [9]. An alternative approach is
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Fig. 2. Input data to our approach For each subject, the Kinect provides (a) an RGB image, (b) a depth map image and (c) a kinematic skeleton. The
recorded person is also captured in (d) a reference pose that is used for calibration. The shape parametric models are created with the help of (e) a template
model that was created by an animator. We also capture one additional high-resolution photograph of the recorded subject in the reference pose (f).

to use the additional information about depth that is available
from 3D cameras to improve pose estimation [10].

Human Shape Estimation Modeling the shape of a person
from images is also difficult. Recent work in this area has
employed parametric models to estimate human shape and
pose from single images [11] or a set of images [12] and
in multiple camera setups [13]. Our framework bears some
similarity to recent data-driven approaches used to capture
and modify human shape and appearance in images [14] and
video [13]. However, instead of working in 2D, we capture,
personalize, and stylize a human model in 3D.

Stylization A number of approaches have been proposed
to simplify images and video on the basis of perceptual
considerations [15], [16], [17], [18]. For example, Gooch and
colleagues presented a method to create black-and-white illus-
trations and caricatures of human faces from photographs [19].
Most of these techniques have focused on recreating the look
and feel of certain media, rather than targeting specific object
types. A related method [20] to abstract 3D models considers
man-made shapes, such as buildings, but not human models.

III. GENERAL METHODS

We will now describe the basic components that our system
builds on and the general procedures followed in our approach.

Capturing Device Our system uses the Kinect to capture
the image, depth and pose information of individuals. This
3D camera is a hybrid capturing device that contains an RGB
camera of 640×480 pixel resolution and a depth range sensor
of 320× 240 pixel resolution. In addition, it also recovers an
initial pose estimate for the recorded subject using a specific
kinematic skeleton (Figs. 2(a)-(c)).

Capture Session Our capture session starts by capturing
a subject in our reference pose (θR), an inverted V pose as
shown in Fig. 2(d), for calibration. After this step, the person
moves to a desired pose of their selection (θC), a candid pose
as shown in Fig. 2(c), and a set of color and depth images
is obtained (CC ,DC ; Figs. 2(a) & (b)). In addition, we record
one photograph during the capture session with a calibrated
high-resolution Sony HD camera: a frontal view of the subject
in the reference pose (I1) (Fig. 2(f)).

CAESAR Database We construct separate parametric mod-
els for the human head and the human body shape for each
gender using the 3D scans, 72 landmarks for each scan, and se-
mantic information available from the CAESAR database [1].

Before we can learn the parametric models, the scans have
to be brought into semantic correspondence with each other.
This correspondence is achieved by aligning and registering
each scan to a template model (Fig. 2(e)) by using a set of
landmarks and the method of Tena and colleagues [21]. Similar
to the approach taken by Allen and colleagues [2], we create
the parametric models from CAESAR scans that are all in the
same standing pose, and standard vertex skinning is used to
connect the models to the Kinect skeleton.

IV. HUMAN MORPHABLE MODELS

Our framework simplifies human shape modeling by using
a head and a body shape parametric model created using the
CAESAR database. After bringing the scans into semantic cor-
respondence, we calculate the average model (m) and the main
shape principal components (pc) using PCA. Similar to Allen
and colleagues [2], we use linear regression to transform pc to
meaningful components (mpc) using the semantic information
associated with each scan in the database.

As a result, our parametric models are able to reconstruct
mesh models (mm) for the head and body shapes by combin-
ing m and a number, Nmpc, of mpc as follows:

mm = m+
Nmpc∑
i=0

αi ·mpci, (1)

where αi is a vector with weights for each mpci.

A. Human Body Shape Model

Morphable models were created for the male body shape
with 1234 scans and for the female body shape with 1081
scans. We used the original landmarks to align and register
the scans and the semantic information associated with each
scan to transform the principal components into meaningful
principal components. In the CAESAR database, there are
79 semantic parameters (30 demographic parameters and 49
physical measurements) for each scanned individual.

