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Abstract—The Bag-of-Visual-Words has emerged as an
effective modeling approach to represent local image features. It
describes local image features by assigning them a visual word
according to a visual dictionary. The image representation is
given by the frequency of each visual word in the image, as a
similar representation used in textual documents. In this paper,
we present a novel approach building a high-level description
using a group of words (phrases) for representing an image.
We introduce the use of n-grams for image representation,
based on the idea of “Bag-of-Visual-Phrases”. In the field of
computational linguistics, an n-gram is a phrase formed by
a sequence of n-consecutive words. As analogy, we represent
an image by a combination of n-consecutive visual words. We
made representative experiments using three public benchmark
databases of textures and nature scenes and two medical
databases to demonstrate an area that can benefit from the
proposed technique. Our proposed Bag-of-Visual-Phrases
approach improved up to 44% the retrieval precision and
up to 33% the classification rate compared to the traditional
Bag-of-Visual-Words, being a valuable asset for content-based
image retrieval and image classification.
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I. INTRODUCTION

Image representation plays an essential role in image

categorization and retrieval applications. Research in this

area has advanced in order to obtain methods that capture

the semantics of the image, extracting features perceptually

efficient and compact [1]. This fact should be taken into

consideration to make a CBIR (Content-Based Image

Retrieval) system closer to the users’ expectation.

One of the state of art technique for image representation

is the Bag-of-Visual-Words [2], [3], [4], [5], [6], [7], [8],

also known as Bag-of-Features or Bag-of-Keypoints. This

approach describes an image using a dictionary composed

of different visual words. Visual words are local image

patterns, which concentrate relevant semantic information

about the image. As illustrated in Figure 1, after extracting

the local image features, each feature is assigned to its nearest

visual word according to a visual dictionary. The traditional

image representation, employed by the Bag-of-Visual-Words

approach, is the number of occurrences of each visual word

contained in the image, as an analogy to the Bag-of-Words

representation used for textual information retrieval.

A more powerful description can be obtained by grouping

words [9], [10], [11], [12], once this approach can encode the

arrangement between the visual words in the image space.

In fact, aggregating spatial information in visual words is

a promising approach for image description, because the

appearance of the visual words can change profoundly when

they participate in relations. Spatial information reaches a

high-level semantic characterization and leads to a more

meaningful image representation.

The goal of this work is to represent an image taking

into consideration the relationship between the visual words,

instead of considering the image as a set of isolated words.

In this paper, we introduce the idea of using n-grams for

generating visual phrases. The use of n-grams is an efficient

model already used in natural language processing to represent

a textual document [13]. The words are modeled such that

each n-gram is composed of n sequential words. For example,

the 1-gram (unigram) representation is composed of isolated

words, such as {intelligence, artificial, computer, vision,

medical, systems}. By analogy, the 1-gram representation is

the traditional Bag-of-Visual-Words approach. On the other

hand, the 2-gram (bigram) is represented by two sequences

of words, such as {artificial intelligence, computer vision,

medical systems, artificial systems}, enriching the semantic

and yielding a more complete representation. The core

advantages of using n-gram models are the simplicity and the

ability to scale up the content representation very effectively

by simply increasing n.

We performed representative evaluations in several different

databases. We evaluated our proposed method in benchmark

databases of the image classification and retrieval area,

and also in medical databases, which have shown to be an

application area that can benefit from the proposed technique,

since it adds more semantics to the image description.

Comparative results, with respect to the traditional Bag-

of-Visual-Words approach, show that the use of n-grams

is a promising descriptor to achieve a more robust image

characterization and make a CBIR system closer to users’

expectation.

The rest of the paper is organized as follows. Section 2

gives the formal definitions and the background needed to

follow the work, such as the motivation for the proposed work.

Section 3 explains the method to represent an image in n-gram

visual words. Section 4 presents the experimental analysis and

Section 5 gives the conclusions of this paper.



