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Abstract—Among various image retrieval approaches, the use
of sketches lets one express a precise visual query with simple and
widespread means. The challenge consists in finding a content
representation that allows you to effectively compare sketches
and images, while supporting efficient retrieval in order to
make the system scalable. We put forward a sketch-based image
retrieval solution where sketches and natural image contours are
represented and compared in the wavelet domain. The relevant
information regarding query sketches and image content has,
thus, a compact representation that can be readily employed by
an efficient index for retrieval by similarity. Furthermore, with
this solution, the balance between effectiveness and efficiency can
be easily modified in order to adapt to the available resources.
A comparative evaluation with a state-of-the-art method on the
Paris dataset and a subset with 535K images of the ImageNet
dataset shows that our solution can preserve effectiveness while
being more than one order of magnitude faster.

Keywords-sketch-based image retrieval; multimedia indexing;
scalability.

I. INTRODUCTION

The advent of digital cameras has given to the users the pos-
sibility to capture and share pictures with other people. Online

Sketch-Finder (SF) vs. Edgel-Index (EI) — results on the ImageNet dataset.

photo-sharing such as Flickr' on the web, and Instagram® on
mobile devices, allow users to upload their photos with diverse
content, generating datasets with millions of images.

Content-based image retrieval (CBIR) emerged as an at-
tempt to deal not only with the absence or insufficiency
of annotations for most of the images, but also to support
alternative retrieval approaches, relying on visual perception,
which is more appropriate in many scenarios.

Within CBIR, sketch-based image retrieval (SBIR) aims at
returning images that are similar to a sketch made by the
user (typically a simple set of drawing lines). Thus, SBIR
is particularly adapted in situations where a user has a mental
image of what he is searching. In this scenario, a sketch image
is useful specially when the image dataset is not annotated and
the user has no similar example image to use as a query input.

There are two important challenges in SBIR: (i) finding
a relevant visual content representation associated with a
similarity measure that allows effective comparison with a
query that is not a picture, but rather a drawing made by
a user that sometimes is not very skillful, and (i¢) making

Flickr — http://www.flickr.com/
2Instagram — http://instagram.com/



retrieval scalable to large image datasets by building an
appropriate index structure able to better exploit the content
representation and similarity measure. If a good solution is
to be found, we consider that those challenges should not be
separately addressed. Thus, we put forward here a solution
where sketches and natural contours extracted from the images
are represented and compared in the compressed-domain of
wavelets. The relevant information regarding to image content
(as well as query sketches) has, thus, a compact representation
that can be readily employed by an efficient index for retrieval
by similarity. Our goal is to retrieve in large datasets all images
that are visually similar to the objects shape of the query sketch
at similar scale, position and rotation.

Contributions: The main contributions of the present pa-
per are: A new approach for sketch-based image retrieval using
the compressed-domain index. Regarding to the description
and indexing of the image dataset, a new visual word? structure
is proposed in order to represent and encode image edges in
a compact set or the contour signature. This visual word
structure is based on the wavelet coefficient and presents a
very compact information of the image contours. The visual
word is composed of the wavelet coefficient spatial position,
its sign and the orientation of the edges. These compact
contour signatures, make the dataset index much smaller than
traditional approaches, also it is possible to set the desired size
of the contour signature, and by consequence the total index
size.

A new similarity measure is proposed for comparing the
contour signatures. This similarity is based on computing the
number of visual words matched between the query sketch
and the target images. In this similarity measure, we also
consider the visual word weight according to its importance
as described in Section II.

The proposed approach uses an index stored on disc with ef-
ficient data structures granting the growth of the image dataset
without depending on memory limitations, thus allowing big
data sketch-based image retrieval.

A. Related work

Effectiveness was the major issue in SBIR since the intro-
duction of this research area in the early 1990’s. However,
significant advances in efficiency were only made recently
(e.g., [1]), making practical applications possible. Among the
existing SBIR proposals, we focus on [2], [3], [1], [4], [5],
which we consider particularly relevant.