We reduced the number of semantic parameters by ex-
cluding similar and duplicate parameters, parameters that
are not visually salient and parameters that are difficult to
estimate from our input data. Our final body shape mesh
model, mmbody , is reconstructed using Eq. 1 and five semantic
parameters that span the most visible shape variation: chest
circumference, hip circumference, stature, thigh circumference
and waist circumference. We created two gender-specific shape
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Fig. 3. (a)-(d) Average male and female body models and Stature variations
for the female morphable model. (e)-(h) Average male and female head models
and variations

morphable models (Figs. 3(a)-(d)) and the model is connected
to the Kinect skeleton using standard vertex skinning. This
way, new poses θ for mmbody can be generated using motion
captured data.

B. Human Head Model

Given the poor quality of the head scans in the CAESAR
database, we created a morphable model for the head shape
from a reduced set of scans (84 male scans and 110 female
scans). We ensured that the demographic distribution of scans
in this subset was similar to that for the entire database.
The lack of reliable landmarks in the face and head area in
the original scans meant that we had to manually mark 18
landmarks around the head. These landmarks were used to
align and register the scans. Only the head portion of these
scans was used for learning our models.

We created a set of measurements from the 3D markings to
serve as semantic information (e.g., distance between the eyes,
mouth size) and to transform the head principal components
into meaningful principal components in a similar process as
for the body shape parameters. This semantic information is
related to the facial features that we capture from the input
image data using [22].

Our final head shape mesh model, mmhead, is then recon-
structed using Eq. 1 and two parameters that span the most
head shape variation based on the 18 landmarks: jawbone
distance and bridge of nose to chin distance. We created two
gender-specific face morphable models as show in Figs. 3(e)-
(h).

V. CAPTURING POSE, SHAPE, AND APPEARANCE

After recording the person, our framework uses θR to
adjust the pose of our generic body shape morphable model,
making it more accurately fit the subject’s reference pose.
Next, appearance details such as clothing style and colors, hair
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Fig. 4. Example of 3D models in our database for (a)-(b) hair and (c)-
(d) clothing styles for male and female subjects that are registered to our
parametric shape model.

style and color are automatically estimated from I1, and their
closest matches are selected from a database of 3D hair and
3D clothing models using a simple voting-based algorithm.
After this step, the input candid pose, θC , is refined using our
underlying human shape representation. Semantic parameters,
mpcbody , are also optimized making the shape of the 3D model
closer to the recorded subject’s body shape. Facial features
are extracted from I1 and are used to optimize the semantic
parameters, mpchead, yielding an improved head shape model
that better matches the recorded person.

A. Capturing Appearance Details

Before we can capture appearance details, we conduct two
pre-processing steps: i) our template model is segmented into
five distinct regions (hair, upper body, lower body, skin, and
shoes) and ii) all the 3D models for hair and clothing (four
types of garments and seven hair styles) are registered to our
parametric shape model (Figs. 4(a)-(d)). These pre-processing
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Fig. 5. Capturing appearance and pose An (a) improved average body
shape model, mbodycloth, is obtained after matching to a subject’s clothing
style. The improved model is used by an optimization cost that considers the
silhouette as specified by (b) a Chamfer distance map and the (c)-(d) 3D point
cloud generated from the depth information to refine pose estimates.

steps only have to be carried out once.
We start by recovering the skin color, hair color, and

garment colors from I1. We use I1 rather than CC for this step
due to its higher resolution. The vertices of our parametric
shape model are then projected onto I1 in segments that
correspond to the upper and lower body garments. Specific
garment models for each subject (e.g, shorts vs. pants for
lower body, shirt vs. t-shirt for upper body) are selected
automatically based on the degree of overlap between the
projected 3D garment and the detected garments in the image
I1. Once 3D garment models have been selected, they are
assigned the same colors as the detected garments in I1. The
3D models for hair are selected in the same way and are then
connected to mbody via mean value coordinates [23]. The
selected clothing models are used to deform the vertices of
mbody , yielding mbodycloth, Fig. 5(a). Because we explicitly
model clothing layers and hair, we are able to match the
recorded person more closely using mbodycloth than simply
using mbody in Eq. 1.

