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Fig. 1: Three spider orb-webs procedurally generated into a synthetic scene rendered in real-time. After the user specifies a site
and a orientation, the web automatically searches for nearby objects where it can attach its threads to form a web structure.

Abstract—Modeling organic objects and natural phenomena is
a very time consuming task, and usually requires a certain level
of expertise. This happens due to the lack of suitable geometric
primitives available in most modeling tools. In addition, with the
great advance in real-time rendering power, there is a growing
demand for more complex models. Hence, this paper proposes
a method to automatically build visually convincing spider orb-
webs that are self-adapted to the environment. We show results
of mesh-based spider orb-webs built in real-time that are visually
pleasing and realistically looking.
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I. INTRODUCTION

Modeling organic objects and natural phenomena can be
quite complex. It is usually a task that requires significant
expertise and a high amount of time. One of the reasons is that
standard geometric primitives available on common modeling
programs are not suitable for these purposes [1]. Therefore, in
the literature there are many studies on the automatic creation
of organic structures such as trees and plants [2], water, and
smoke, among others [3].

Spider webs are an example of an interesting construction
due to its seemingly complex geometrical structure and its
natural beauty. Figure 2 illustrates some examples of real
spider webs. The use of such structures in computer gener-
ated scenes can add visual complexity and enhance realism,
especially in scenes of natural environments. Among all types
of webs, the orb-web is the most studied type [4] due to its
spiral shape. Biological studies on how spider webs are formed
are extensively investigated in [5], [6], [7], and describe how
internal and external factors affect the web structure. These
studies lead to highly complex biological models that take
into account changes and conditions, which in most cases are
expensive to simulate computationally.

In this work, we propose an algorithm to build procedurally
mesh-based orb-webs that can be displayed in real-time. The
input for our algorithm is just the position and orientation of
the web and nearby objects where the web threads will be
attached. The procedural construction of the web considers
some variables that define the properties of the web structure,
such as the radii number, or the spiral size, which were
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Fig. 3: The names of the web components. Many of these
components are created in distinct phases by the spider.

retrieved from biological data [5], [4]. In Figure 1 we illustrate
one example of a procedurally generated spider orb-web
composed into a synthetic scene.

Contributions: In this paper, we introduce a new method
for automatic generation of convincing orb-web models, with
a special focus on the geometrical structure and adaptation of
the web to the environment. The results are mesh-based spider
orb-webs that are visually pleasing and realistically looking,
and that can be composed in scenes in a flexible manner. These
generated models can enhance the realism of 3D animations
and games without much computational cost, especially on the
synthesis of natural environments.

A. Related work

Many authors have extensively studied the procedures and
techniques that spiders use for modeling their webs [5], [7],
[6]. These studies demonstrated that, although the webs appear
to be highly complex structures, they are, in fact, constructed
in several relatively simple steps. These common build features
can be noticed even with spiders of different species [5].
However, there are still no conclusive results on which internal
or external factors most affect the construction of the web [4].
Hence, there is still a great difficulty in generating a consistent
biological model for creation of orb-webs.

Despite the biological research in the study of construction
of orb-webs, there are no approaches in the computer graphics
community concerned with a method to procedurally create
more convincing models of spider orb-webs. A relevant work
for this topic was being developed by Lafortune [8], where
the author created a tool to automatically build orb-webs and
integrate them into a scene. Unlike ours, his technique uses
a ray tracer to achieve high quality non-real-time images.
However, his results show spider orb-webs that are much
simpler than real ones; the lack of important structures such
as support threads reduces the realism of the model.

Another technique was explored by Wiley and Fecho [9],
where they attempted to make an orb-web as realistic as

possible. However, they were only concerned with the
rendering quality, all the modeling part was done manually.
They used ray-tracing approaches for rendering, integrated
with advanced shader techniques such as refraction, reflection,
spectral light dispersion and blooming.

II. METHODOLOGY

A. Types of spider orb-webs

Besides the classical spiral orb-webs, which are the focus
of this work, there are a few more types of webs that can be
found in nature like cobwebs, sheet webs, funnel and tubular
webs [10]. Most of them are asymmetrical and present an
irregular pattern of threads, making them not visually attractive
as the orb-web types, produced by the family of Orbicularia.
In Figure 2 we show a few examples of real spider orb-webs.
Variations occur not only with different types of webs, but
even with webs built by spiders of the same species – although,
maintaining common important features – since external and
internal factors have a great influence in its structure [4].