In [2], the authors used the wavelet domain to represent
the images of the dataset. The wavelet decomposition allows
a good image approximation with just a few amount of
data. This same property is successfully used for lossy image
compression [6]. Typically, in this context, just a few wavelet
coefficients with the largest magnitude are used to represent an
approximation of the original image, allowing the construction
of a very small index for the dataset. The mentioned approach

3The “visual words” come from a “dictionary” induced by quantizing the
feature space of a low-level local descriptor.

uses query-by-painting [7] and the query may be interactive,
i.e., while the user draws the query image, a preview of the
results is automatically shown.

In the work [1], named Edgel Index (EI), a black and white
line-based sketch approach is presented for a contour-based
matching algorithm. This approach estimates the similarity
between a sketch and natural image contours. The authors
index the edge segments split in six orientations, and evaluate
their method in a collection of more than two million images.
The problem of this approach is the high memory cost to
hold the dataset index in main memory, which restricts this
approach to the size of the available memory.

The authors of [3] employed a method based on histograms
of local edge orientations, yielding invariance to scale and
translation. The drawback of this work is the small dataset
used in the experiments, which contains less than 1.4K images.

In [4], the authors presented a benchmark approach for the
SBIR task in large image dataset with a new descriptor based
on the “bag-of-features”. They also presented an study with
human comparison and comprehension about how line-based
sketches and real images are similar or not.

A similar approach in terms of memory cost saving is
presented in [5]. This SBIR application is also based on the
approach [1], and the authors focused on the idea of SBIR for
mobile devices. The approach also splits the image edges in six
orientations. Then, they applied to each edge orientation map,
the Distance Transform (DT). After, the high-dimensional DT
features are projected in a compact binary hash. The authors
affirmed that the retrieval performance is competitive to [1]
and requires only 3% of the memory storage comparing to EI.

B. Technique overview

Next section provides a detailed description of our approach.
Content representation and the associated similarity measure
are presented first, then we focus on the index structure
supporting scalable retrieval. The comparative evaluation is
shown in Section VI. A smaller image dataset is used for
selecting appropriate parameters for the content representation
and for the similarity measure. A second dataset of more
than 535K images issued from ImageNet is then employed
for comparing both the effectiveness and the efficiency of our
proposal with those of [1].

II. SKETCH-FINDER APPROACH

In this section, we describe our proposal approach, named
here Sketch-Finder. As the name suggests, the present ap-
proach is focused on sketch-based image retrieval.

Our objective in this work is to improve memory saving and
speed retrieval efficiency. In order to achieve these objectives,
we use here the compressed-domain index based on the
wavelet decomposition.

The Sketch-Finder is an approach for black and white
sketches. These sketches consist of edges that describe im-
portant contours of the images. Here, we consider that the
more a query and a target image have edges at the same or
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Fig. 2. Sketch-finder natural image processing workflow — in this sequence:
image input; contour detection; thresholding; edges orientation estimation;
dilation of the oriented edges; standard Haar wavelet decomposition; set of
wedgels result.

Fig. 3. Contour detection examples from natural images using the ultrametric
contour map (UCM) algorithm and their respective thresholded images with
threshold = 0.27 in [0, ..., 1]. (a) Natural images; (b) hierarchical contour
map; and (c) the thresholded contour map.

near position, the more similar the two images are. The same
idea is used by [1].

The main difference between our approach and [1] is that we
compare the edge similarity of two images in a representation
of the wavelet domain, while [1] computes directly in the pixel
domain.

Also, to better compare the edges of the images, it is impor-
tant to estimate and split the edges in different orientations,
thus, edges at the same position but in different orientation are
not considered the same.