Figure 1. Scheme to represent an image in Bag-of-Visual-Word and Bag-of-Visual-Phrases.

II. BACKGROUND AND MOTIVATION

The Bag-of-Visual-Words (BoVW) approach is a technique

used to model the local image features. These local features

are described by an unordered set of keypoints, where each

keypoint describes representative local image features. The

goal is to quantize these features using a visual dictionary.

The main idea of using visual dictionaries is to consider that

the image visual patterns are similar to textual words present in

textual documents. Therefore, an image is composed of visual

words as a textual document is composed of textual words.

Clustering is a common method in the literature for learning

a visual dictionary. A dictionary can be built by clustering

the local features detected in a set of training images from

the database, such as schematized in Figure 2. Formally, let

P = {p1, p2, ..., pz} be the local features detected in a subset

of the database image. The visual dictionary is given by a

division of P into k distinct clusters πk = {C1, C2, ..., Ck},

so that C1 ∪C2 ∪ ... ∪Ck = P , Ci 6= ∅, and Ci ∩Cj = ∅ for

i 6= j and i, j = 1...k.

A visual word wi is the centroid of cluster Ci. When a

new image arrives, its features are extracted and assigned

to the nearest visual word wi, for i = 1...k, where k is

the number of words in the visual dictionary. The image

representation employing the BoVW approach is simply the

normalized histogram of the quantized visual words detected

in the image.

Spatial information is a very important feature for

the characterization of images and objects, because the

appearance of objects can deeply change when they

participate in relations. One of the first work to attempt

encoding geometric information with Bag-of-Visual-Words

is the spatial pyramid [14], which splits the image into

hierarchical cells and computes bag-of-visual-words for each

cell, concatenating the results at the end. However, it is

crucial that the image characterization does not depend on

the placement of the image, because the features should be

invariant to geometric transformations. Other works employ

correlograms of visual words [15] and image splitting by

linear and circular projections [16]. The method proposed in

[17] encode spatial-relationship information of visual words

using image space partitions to count the occurrences of the

visual words in relation to the other visual words positions.

It seems plausible that grouping words might be applied

successfully for enriching the BoVW representation [12], once

a high semantic information level is reached. The benefits of

using group of words have been proven to boost local feature

matching [11]. Previous works employ phrases to model the

co-occurrences of the words in local neighborhoods, using

methods to encode the spatial layouts with a grid-dependent

size [18]. Besides that, a big problem of these approaches is

that the number of phrases can exponentially grow according

to the number of words in a phrase. Thus, it is necessary to

select a subset from the entire phrase set. Sophisticated mining

or learning algorithms have been proposed for this selection

[9], [10], but it may still be risky to discard a large portion of

phrases, because some of which may be representative ones

for the images.

Instead of using a dictionary formed by a huge list of

phrases with different number of words, why do not use a

dictionary formed by phrases with a limited but representative

number of words? A representation that utilizes phrases with

a limited sequence of n words is denominated n-gram. In the



Figure 2. Process used to generate a visual dictionary. Initially, a keypoint detector is applied in a set of training images to detect representative local image
points. The detected keypoints are represented by a descriptor that summarizes the information about the region around each keypoint. A dictionary can be
built by clustering the keypoints detected.

fields of computational linguistics and probability, an n-gram

is a contiguous sequence of n items from a given sequence

of text or speech [13]. An n-gram could be any combination

of letters. However, the items in question can be phonemes,

syllables, letters, words or pairs according to the application.

How useful the n-gram representation could be for image

description based on the idea of Bag-of-Visual-Phrases? The

idea of using n-grams in vision is quite similar to a number

of previous works that combine visual words with spatial

information. For example, in [12] triplets of visual words are

used. The work in [19] use 2-grams ("doublets") from spatially

neighboring word pairs. In [20], the authors use "higher order

features" (i.e. BoVW + 2-grams, 3-grams etc), but instead

of considering all possible n-grams, they perform feature

selection to only pick relevant n-grams. In [21] the authors

propose to do joint clustering of nearest feature pairs. In this

paper, we propose a slightly different measure of similarity

considering n-grams and BoVW, and a simple and different

procedure to extract the n-grams from the image compared

to [22] and [23]. The details of the proposed technique is

presented in the next section.