B. Improving the Candid Pose

We use our improved body shape morphable model,
mmbodycloth, that includes clothing to refine the initial pose,
θC , in a hierarchical pose estimation framework, Fig. 5(a). The
shape model is connected via skinning to the Kinect skeleton,
which comprises 24 joints. For each recorded person, we
process the input image data by first segmenting CC using DC

in order to create a silhouette image. Then, a Chamfer distance
map which is zero inside the silhouette is generated, Fig. 5(b).
We also process the depth information DC to create a 3D
point cloud, Fig. 5(c)-(d). Our hybrid analysis-by-synthesis
hierarchical scheme divides the kinematic structure into 5
regions: torso, left arm, right arm, left leg, and right leg. We
optimize the pose parameters of each sub-kinematic chain sep-
arately starting at the torso, and continuing down the kinematic
hierarchy. The energy function to be optimized contains two
terms: a silhouette-based term (VSil) and a 3D point cloud-
based term (V3D). The first term, VSil, tries to minimize the
distance between each projected vertex from mmbodycloth(θ)
and the input silhouette boundary using the Chamfer distance
map. The second term, V3D, tries to minimize the distance
between each 3D point and the closest vertex in the model
mmbodycloth(θ). Our final energy function, VTP , is a weighted
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Fig. 6. Intermediate results of our system The (a) recorded subject and
the (b) optimized pose reconstructed by our approach is overlaid on the initial
pose (in red). The (c) optimized body shape for the recorded person in (a). (d)
Facial features (marked with red dots) are extracted and used for improving
our (e) estimated head model for the individual in (d).

sum of V3D and VSil, with a higher weight associated to V3D.
We use a Quasi-Newton LBFGS-B method [24] in order to
optimize VTP to obtain a refined pose estimate (θC′ ) that more
accurately reproduces the subject’s candid pose, Fig. 6(c).

C. Capturing Body Shape

Next, we improve the overall body shape of
mmbodycloth(θC′) by optimizing the semantic parameters
mpcbody . Our shape optimization is based on the silhouette,
VSil, and on the 3D points, V3D. Our final energy function
VTS is a weighted sum of V3D and VSil. We found out
that enhanced results are achieved when V3D has a higher
weight. The optimal vector with weights α is found with a
Quasi-Newton LBFGS-B method [24] and the refined shape
model is reconstructed with Eq. 1.

D. Capturing Head Shape

In order to increase the realism and accuracy of our final
3D model, we use the technique described in [22] to extract
facial features from I1, like eye and mouth position (Fig. 6(d)).
We only optimize the two parameters for the parametric head
model. The optimal values for α1 and α2 are found by
minimizing the distances between the projected 3D markers
from mmhead and the corresponding detected image features.
We optimize α1 and α2 using the Quasi-Newton LBFGS-
B method [25] and reconstruct a more accurate head model
using Eq. 1, as shown in Fig. 6(e). We connect the refined
head model mmhead to the optimized body shape mesh
model, mmbodycloth, using a set of correspondences calculated
automatically in a pre-processing step. We use some additional
face features extracted from I1 to automatically determine
the colors of the eyes, eyebrows, and lips for each recorded
subject. Further personalization is achieved for the male head
models by automatically detecting facial hair using a voting
scheme similar to the one presented in Section V-A.