III. INDEXING PROCESS AND SIMILARITY MEASURE

We represent the visual features with a new entity based on
the wavelet coefficient. Here we name this entity as wedgel.
This visual word is based on the wavelet coefficient described
by [2] plus its orientation edge map source. In our approach,
the visual word is represented as a quadruple (x, y, s, ), where
(z,y) represent the wavelet coefficient spatial position, s the
coefficient quantized sign (+1 or -1) and 6 the edge map
orientation used before the wavelet transform.

To process the image dataset and extract the proposed
visual features, i.e., the wedgels, each image of the dataset
is processed as illustrated in Fig. 2. A detailed description of
each processing step is given in the following text.

Image resize. In order to have all images with the same
size, important for matching the spatial position (z,y) of the
wedgels, all images are resized to the same pattern, 256 x
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Fig. 4. Visual features extraction: (a) image contours map; (b) estimation
of edge orientation and segmentation; (c) dilation of the oriented edges; (d)
wavelet domain representation of the ten most positive coefficients (white
dots) and the ten most negative coefficients (black dots).

256 pixels. Although the image aspect ratio is lost, all the
images, as well as the sketch, use the same aspect ratio and the
distortion in position is naturally compensated by the spatial
approximation of the visual features obtained in the next steps.

Contour detection. Because our approach uses black and
white line-based sketches, we need to detect the natural
contours of the images. As such, a good algorithm of contour
detection is fundamental for the success of this approach. To
obtain the natural contours, we use the hierarchical Ultrametric
Contour Map (UCM) algorithm, with the default parameters,
described in [8]. As far as we know, this high level contour
detection is the state-of-the-art in literature. Fig. 3 (a) presents
some natural images and Fig. 3 (b) shows the results obtained
by the application of the UCM algorithm.

Threshold. To obtain the most important object contours,
the result given by the UCM algorithm is then thresholded with
value 0.27 in the interval [0, ..., 1], as shown in Fig. 3 (c).

Orientation estimation. The edge orientations are esti-
mated and quantified in six intervals, i.e., —15° ~ 15°,15° ~
45°,...,135° ~ 165°. Fig. 4 (b) illustrates the edge orientation
estimation obtained from Fig. 4 (a). In this figure, we show just
three orientations to simplify the idea and illustration. Also, the
three orientations are represented in different colors, although
actually each orientation is a grey-level image.

Dilation. The oriented edges are dilated with a cross struc-
tured element of size 3x3. This dilation is applied d times or
iterations until the desired dilation is reached. In this paper,
we call a dilated orientation map with d iteration as window
size or simply window. The higher the number of iterations,
the larger is the window. Fig 4 (c) presents an illustration of
the dilation window obtained from Fig 4 (b). More details on
the number of iterations are given in Section VI-A (Parameter



Tuning).

Wavelet transform. For each oriented binary image or
dilated map, the standard Haar wavelet transform [9], [10])
is applied following the algorithm described in [2]. Just
the n largest positive and negative coefficients are used to
encode each contour dilated map 6. With this data, the wedgel
(z,y,s,0) is finally composed and combined to create the
contour image signature for each image of the dataset. In
this proposed configuration, the dictionary of wedgels has
256 x 256 x 2 x 6 = 786432 possible visual words or elements.
Some statistics on the real number of used words are presented
in Table IX.

Further details on the wavelet transform algorithm used in
this approach are presented in [2].

The similarity measure between the query sketch () and the
target image T' of the dataset in the Sketch-Finder approach is
inspired by the distance used in [2]. In that approach, the more
similar the query and target images are, the more matches
of great magnitude wavelet coefficients at the same spatial
position and sign are computed.