III. THE PROPOSED METHOD

The proposed method describes an image as a Bag-

of-Visual-Phrases, where the Visual Phrases are n-grams

extracted from the image. In our proposed model, the image

representation is the frequency that each n-gram appears

in the image. In this section we explain how to extract the

n-grams from an image and how to represent an image using

Bag-of-Visual-Phrases.

A. Extracting the n-grams from an image

In text mining, a unigram representation can be obtained

by placing a small window over the text, such that we only

look at one word at a time. In a similar way, a bigram can

be thought of as a window that shows two words at a time

and moving this window to the right, one word at a time, in

a stepwise manner. This procedure is the same for extracting

n-grams from a text with n greater than two. To take this

“window” analogy to our image representation problem, we

could say that all visual n-grams of an image can be generated

by placing a region over each visual word, such that we only

look at the n-nearest visual words at time.

Formally, let P = {p1, p2, ..., pm} be the local features

detected in an image. Each local feature pi is represented by

its coordinates (xi, yi) in the image and it is assigned to a

visual word wj . The n-Nearest Visual Word (nNVW) of a

local feature pi is given by:

nNVW(pi, n) = {P ′ ⊂ P | |P ′| = n, ∀pj ∈ P ′,

∀pr ∈ [P − P ′] : d(pi, pj) < d(pi, pr)}
(1)

where:

d(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 (2)

The next definition is needed to give the main building block

of our proposed technique.

Definition 1. The proposed image representation in n-grams

is given by the occurrences of the n-Nearest Visual Words

considering each local feature pi detected in an image P:

n-gram(P ) = {nNVW(pi, n)}, for i = 1...m. (3)

where m is the number of keypoints detected in the image.

To illustrate, Figure 3 shows an example of extracting the

2-grams from an image. For each local point, we look at its

closest neighbor point. There is no need to specify a threshold

distance, since we get the nearest point. We consider the pair

as a 2-gram phrase. In a similar way, to extract the n-grams

from an image, with n > 2, we just need to increase the

number of nearest points.

B. Modeling the image in Bag-of-Visual-Phrases using n-

grams

After extracting the n-grams from an image, each n-

gram is treated as a visual phrase. To model an image

in Bag-of-Visual-Phrases, the next step is to count the

number of visual phrases according to a dictionary of visual

phrases. This dictionary of visual phrases is given by the

all possible combinations of n-grams. However, the size

of the dictionary can be exponential with respect to the

number of the visual words in the vocabulary. For example,

considering 100 different visual words, the number of all

possible combinations of 2-grams is 1002.

To reduce the size of the dictionary of visual phrases we

do not consider n-grams with repeated visual words, this

means, an n-gram with n similar consecutive visual words.

Additionally, we consider inverted n-gram as the same visual

phrase. Inverted visual phrases consists of phrases with the



Figure 3. Example of the process used to extract 2-grams from an image. For each keypoint we look at its closest neighbor point. To extract n-grams from
an image, with n > 2, we just need to increase the number of nearest points.

(a) (b)

Figure 4. Representation of the image in fig. 3 by: (a) Bag-of-Visual-
Words, (b) Bag-of-Visual-Phrase considering 2-gram phrases and the proposed
dictionary.

same visual words, where the visual words appear in different

orders. With these two restrictions the dictionary of visual

phrases can be reduced to 50% or more.