B. Construction

Spider orb-webs seem to be a simple structure. Superficial
analysis usually tend to describe the orb-web as being just
some radial lines and a spiral [4]. However, if a more careful
analysis is done, it is revealed that the orb-web is a geometrical
complex structure consisting of different elements and regions
that are built in different phases, as can be seen in Figure 3

To deal with the intricacy of the resulting orb-web
structure, the construction algorithm is described in fairly
simple geometrical steps, as follows:

1) Anchor points placement;
2) creation of the frame threads;
3) creation of the support threads;
4) populating the orb-web with the radial threads;
5) creation of the spiral.

Steps 2 to 5 follow well-known rules, and therefore can be
modeled with good precision, based on the data presented in
Table I. The building steps are described in Figure 4.

1) Anchor Points Placement: Establishing the anchor points
is the first step in the web construction. These points make
the connection between the web and the environment, giving
the web the necessary stability. In addition, the anchor points
define some important characteristics, such as the web total
area, and the hub position.

Spiders start the web by making a horizontal line between
two fixed points in the environment. The next point is usually
on a lower object, such as the ground or lower foliage, which
makes the early web structure a fork-shape. After that, the
spider searches for more nearby objects to attach its threads.

Our algorithm behaves a little different when choosing the
anchor points. First, it must receive a position and a normal
orientation from the user. The position is the hub (the center)



Fig. 2: Real close-up pictures of spider orb-webs taken from natural landscapes.

(a) Step 1: frame threads. (b) Step 2: support threads .

(c) Step 3: radial threads. (d) Step 4: spiral thread.

Fig. 4: The algorithm building sequence for a orb-web.

of the web – this is the only step that requires any kind of
user input. These input values allow us to define a plane in
space where the web will be contained. After this, rays are
cast from the center position looking out for nearby objects,
as the example shows in Figure 5. Whenever a ray successfully
finds an object the collision point becomes an anchor point,

TABLE I: Design variability in orb-web models. The values
of Radii Number and Spiral Distance Factor, were estimated
based on the work of Vollrath [4] and [11], respectively,
this values were considering orb-webs that range from small
(300cm2) to normal size (900cm2). The other values not found
in the literature were estimated empirically, concerning only
with the visual appearance, not with biological accuracy.

Variables Minimum Maximum
Radii Number 26 35
Anchor Points 3 9
Hub Position Disturbance∗ −1.5 1.5
Spiral Distance Factor (b) 0.03 0.04
Spiral Disturbance (a) 0 0.02

Note: * are variations occurring in the x, y axis, relative to the web
orientation.

otherwise the ray is discarded. To keep the anchor points
between 3 and 9 (Table I), we cast rays separated by angles of
about 30 degrees, plus some random variation. If the number of
anchor points is greater than 9, the closest ones are neglected.
The rays and the plane normal are always perpendicular, which
ensures that the web is a 2D structure contained in the plane.

There are two types of anchor points attachment: single
or composed. These types are represented in Figure 6. The
criteria used to choose the type of an anchor point is based
on its distance from the hub: the greater the distance, more
weight and tension this anchor point has to support; in this
case the best choice is to use a composed anchor point. On the
other hand, closest points suffer less tension and do not need
more than one point of attachment to stay stable. The distance



limit can vary depending on the scene; it determines the final
size of the web. When a ray reaches this limiting distance and
does not reach any object, the algorithm casts more rays from
where the original ray ended. These new rays travel only a
small distance compared with the original ray (about 10%).
If exists an object in the environment where these new rays
can reach, this anchor point becomes a composed anchor point.

2) Frame Threads: The frame threads connect the previous
computed anchor points forming a convex hull. Therefore, this
step draws lines between neighboring anchor points, making
the web a closed structure. It is important that the anchor
points be read in a specific order (the order they were found in
the first phase). This avoids the need of computing the convex
envelope of the points.