Considering the problem of computing the similarity be-
tween the contour signature of a query sketch @ and a potential
target image 7, let Q[x, y, s, 0, f] and T[x Y, 8,0, f] represent
the [z,y] — th truncated quantized wavelet coefficient of Q
and T with sign s = (+1 or — 1), orientation 6 and dilation
window f. Here, we can use one or more different version of
window dilation, where f represents the window dilation and
win the total of different window configurations used. Further,
let us consider the equality operator (Q T) which evaluates
to 1 when Q T and O otherwise. We propose a similarity
function based on the sum of matched wedgel weights between
the contour signature of ) and T written as:

win 6
> > w(@Q,T) (1)
f=16=1 x,y,sﬂ,f:g[x,y,sﬂ,f];éo
w(Q,T) = a-bin(z,y) - (Qz,y, 5,0, f] = Tlz,y, 5,0, f])+
(1—a) p#f) (Qlz,y, 5,0, f] = Tlx,y, 5,0, f])

ni(f)

The wedgel weight w is determined according to their
spatial position given by the bin function and/or by the
estimation of the number of edges of () given by the p
function. The variable «, within the interval [0, ..., 1], gives
a linear interpolation between the weights of bin and/or p.
The nearer « is to 0, the more p weights are important, while
the nearer to 1, the more bin weights are considered.

The objective of the function p is to give more importance
to orientation maps with larger number of edges rather than
orientations with few edges or empty. The number of dilation
iterations at window f is represented by n;(f). As each orien-
tation map has a fixed number of wedgels, empty orientation
or with just a few edges has the potential to count the same
similarity of an orientation full of edges, thus, the division

by n;(f) aims to provide a good balance of the weights at
different window dilation sizes. Once the weights of p are
given by average grey level of each dilated orientation map
of the sketch, larger dilation windows without the division by
n;(f) should have higher relevance, which is not desired.

In this case, a simple way to measure the amount of edges
in order to know the importance of the orientation, thus the
weights of the wedgels, is to use the average value of grey
level of the orientation map 6. The higher the average value
is, the more edges are present. Also, this strategy approximates
our approach to the idea of the similarity measure presented in
[1]. The average value of grey level of the orientation map 6
at window dilation f is given within the interval [0.1, ..., 1], so
as the minimum value of the weight is 0.1, orientation maps
empty or with just a few edges are also considered, but with
small similarity contribution. Given the average value of grey
level within [0, ..., 1], the weight for p is given by Eq. 2:

wa:mngOJrOl 2)

where mg represents the average value of the grey level at
orientation 6 within the interval [0, ...,1] and w, represents
the weight for p within [0.1, ..., 1].

The weights of bin are shown in Table I. Considering the
input query sketch () as a binary image, we used the same
weights of grey level channel given in [2].

bin(z,y) := min{maz{z,y},5} 3)

IV. QUERY PROCESS

The query process has some common steps to the indexing
workflow described in Section III: image resize; orientation
estimation; dilation; and wavelet transform. The contour de-
tection is not necessary because the sketch is already a contour
entity and the threshold is not applied because we consider
that the input is already binary. Fig. 5 presents the query
workflow of the sketch-finder and we describe in following
just the processes not in common to those explained in Section
1.

Similarity measure. In this step, the wedgel words obtained
from the sketch are used to load its correspondent inverted files
list to the main memory. After, we measure the similarity with
Eq. 1. More details about the inverted files are described in
Section V.

Sorting the similarity. Once we have the similarity of the
sketch to the images of the dataset, we sort the similarity
using the quick sort algorithm and present the & most relevant
results to the user. In our prototype, we present the results in
a (HTML) page format. A text file is also created with all
results for precisionxrecall [11] evaluation of effectiveness.

V. INDEX STRUCTURE

The compact Sketch-Finder index was designed to support
efficient query processing. Faster querying is a consequence
of less visual words to process and it allows to have larger
image dataset index to be hold on the main memory. Another
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Fig. 5. Query workflow — in this sequence: the sketch input; sketch resize;

edges orientation estimation; dilation of the oriented edges; standard Haar
wavelet decomposition; similarity measure of the sketch contour signature;
sorting the similarity results; and display of the classified results.