To illustrate, the 2-gram phrases generated by

a dictionary formed by the words {w1, w2, w3} is

{{w1, w2}, {w1, w3}, {w2, w3}}. Figure 4 shows the

representation of the image from Figure 3 considering the

traditional Bag-of-Visual-Words and the proposed method of

Bag-of-Visual-Phrases using 2-gram phrases.

C. Calculating the images’ distances

To measure the dissimilarity (distance) between two

images A and B, we take advantage of the distance between

the histograms of Bag-of-Visual-Words and Bag-of-Visual-

Phrases of both images.

Let hA and HA be the normalized histograms of Bag-

of-Visual-Words and Bag-of-Visual-Phrases of image A,

respectively, and hB and HB of image B. The distance used

to measure the dissimilarity between the images A and B is

given by:

Distance(A,B) = ||hA − hB ||1 + ||HA −HB ||1 (4)

where ||.||1 is the L1 distance.

Two images A and B are considered similar when

Distance(A,B) → 0.

IV. EXPERIMENTAL RESULTS

In this section, we report representative experimental

results performed to evaluate the effectiveness of the image

representation technique proposed in this work. We compared

our method with the traditional Bag-of-Visual-Words

representation, which has only the frequency of occurrence

of the words in the image. The Bag-of-Visual-Words is by

analogy the 1-gram representation.

We seek a vocabulary of visual words which will be

invariant to changes in viewpoint and illumination. For this,



we used the SIFT descriptor [24], which is one of the most

widely used descriptor to extract local image features. SIFT

descriptors, based on histograms of local orientation, has some

tolerance to illumination change.

The experiments was conducted to evaluate the accuracy

of 2-gram and 3-gram representations compared to 1-gram

representation. The tests was performed in two different tasks:

image retrieval and image classification.

A. Image retrieval evaluation

We performed an image retrieval evaluation on four different

image databases, two public databases and two medical ones:

• Corel1000 database 1: consists of images of natural

scenes. It is composed of 1000 images divided into 10

classes, 100 images in each class. Figure 5a shows an

image for each class of this database;

• Lung database 2: consists of CT images of lung,

composed of 234 images divided into 6 classes (39

images in each class), classified according to the Lung

findings: Emphysema, Honeycombing, Interlobular

Septal, Healthy, Consolidation and Ground-glass. Figure

5b shows an image for each class of this database;

• Medical Image Exams database 3: it contains 2,200

medical images of X-ray and MRI, classified according to

body part and type of cut, being composed of 11 distinct

classes with 200 images in each class. Figure 5c shows

images samples from this database.

• Texture database [25]: includes surfaces composed

of materials such as wood, marble and fur under

varying viewpoints, scales and illumination conditions.

This database consists of 1,000 images comprising 40

samples of 25 different textures. Figure 5d shows images

samples from this database.

The comparative retrieval performance was evaluated using

the mean of Average Precision (mAP). The Precision is the

ratio of the number of relevant retrieved images to the total

number of retrieved images. The Average Precision computes

the average value of Precision at each ranking position where

a relevant image is retrieved. The top value is 1, which means

that all relevant images were retrieved in the first positions

of the ranking. The mAP determine the mean of Average

Precision considering each image as query. The best value

of mAP is 1.

Table I presents the average mAP values for the evaluated

databases. The 2-gram representation presented the best results

in three databases. In general, the 2-gram boosted the precision

in 5% in these databases. Except for the Corel1000 database,

the 3-gram presented the best result. In this database, the 3-

gram representation increased 13% the precision compared

with the traditional 1-gram representation.

Considering each class individually, we can see where the

results were more significant. Table III presents the mAP

1available at: http://wang.ist.psu.edu/docs/related/
2provide by the Clinical Hospital with our university.
3provide by the Clinical Hospital with our university.

(a)

(b)

(c)

(d)

Figure 5. Sample images from the: (a) Corel1000 database, (b) Lung
database, (c) Medical Image Exams database , (d) Texture database.

results for each class of the Lung database and Tables II, IV

and V summarize the results from representative classes of

the other three databases, where the difference between the

methods were considered significant. Figures 6a, 6b, 6c and

6d present the Precision values for each class of the evaluated

databases.