Fig. 5: An example of the anchor point search method used
in the first phase of the algorithm. It starts casting rays from
the hub that are perpendicular to the plane normal. If the rays
collide with an object until a determined distance chosen by
the user – this distance will determine the final size of the
web, and should be particular for each scene –, this collision
point becomes a single anchor point for the web. Otherwise,
the anchor points become composed anchor points, connecting
more than one thread to the object.

(a) A single anchor point is used
when it is fixed not far from the hub,
and do not need to support much
tension.

(b) A composed anchor point. It at-
taches to more than one fixed point in
the environment. This usually happens
when an anchor point is far away from
the hub and needs to support a great
part of the web tension.

Fig. 6: Red rectangles represent anchor points; these points
are fixed and attached to the environment. Their objective is
to support part of the tension caused by the weight of the web.

Fig. 7: The frame threads are represented as Bézier curves.
Each control point is calculated taking into consideration the
length d of its respective frame thread. The amount displaced
is 20% of frame thread length towards the directions described
by the red arrows.

Another consideration is that the threads connecting two
anchor points will suffer a tension by the gravity and the
weight of the web structure. This tension usually makes the
threads bend a little. It would be very unrealistic if they were
rendered simply by using straight lines. In order to simulate
the curvatures of the threads we used a quadratic Bézier
spline. The control points are displaced towards the hub, by
an amount based on the length of the thread (we empirically
found that 20% of the length gives a fine curvature, and used
this value for all results). The longer the thread is, the more
it bends, giving a concavity appearance to the orb-web, as
represented in Figure 7.

3) Support Threads: This type of threads, as the name
suggests, are primarily used to help supporting the web,
ensuring stability. Radial threads will be attached to them
afterwards, mitigating the tension that would be handled by
the frame threads. To do this efficiently, spiders usually make
an arc connecting two neighboring frame treads, as can be
seen in Figure 4(b).

The placement of these threads is more complex than the
other types, since in real orb-webs this type has a higher

(a) None. (b) Single. (c) Composed.

Fig. 8: Variability of the support threads. If the distance of
the anchor point to the hub is too small, case (a) happens. If
two anchor points are too close, case (c) happens. Case (b)
happens when the anchor point is far away from both the hub
and any other neighboring anchor points.



variability, as can be seen in Figure 2, mainly regarding to
its initial and final positions. To simulate this type of threads,
first we had to decide when and where it is necessary to create
a support thread. The more common place is to attach them
between neighboring pair of frame threads. Besides that, we
assume that if the distance of the common anchor point is too
close to the hub, the support thread is not needed, because
there is not much tension on this frame thread. If the common
anchor point is further away from the hub, a support thread is
placed connecting both wires. We also modeled a third case,
when we have two neighboring anchor points very close to
each other, a very small frame thread is present between the
two anchor points, as seen in Figure 8(c). In order to avoid
having two support threads very close to each other, which
would be very unrealistic, we simply create only one support
thread that encompasses both, skipping the small frame thread.

Another important decision was to find in which point of
the frame threads the support wires will start and end. By
experimentation and observation of real examples, a value that
fits well is to start at the 80% of the first frame thread, and end
at about 20% of the next, with some small variation of 5%.

Since these threads also need to support some tension, they
are drawn with curves using the same strategy as the frame
threads, with quadratic Bézier splines. Again, the control
points were pulled towards the hub, based on the length of
the frame threads.

4) Radial Threads: In this step we place the radial thread
segments. They start at the hub and follow a straight line until
they connect to another thread, usually a frame thread or a
support thread. Radial threads serve as a support for the last
phase, the construction of the spiral thread.

The main decision here is the number of radii, which do
not follow any strictly rule. The biological factor that most
influences the insertion of radii segments is the size of the
spider. Hence, we have some freedom deciding this value. In
order to find a realistic number of radii threads for the webs,
we used the value presented in Table I, that were extracted
from statistical data from real orb-webs. The numbers of radii
between 26 to 35 give us an angle of 14 to 10 degrees between
each radial thread, approximately. This variation is used to
mimic the biological variation that happens in real orb-webs.