TABLE I
COEFFICIENT POSITION WEIGHTS
bin 0 1 2 3 4 5
weight 4.04 078 046 042 041 0.32

advantage of the proposed approach is the possibility to control
the index size according to the best balance between better
precision of results vs. efficiency in terms of faster retrieval, in
a similar way it is possible to choose the best balance of image
quality vs. compression rate in formats like JPEG [12] and
JPEG2000 [13]. Furthermore, it is possible to have different
indexes on disk and load the best one according to the available
memory resources of the machine.

To improve the efficiency, the “matching” of wedgels is
performed by retrieving all n inverted lists of images (IDs)
of each wedgels (z,y,s,0) present on the sketch contour
signature. After we sort the result of the similarity between
the sketch and the dataset images.

Fig. 6 shows the index structure. Fig. 6 (a) presents the
dilated edgel maps in the wavelet domain, already quantized
with the ten most positive and negative wavelet coefficients.
The negative coefficients are represented by a black dot, while
the positive ones are represented by white dots. To simplify
the idea, here we illustrate just three orientations, although
actually we have six.

In Fig. 6 (b), we present the wedgel dictionary (x,y, s,6),
and in Fig. 6 (c), we represent the list of images IDs associated
with each wedgel of the dictionary.

VI. EXPERIMENTAL EVALUATION

In this section, we first employ a relatively small image
dataset (Paris Dataset) to select appropriate parameters for the
content representation and for the similarity measure. Then,
we compare both, the effectiveness and the efficiency of our
proposal to those of the method in [1], on a second dataset of
more than 535K images issued from ImageNet*.

The Paris Dataset is a homogeneous collection of 6,412
images collected by the Visual Geometry Group (VGG’) from
Flickr. The dataset is grouped by 11 particular famous land-
marks of Paris (La Defense, Tour Eiffel, Hotel des Invalides,
Musée du Louvre, Moulin Rouge, Musée d’Orsay, Notre Dame,

“ImageNet — http://www.imagenet.org/
SVisual Geometry Group — http://www.robots.ox.ac.uk/vgg/data/parisbuild
ings/index.html
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Panthéon, Pompidou, Sacré Ceeur and Arc de Triomphe). Also,
there is one general category of all kinds of images from Paris.

The Building and Vehicle ImageNet Dataset is a sub-
set of the ImageNet2011 fall release. Two main categories
and all their subcategories were selected (Building Edifice
(n02913152) and Vehicle (n04524313)) performing a total
of more than 535,000 images.

It is important to note that the ground-truths we employed
for these datasets were not designed specifically for SBIR, but
rather corresponds to a higher-level semantics. The images
inside each class may present the same object at different
viewpoint, shape, rotation, scale and position. It follows that
the performance measure we obtained with these ground-
truths are, naturally, much lower than should be expected on a
ground-truth specifically designed for SBIR. There are, how-
ever, many images showing very similar items from similar
viewpoints and having similar positions, that are relevant for
the evaluation of SBIR. Furthermore, since our approach and
the method in [1] make similar assumptions regarding the
queries, we believe the comparison is fair with these ground-
truths.

A. Parameter Tuning

Some parameters have to be well set in order to have a
good precisionxrecall in the sketch-finder. To get the best
results, the following parameters were evaluated: (¢) number of
dilation iterations (window size), (i) number of wedgels per
contour signature, (i¢7) number of different combined window
sizes and (iv) different similarity functions. In this section, we
show the results of these comparisons using the Paris dataset
and the VGG ground-truth.