For the class Emphysema in the Lung database and for the

class Knee in the Medical Image Exams database, the 2-gram

representation had a gain up to 17% in Precision. For the class

Africa in the Corel1000 database, the 2-gram representation

improve the precision in 26%. Considering the Class 1 of the

Texture database the 3-gram representation achieved a gain of

44% in precision.
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Figure 6. Precision values for each class of the evaluated databases.

Table I
AVERAGE RESULTS FOR THE EVALUATED DATABASES.

Database
Image representation

1-gram 2-gram 3-gram

Corel1000 0.299 0.332 0.340

Lung 0.365 0.385 0.366

Medical Exams 0.398 0.421 0.412

Texture 0.648 0.681 0.667

In general, when a class is complex, this means, when it

has more visual details, the n-gram representation with a large

value of n tends to have better results. However, the value of

n affects the dictionary size, such that more visual phrases are

being analyzed and this can affect the retrieval performance.

Considering the overall performance for all the evaluated

databases, the 2-gram and 3-gram achieved a gain in

Precision compared to the traditional 1-gram representation.

These results demonstrated that the high-level image feature

proposed in this work was able to improve the retrieval

system and making a CBIR closer to the users’ expectation.

Table II
PRECISION RESULTS FOR SOME CLASSES OF THE COREL1000 DATABASE

Class
Image Representation

1-gram 2-gram 3-gram

2 Food 0.171 0.189 0.219

3 Horses 0.175 0.215 0.174

5 Flower 0.231 0.281 0.309

6 Africa 0.305 0.385 0.355

7 Elephant 0.306 0.356 0.349

9 Mountain 0.489 0.472 0.529

10 Dinosaur 0.616 0.671 0.690

B. Image classification evaluation

We performed an image classification evaluation using the

15-scenes database [14]. This database (Fig. 7) is composed

of 4485 images categorized in fifteen different scenes. Each

category has 200 to 400 images, and average image size is

300x250 pixels. The major sources of the pictures in the

database include the COREL collection, personal photographs,

and Google image search. This is one of the most complete



Table III
PRECISION RESULTS FOR THE LUNG DATABASE

Class
Image representation

1-gram 2-gram 3-gram

1 Emphysema 0.304 0.347 0.330

2 Honeycombing 0.333 0.376 0.330

3 Interlobular Septal 0.364 0.373 0.339

4 Healthy 0.371 0.375 0.369

5 Consolidation 0.391 0.396 0.398

6 Ground-glass 0.425 0.446 0.429

Table IV
PRECISION RESULTS FOR SOME CLASSES OF THE MEDICAL IMAGE

EXAMS DATABASE

Class
Image representation

1-gram 2-gram 3-gram

1 Chest 0.237 0.259 0.249

2 Brain Axial 0.238 0.276 0.270

4 Hand 0.257 0.258 0.252

5 Foot 0.311 0.298 0.319

6 Brain Coronal 0.405 0.419 0.400

7 Breast 0.487 0.535 0.480

8 Knee 0.527 0.616 0.591

10 Abdomen 0.560 0.648 0.640

11 Brain Sagittal 0.566 0.549 0.558

scene category database used in the literature thus far.

A multi-class classification was done with a support vector

machine (SVM) trained using the one-versus-all rule: a

classifier is learned to separate each class from the rest, and

a test image is assigned to the label of the classifier with the

highest response.

Table VI shows the classification rate for the experiments

using 100 images per class for training and the rest for testing

(the same setup as [14]). The 2-gram representation presented

the best classification rate with 48%, followed by the 3-

gram representation (43%). Compared with the 1-gram, the

2-gram representation had a gain of 11% in accuracy. This

result demonstrate that the 2-gram representation encode more

discriminative features than the 1-gram representation.