The radii threads are drawn starting at the hub and stop
until they reach a frame thread, a support thread, or an
environment obstacle. We defined an iterative process to
check when a radial line intersects a frame or support thread.
In each iteration, the radial thread starting at the hub grows
by a certain amount; the amount used was the least distance
between the actual radial point and the other web threads
(frame and support threads). This continues until the radial
thread is close enough to another thread. When this happens,
this closest point is considered the intersection point between
the radial line and another thread. This method uses only
about 3 or 4 iterations at most to find the intersection point
for each radial thread.

Fig. 9: A representation of the algorithm to check if a spiral
points exceeds the boundaries of the orb-web. To verify that,
a closest point from the spiral point is found, considering the
points of the green hull. After this, the distance from the hub
from both points is compared. If the spiral point is closer from
the hub, it is inside the hull and must be draw, otherwise not.
In this example, the spiral point should not be drawn.

5) Spiral Thread: Here we place the sticky spiral of the
spider orb-web. The spiral does not start in the center, as seen
in real orb-webs. The position may vary for different species
of spiders, and with the size of the web. Hence, we used a
distance of about 10% of the distance from the hub to the
furthest frame thread plus some variation of 3%.

To make the process of constructing the spiral as simple as
possible, we considered the spiral as being an Archimedean
Spiral (also known as an arithmetic spiral), described by the
polar equation r = a + bθ. This spiral has the property that
successive turnings keep a constant separation distance from
each other (equals to 2πb if θ is in radians). This property
makes this spiral suitable for representing the spiral of a spider
orb-web, as already studied in [5]. Moreover, to make the
spiral web more realistic, we inserted some disturbance when
computing the spiral. This can be done by slightly changing
the values of a and b in the polar equation. The variation of
the disturbance is presented in Table I.

To draw the spiral part, we have to check that it does not
exceed the boundaries of the orb-web. To check this, first
we get the list of frames or support threads, depicted by the
green segments in Figure 9; next, we find in that list the
closest point from the actual spiral segment. Now, we only
need to compare the distance from the hub between the actual
spiral segment and the closest point found. If the distance of
the spiral segment is larger, it is out of the limits of the web
and must not be drawn. The algorithm continues to compute
the upcoming spiral segments and once the spiral enters
again the boundaries of the orb-web, it starts to drawn it again.

6) Web Wire Rendering: To render wires, a primitive that
would be more suitable is the cylinder, due to its geometric
similarity with real threads. In [9], the authors even extended
this primitive, creating what they called a Spherinder, which
is a cylinder with two hemispheres at either end in place of
the traditional flat caps of a regular cylinder. These way two



Fig. 10: In each of these examples, the surrounding objects were slightly modified to show how the orb-web can automatically
adapt to different configurations of environment.

cylinders would overlap more smoothly.
For real-time goals, we considered these primitives costly.

A cylinder, for instance, roughly approximated by eight faces
would need 16 vertices to represent. Hence, the shape we
decided to use is simpler: a plane consisting of 4 vertices
each segment. In addition, after the first plane, any other plane
connecting to it will only need two more vertices. The plane
segment is defined by its position, thickness, and a normal.
The normal orientation used is the same web plane normal,
defined in Figure 5. Therefore, given a list of points, we create
the plane segments based on simple geometric calculations
(Figure 11). The sampling along the web may vary depending
on the desired quality of the Bézier curves. The more points
used to represent the curve, smoother the wires should appear.

Finally, the wire is texturized to achieve a more realistic
appearance. The texture used is just a white 32 × 32 image,
with transparent borders to avoid aliasing.

III. RESULTS

In this section, we present the results of our final spider
orb-web images rendered in real-time. The computer used
to run the tests was a Core i7 2600 3.4GHz with 12GB of
DDR3 RAM and a GeForce GTX580. Our algorithm was
implemented using Unity3D [12], a powerful game engine
with many graphical cutting-edge technology aimed for real-
time graphics. The synthetic scenes where the orb-webs were
inserted used only basic lighting and texture mapping.

(a) (b)

Fig. 11: (a) Given 3 points P1, P2 and P3. Plane segments
connecting them can be calculated by finding a vector ~t, per-
pendicular to (P2−P1). This can be achieved by computing the
cross product between the normal to the plane and (P2−P1).
Then the resultant vector ~t is normalized and multiplied by
the plane thickness, to give its correct size. (b) A close-up
of a web rendered in wireframe allows us to see the many
connected planes that form the wires.