For the EI parameters, we used the original parameter of
their approach in the image resolution, i.e., 200x200. In order
to preserve the equality of the the dataset, we used the same
contour detection used for the sketch-finder (UCM) and thresh-
old = 0.27. For the dilation we tried several configurations
finding that 28 iterations brings the best average precision for



TABLE II
AVERAGE PRECISION AT RANK POSITION P, (IN %)
SINGLE WINDOW DILATION EXPERIMENT

Iterations 2 5 10 15 20 25 30 35 40 45
P5 0.64 0.68 0.69 0.70 0.70 0.71 0.72 0.71 0.68 0.66
Pig 0.44 0.50 0.55 0.55 0.57 0.58 0.57 0.54 0.55 0.56
Py5 0.36 0.42 0.49 0.48 0.51 0.51 0.51 0.48 0.49 0.48
Py 0.32 0.38 0.44 0.44 0.47 0.45 0.46 0.45 0.44 0.44
TABLE III

AVERAGE PRECISION AT RANK POSITION P, (IN %)
VARIATION IN THE NUMBER OF WEDGELS

Wedgels 120 144 168 192 216 240 264 288 312 336 360
Py 0.74 0.70 0.72 0.70 0.72 0.70 0.71 0.72 0.71 0.71 0.71
Pig 0.56 0.56 0.57 0.57 0.57 0.57 0.58 0.56 0.57 0.57 0.57
Py 0.48 0.48 0.49 0.50 0.50 0.51 0.50 0.49 0.51 0.49 0.49
Py 0.44 0.44 0.44 0.46 0.44 0.47 0.45 0.45 0.45 0.45 0.45

the EI. This parameter is used as default for the EI in the
comparisons with the sketch-finder shown here.

In our experiments, we consider the precision of the first
20 classified images as a parameter for measuring the quality
of queries. The evaluation takes into consideration the first
5 rank positions Ps, the first 10 rank positions Pjg, and so
on, until the 20th rank position P»y. We present the average
precision obtained with the average of the 55 queries on the
Paris dataset.

Contour dilation size

For single window dilation (win = 1), we tried different
sizes of dilation to find the best configuration. Some
images present better precision with smaller windows, while
other queries work better with larger ones. Table II shows
experimental results with average precision for all the queries.

Varying the number of wedgels

In lossy image compression like JPEG2000 [13], it is
possible to choose the size of the image file accepting a
lower quality. In JPEG2000, the image compression and its
quality is determined by the number of wavelet coefficients
selected. In a similar way, the representation of the contour
image approximation is determined by the number of wedgels,
which is also based on the wavelet coefficient. When only a
few number of wedgels are used, the contour signature does
not represent the image edges accurately, and in the other
hand, using a significant number can make the index too large.
To discover the best number of wedgels, we experimented a
variation between 120 and 360 elements per contour signature.
Table III shows the precision results. Although using more
wedgels increases the precision on the first 20 rank positions,
the differences are not very significant, and in the same
queries, the use of more than 264 wedgels decreases the
precision.

Overlapping several dilations

For multiple window dilation, we combined the comparison
of wedgels obtained in more than one dilation size of edge

TABLE IV
AVERAGE PRECISION AT RANK POSITION P, (IN %)
VARIATION IN @@ — SETTING THE SIMILARITY WEIGHTS

a 0 0.2 0.4 0.6 0.8 1
Ps 072 0.68 068 0.67 066 0.66
Pio 057 053 052 051 050 050
P15 051 048 046 045 045 045

Pyy 046 043 042 042 041 041

TABLE V
AVERAGE PRECISION AT RANK POSITION P, (IN %)
COMBINATION OF MULTIPLE WINDOWS

win 10-20 10-30 10-40 15-30 20-25-30 10-20-30 10-25-40 15-30-45
Py 0.71 0.72 0.75 0.74 0.74 0.76 0.79 0.74
P1g 0.58 0.59 0.61 0.60 0.58 0.58 0.62 0.61
Py5 0.51 0.52 0.53 0.53 0.49 0.53 0.54 0.53
Py 0.46 0.47 0.49 0.48 0.44 0.49 0.49 0.48

map. As shown in the experiments, evaluating different con-
tour dilation sizes (Table II), the best results are obtained with
sizes between 10 and 35 iterations (in the average), however,
some individual queries are best classified even with 5 or 45
iterations. In this way, we built experiments combining contour
dilations between 10 and 45 iterations. Some combinations
with 2 or 3 window dilations were experimented. The results
confirm that this combination increases the precision and Table
V presents the results with different window combinations.
The size of the contour signature in this experiment is always
120 wedgels and the labels A-B (for two windows) or A-B-
C (for three windows) of Table V represent the number of
iterations respectively for the windows A, B and C.