VI. STYLIZING THE CAPTURED MODEL

We have used three different schemes to stylize our re-
constructed 3D model (hmodel): morphing, caricatures, and
props. Morphing styles are created by combining hmodel
with one of four stylized models (mstylei) specified by an
animator. These gender-specific stylized models are derived
from the average models (mbody) in the reference pose (θR).
Therefore, the semantic correspondence between the average
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Fig. 7. Stylization results We can stylize our 3D models in many different
ways. For example, (a)-(b) by varying the type or the influence of a given
style, (b) by creating caricatures that emphasize the most salient aspect of the
person, or (c) by adding props.

and stylized models is preserved. Stylized models can also be
created using any modeling tool and semantic correspondence
to mbody can be achieved with a few manually selected
correspondences by using existing methods [21]. A stylized
model is generated by adding the difference between the vertex
positions of mstylei and mbody to the final reconstructed
model hmodel through a blending factor β as follows:

hmodelstyle = hmodel + β · (mstylei −mbody). (2)

Fig. 7(a) shows the morphing stylization results as a func-
tion of the blending factor β. As can be seen, the body
shape of the recorded subject is preserved in this stylization
transformation. Fig. 7(b) shows examples of our four morphing
styles: Bobblehead, Strong, Cartoon and Avatar. We can also
caricaturize models by changing the optimized weighting vec-
tor α in Eq. 1 for reconstructing mmbodycloth. One common
technique for creating caricatures is to emphasize a single
meaningful component mpcbody and increase or decrease its
effect. Fig. 7(c) shows the results of multiplying the semantic
component with the largest variation from the average model
for this subject, waist circumference, by a factor of 0.5 and 2.
Another possible type of stylization is the addition of props or
external components to the models. To exemplify this type of

Fig. 8. Example of 3D models created by our approach for 12 different
subjects.

style, we created some props and added them to the models
depicted in Fig. 7(d).

VII. EXPERIMENTS AND RESULTS

The main goal of this paper has been to create recognizable
models using the coarse pose estimates provided in the input
data by the Kinect. By customizing the body shapes, face
shapes and hair, our models become more recognizable as the
person they were based on. Figs. 8 and 9 show the 3D models
created for 12 different subjects wearing everyday attire in a
variety of candid poses.

Our system is able to preserve individual characteristics of
recorded subjects. In terms of speed, our system is reasonably
fast: capturing the appearance takes 1s, refining the input can-
did pose takes ≈ 20s, optimizing the body shape parameters
takes ≈ 10s and capturing head shape and facial features
takes ≈ 2s. These timings were obtained with unoptimized
single-threaded code running on a laptop (Intel Core2 Duo,
2.4 GHz). Future work will include improving the time per-
formance using GPUs and parallelization and will therefore
allow interactive applications of our system.

Although our framework has focused on rendering of 3D
models, we are able to recover the life-sized dimensions of
our recorded subjects. For example, we compared the physical
measurements from one male and one female subject to the
estimates of the five body shape parameters that are used
by our system, and found differences on the order of a few
centimeters. This accuracy is similar to that reported by [11]
and demonstrates that our framework can be used for many
other applications as well.

VIII. CONCLUSIONS

Our current framework delivers recognizable 3D models and
their stylizations automatically. However, as with any other
system, there are a few limitations to be considered. Although
we rely on the Kinect for input data, as we have pointed
out in Section III, this device provides low resolution RGB
and depth images which makes an additional high-quality
camera necessary. Noisy or missing data due to occlusions
is also common with depth range equipments. Our 3D camera
suffers from these issues and, as a result, some poses are not
captured properly. As seen in Fig. 9, the correct orientation of
hands, feet, and head cannot always be captured mostly due
to the lack of accurate depth information for these regions
(i.e. 3D points). It is for this reason that we perform our
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Fig. 9. Results of our system in the form of renderings. From left to right, recorded person, reconstructed model and two different styles for (a) male and
(b) female subjects.

appearance capture and head shape optimization in 2D using
high-resolution images from the Sony HD camera. Although
we are able to, in most cases, detect the correct clothing style
of a subject sometimes manual input was necessary to correct
the detected garments. This happened when garments were of
a color similar to a subject’s skin color or when the type of
garment worn by the person was not represented in our 3D
clothing dataset (e.g. a skirt or a 3/4-sleeve shirt).

As our method only captures the coarse shape of the
recorded subject, details such as facial expressions, wrinkles
in garments or skin, curly hair, glasses, or watches cannot
be reproduced. We leave the improvement of our system to
include these features as future work.
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