The most essential feature of our algorithm is the web
adaptation. It is very important that the web can assume a
different configuration depending on the environment it was
inserted. Figure 10 depicts how our algorithm handle changes
in the surrounding objects. First, for the web to exist, it must
found at least 3 anchor points. If these points can define a



TABLE II: Average running time (in miliseconds) of each
phase of the algorithm to build the webs from Figure 12.

Algorithm Phases Average Running Time
Find anchor points 0.513 ms
Build frame thread 1.132 ms
Build support thread 0.303 ms
Build radial threads 41.780 ms
Build spiral threads 314.601 ms
Total Time 358.329 ms

plane in the space (not collinear), the web can be build. It
can be seen that for every different configuration of the scene
objects, the web finds a way to fit in the environment. This
assures that the algorithm can generate many different patterns
of spider orb-webs.

The next results are a comparison of our final web rendering
with some real spider orb-webs. For a more fairly comparison,
we blended our orb-web rendered images into real pictures of
natural landscapes. The pictures of real spider orb-webs are
shown in Figure 2 and our results are shown in Figure 12.
The synthetic orb-webs seem to approximate the shapes of
real spider-webs and are visually appealing. Although, it can
be seem that real spider orb-webs still have greater variability
– especially considering the frame and support threads –, this
occur due to the simplifications of our model considering
biological variables. Another reason for that is that spiders
are often repairing their web to increase stability, which can
lead to patterns that are difficult to mimic using our algorithm.
Figure 2 (bottom row), shows some complex variations of
frame threads and support threads that occur in real orb-webs.

Web wires are rendered using a simple illumination model.
Since webs are represented as 3D meshes, the rendering can be
improved to simulate more realistic types of thread. Another
advantage of using a 3D mesh is that more advanced rendering
techniques can be used, such as shader effects.

Orb-webs are 3D models defined by vertices and faces.
Figure 12 shows the number of vertices and faces for each
one of the synthetic spider web. It can be seem that the vertex
values do not vary much, averaging 1882 approximately. Such
low number of polygons can be easily handled in real-time
applications. In addition, the technique is efficient and can
build orb-webs in real-time, as shown by the average running
time for the algorithm in Table II.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to construct self-
adaptive spider orb-webs in a procedural manner, eliminating
the time-consuming task of modeling organic objects. This
approach has proved efficient and outputs good quality orb-
webs that run in real-time. Since our concern is mainly with
the final appearance and the rendering quality, we do not
take into consideration the directly influence of biological
variables, such as, wind, temperature, humidity, silk supply,
among others, seeing that would end up with a much more
computationally expensive model. On the other hand, these

simplifications limit the variability that may occur in the struc-
ture of the orb-webs, even inserting an amount of randomness
to the parameters.

For future work, a more complex model can be achieved
by elaborating new patterns of threads, mainly the frame and
support threads. To prevent a decrease in the performance
in real-time applications, many level of details could be
implemented, leading to more realistic models up close to the
viewer. Furthermore, the algorithm could be generalized to
simulate more aged orb-webs, considering broken wires, for
instance. This surely would give a more realistic appearance
for the web. Another great improvement would be to apply
shader effects to better simulate the properties of the wire
material, like the spectral dispersion of light. In addition,
effects such as blooming and anti-aliasing would give a better
final rendering image. Another interesting extension would
be to work with physically based animation models. We
believe it would be interesting to simulate animations caused,
for instance, by the wind, that affects all the web structure.
Moreover, wire tension simulations could be valuable for many
different research areas [13], such as biology or architecture,
since the spider silk has a unique combination of strength and
elasticity that make it one of the toughest known materials.
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(a) 1852 vertices. (b) 1852 vertices. (c) 1678 vertices.

(d) 1930 vertices. (e) 2064 vertices. (f) 1886 vertices.

(g) Three webs from left to right, with 1934, 1712 and 1844 vertices, respectively.

Fig. 12: Spider webs generated procedurally using our algorithm in real-time. The rendered image of the orb-web was blended
into real photographs to given a more realistic effect.
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