Experimenting different similarity functions

This experiment varies the o parameter in order to choose
the best similarity function. The relation between the weights
of the function bin and w, are changed by the o parameter.
This parameter varies from 0 (considering just w,) to 1
(considering just bin). We also consider four intermediate
levels between wa and bin. The experiments are done with
one window dilation of 30 iterations and 120 wedgels per
contour signature. Table IV presents the results.

The best configuration is o = 0 which means that the bin
function is not important and can be eliminated in Eq. 1, i.e.,
the wedgel importance is proportional and just related to the
number of edges in their orientation map.

VII. EVALUATION ON THE IMAGENET SUBSET

To evaluate the ImageNet subset, we built a ground-truth
based on the one used for the Paris dataset. Among the large
number of object categories and subcategories, 15 were se-
lected on which the objects were most homogeneous in terms
of position, rotation and scale. Within these 15 categories, 10
were selected for the vehicle subset (dump-cart, automobile,
scooter, serving-cart, velocipede, airplane, helicopter, ship,
motorcycle and ambulance) and five for the building subset
(governmental building, house, rotunda, oast house and opera



house). Like the evaluation of the Paris dataset, we considered
the occurrence of the object in the subset label, even knowing
that the subset has the same object in different positions, scale
and rotations.

The experiments used five UCM natural contours of each
category of the ImageNet dataset, and as such, the 15 cate-
gories used totalled 75 queries. For each category we evaluated
the average precision xrecall curves of the five queries on each
category and the average precision of all 75 queries.

To compare our approach with the (EI) [1], we considered
the first 50 ranked results. In these experiments, nine of the
fifteen ImageNet categories used were best classified by our
approach. Fig 7 presents the fifteen average PrecisonxRecall
curves, one for each category.

Fig. 8 presents the precisionxrecall curve for the first
fifty results (although, in our tables we present the average
precision results only for the first 20 ranked images).
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Fig. 7.  Average PrecisionxRecall curves by object of the Sketch-Finder

and EI approach on the ImageNet subset (535K). Each curve represents the
average Precision x Recall of five queries. The continuous blue line represents
the curve of the EI approach while the dashed red line represents the Sketch-
Finder. Both curves are representation of the first fifty results

Table VI presents the average precision of all 75 queries
for both approaches. This experiment uses the following
parameters: three windows dilations, 10, 25, 40 iterations on
each window, 120 wedgels per contour signature and o = 0.

According to the results, we consider that both approaches
are equivalent in their effectiveness for large datasets.

TABLE VI
AVERAGE PRECISION AT RANK POSITION P,, (IN %)
AVERAGE PRECISION OF THE FIRST 20 RANKED POSITIONS (IMAGENET)

Sketch-Finder EI

Ps 0.59 0.59
Pio 0.48 0.49
Pis 0.42 0.43
Pso 0.40 0.41

TABLE VII

CPU: QUERY TIME IN SECONDS

Sketch-Finder EI
8.84
CPU SD 1

CPU AVG 418.07

405.36

To compare our approach with EI, we also evaluated the
query time and, I/O reading and the size of the indexes. To
evaluate the CPU and I/O of the queries, we used the subset of
the ImageNet with 75 queries. The experiments with Sketch-
Finder and EI approaches were evaluated in a machine with a
24 CPU Intel Xeon X5670 with 2.93GHz and 72Gb of RAM
memory. Although we had 24 cores, the experiments used a
single CPU thread and during the performance evaluation no
other experiments was active.

Average curve (75 queries)

X 08l — Edgel-Index |

S --- Sketch-Finder

% 0.6f .