Figure 7. Example images from the 15-scenes category database.

Table V
PRECISION RESULTS FOR SOME CLASSES OF THE TEXTURE DATABASE.

Class
Image representation

1-gram 2-gram 3-gram

1 Class 1 0.314 0.414 0.452

2 Class 2 0.427 0.452 0.427

4 Class 4 0.493 0.530 0.527

5 Class 5 0.499 0.527 0.558

6 Class 6 0.515 0.514 0.486

7 Class 7 0.546 0.591 0.534

9 Class 9 0.593 0.582 0.568

10 Class 10 0.599 0.619 0.622

11 Class 11 0.618 0.666 0.680

13 Class 13 0.655 0.703 0.681

15 Class 15 0.669 0.713 0.695

16 Class 16 0.704 0.774 0.715

18 Class 18 0.725 0.816 0.848

19 Class 19 0.745 0.785 0.720

22 Class 22 0.772 0.839 0.778

23 Class 23 0.823 0.887 0.911

24 Class 24 0.926 0.960 0.967

25 Class 25 0.964 0.955 0.935

Table VI
AVERAGE CLASSIFICATION RATE FOR THE 15-SCENES DATABASE.

Representation Average Classification

1-gram 0.428

2-gram 0.476

3-gram 0.434

Analyzing each class individually, Table VII presents the

classification rates for each class of this database. For three

classes, the 3-gram presented the best results. The 2-gram had

a gain of 33% in accuracy for the class Kitchen and the 3-

gram had a gain of 20% for the class MITforest compared

with the traditional 1-gram approach.

In this evaluation task (image classification), we can see

the same behavior that the previous task (image retrieval).

The 2-gram and 3-gram representations presented an overall

performance better than 1-gram representation. These results

indicate that the 2-gram and 3-gram add more information

in the image feature description, being a valuable asset to

improve the image analysis.

V. CONCLUSION

In this paper, we have introduced a novel modeling approach

for representing images. The new approach represents an

image by taking into consideration the relationship between

its visual words. The proposed method is based on the idea of

Bag-of-Visual-Phrases, which has a higher level of semantic

characterization compared to the traditional Bag-of-Visual-

Words. The image is represented as a collection of visual



phrases, instead of considering the image as a set of isolated

visual words.

Our proposed method uses a dictionary composed of visual

phrases with a fixed number of words. Such representation

is an analogy to the popular n-gram representation used for

textual representation.

We have conducted experiments in five different databases.

Three of the databases are public and employed as benchmarks

in the image retrieval and classification community. The others

two are composed of medical images to demonstrate an area

that can benefit from the proposed technique. The results have

shown that bigram and trigram dictionaries are sufficient to

boost the retrieval and classification accuracy.

Our proposed novel modeling approach enriches the Bag-of-

Visual-Words representation and the obtained results indicate

that it can become a powerful and promising descriptor for

image representation, and can contribute to the content-based

image retrieval and image classification field.

Table VII
CLASSIFICATION RESULTS FOR EACH CLASS OF THE 15-SCENE DATABASE.

THE HIGHEST RESULTS FOR EACH CLASS ARE SHOWN IN BOLD.

Class
Representation

1-gram 2-gram 3-gram

bedroom 0.250 0.319 0.216

CALsuburb 0.787 0.901 0.872

industrial 0.199 0.246 0.235

kitchen 0.245 0.327 0.227

livingroom 0.217 0.233 0.211

MITcoast 0.473 0.400 0.408

MITforest 0.781 0.860 0.943

MIThighway 0.419 0.394 0.263

MITinsidecity 0.452 0.486 0.453

MITmountain 0.438 0.529 0.453

MITopencountry 0.365 0.384 0.297

MITstreet 0.328 0.432 0.313

MITtallbuilding 0.430 0.480 0.484

PARoffice 0.522 0.583 0.552

store 0.521 0.567 0.591
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