[}

o}

a 041 1

0.2 - - - - :
0 0.002 0.004 0.006 0.008 0.01 0.012
Recall %
Fig. 8.  Average PrecisionxRecall curves from 75 queries of the Sketch-

Finder and EI approach on the ImageNet subset (535K). Both curves are
representation of the first fifty results.

Regarding to the CPU cost, we did not consider the time of
I/0. The benchmark of the CPU cost is presented in seconds
in Table VII, with its average (AVG) and standard deviation
(SD) of the 75 queries. The I/O was measured in bytes and
Table VIII presents average I/O and the standard deviation.

We can detach the smaller variation on the query speed
as shows the standard deviation in Table VII. This statistical
measure presents a fewer CPU query time variation when
compared to the EI approach. The reason for the less variation
time in the query speed comes from fixed number of wedgels
to compose the contour signature. Thus, the sketch-finder
always processes the same number of wedgels to measure
the similarity of the query sketch to the dataset of images.
Moreover, in sketch-finder it is possible to have a better
estimation of the time on each query.

Both approaches are implemented as inverted files lists of
image ID’s and the indexes are stored on disk. Although
the original implementation of the EI approach is in main



TABLE VIII
I/O IN BYTES

Sketch-Finder El
/0 AVG 1.59x108 2.84%10°
1/0 SD 1.56x107 2.83%x 108
TABLE IX

NUMBER OF USED WORDS IN THE wedgel DICTIONARY

Iterations NIL Used words (%)
2 418783 53.25
5 149378 18.99
10 59808 7.60
15 43667 5.55
20 37102 4.72
25 31270 3.98
30 29905 3.80

memory, we used disk implementation in order to have the
same criteria of evaluation. Further, on disk it is possible to
have a scalable approach in the size of the dataset, that can
grows. As shown in Table VII, the average CPU time of the
queries in the Sketch-Finder is more than 47 times faster. This
occurs because the Sketch-Finder has less index files to read
and process. Additionally, the standard deviation is smaller
in the Sketch-Finder due to the number of inverted files to be
read, which is a fixed number of wedgels. This is an advantage
for the Sketch-Finder approach, because we can have a better
estimation of the query time without much variation.

Our index is much smaller than the EI approach. An index
with a single window dilation and 120 wedgels is less than
6% of the size of the EI.

As shown in Table VIII, the index data reading on disk by
the Sketch-Finder approach is less than 6% of the amount read
by the EI approach, giving to the Sketch-Finder a much faster
reading of index.

Although the proposed wedgel dictionary maximum size is
256 x 256 x 2 x 6 = 786432, in practice the real number
of visual words is much smaller due to the concentration of
wedgels near to the coordinate (0, 0). Informally, The more far
is the wedgel position to (0, 0), the less likely it is to have a
wedgel inverted list. To show the real number of inverted list in
several configurations of edge dilation, Table IX presents this
data obtained also from the ImageNet dataset. All the index
experiments are taken from 40 coefficients per orientation
map, i.e., 240 wedgels per contour signature. We present the
variation in the number of edge dilation before the wavelet
transform affecting the Number of Inverted Lists (NIL). We
also present in Table IX the percentage of words used of the
dictionary.

VIII. CONCLUSION

This paper presented an approach for SBIR tasks in large
image datasets. The proposed similarity measure uses the

compressed-domain of the wavelets where the more quantized
coefficients are matches between the sketch and the contours
of the target image, the more similar they are. The coefficients
have weights based on the number of edges in their orientation
maps, what is expected due to the larger amount of details.
The results demonstrated that our approach is equivalent to
the (EI) [1] in terms of effectiveness, however, significantly
more efficient in terms of space and faster in query time for
very large datasets.

The experiments confirmed that the number of dilations
of the contours, in fact, significantly, changes the precision
of results, while increasing the number of wedgels increases
the precision, but not significantly. This enforces that we can
choose the size of the index without resulting in a considerable
difference on the query results.
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