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Figura 1. Visualization design used to analyze a 15 km running race composed of activities of multiple runners. We show in the left the linear heatmap
design, where the time-series for the heartbeat of each runner is normalized against his maximum heart rate (MHR), and drawn as color-coded particles
from left to right in a single line, with the x-axis corresponding to distance. Heatmaps were sorted from top to bottom based on the average effort level
to group runners with similar effort levels to make it easier to identify patterns, such as the number of runners exercising close to their MHR. In addition,
we placed distance markers to highlight vertical patterns of common variation. On the right, we show the augmented track view of the same race, with the
same distance markers to allow us to correlate patterns.

Abstract—The recent widespread of heart rate (HR) monitors
is allowing people to measure body response during and after
exercise, which produces a collection of time-series on multi-
variate aspects, such as heartbeat, speed, geolocation, etc. Such
monitoring can be extremely important for people with low
fitness levels, since they are susceptible to cardiovascular diseases
or other physical injuries when exercising at high heartbeat
frequencies. Even though most monitors provide tools to export
and display this information for each individual, the ability to
visualize the collection of multiple runners in a given running
race is mostly unexplored. In this work, we present a design study
that aims to support analysis and answer several questions raised
by an expert on exercise physiology about a given running race.
We describe each visualization design and how they individually,
or in collaboration, can be used to reveal interesting aspects of
the data. We illustrate our results with use cases that provide
evaluation and feedback about the visualization designs proposed.
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I. INTRODUCTION

Physical activity is an essential component for a healthy
lifestyle. There are several studies that correlate low fitness
levels to high risk of cardiovascular problems [1], [2], [3]
and regular physical activity is essential to reduce such risks.
Although there is a strict recommendation for a preliminary
doctor check-up before starting any period of physical activity,
there is no way to enforce this recommendation and it is not
uncommon for people to start exercising without visiting a

doctor. This can be dangerous, specially when people with
low fitness level engage in intense activities such as running.

HR monitors were introduced in the 70’s [4] to help athletes
record heart-rate activity during competition which could be
used in a subsequent analysis to improve performance. Such
devices comprise a HR monitor (incorporated into a wrist
receiver) and a chest strap transmitter. Data recorded can be
as complex as the time-series containing heartbeat during the
entire exercise, as well as other information such as speed,
geolocation, etc. The affordability of such devices has made
them popular recently. In addition, activity recorded from
monitors can be uploaded to computers, where they can be
inspected or shared with others (e.g. a person’s physician).

Current visualization tools for HR data focus on the vi-
sualization of a single activity, and often lack the ability to
compare multiple activities. The ability to inspect multiple
activities at the same time can be very useful to compare the
effort of different runners in a given activity, or to compare
the effort of a single person against others in a shared activity.
The analysis of this data is challenging since it contains the
multivariate time-series data generated by HR monitors for
multiple runners. We constrain ourselves to data collected from
people in a given running race (e.g. 10 km, marathon, etc).
Although we use only data from running races, similar analysis
can be performed for other sports, for example, cycling.



The main contribution of this work is a design study com-
prised of three visualization designs that support the analysis
of a given running race, using data from the HR monitors of
several competitors. Such data includes heart rate, speed and
gps readings only; no further information about the athlete
(e.g.: age, weight, height, etc) is available. In collaboration
with an expert in exercise physiology, we formulated questions
to be answered about the running race. Such questions are
detailed in Section III-A and guided the conception of the
following visualization designs we will present. To validate
our visualization designs, we created use cases with data from
different running races, and assessed how helpful they were in
answering the questions posed by the expert. Figure 1 gives a
preview of the results we obtained for a 15 km running race.

II. RELATED WORK

Below we review related work on time-series visualization
and physiology regarding physical fitness and races.

Time-series Visualization

There is a vast literature about techniques for time-series
visualization in [5] and [6]. Time-searcher [7] describes how
to visualize queries over time-series data to identify interest-
ing patterns. Similar filtering ideas were also described by
LiveRAC [8], which uses data re-ordering to improve the
visualization. CloudLines [9] describes a technique to visualize
multiple time-series, where values are represented by the width
of a line. Applying this approach to datasets composed of a
few dozen series becomes confusing due to the visualization
area required to represent the line thickness. Horizon Graphs
[10] reduces the spatial requirement by stacking sections of the
area graphs, but it still cannot represent sets of hundreds of
series. Braided graphs [11] succeeds at visualizing multiple
series in a single frame through sectioning, ordering, and
color labels. However, the scheme quickly leads to confusion
when the number of series increases. One of our visual-
ization designs is similar to the line graph panel presented
in [12], where time-series are straight lines and values are
represented by colors. Sequence Surveyor [13] uses a similar
linear layout for genome visualization. Hao et al.[14] also
describes techniques for visualizing large time-series data
using color scales, similar to the concept of Heatmaps[15].
The usual approach for representing multiple variables of a
series is to plot a line graph per variable. The TimeWheel and
MultiComb presented in [16] follow this approach. However,
they were designed to handle a single multivariate time series.
Visualization techniques, such as the line graph, are usually
adapted to the specific characteristics of the data at hand. In
that sense, we adapted the filter lens concept, which is similar
to those found in [17] and [18]. Pathline [19] describes a
comparative visualization of functional genomics data, which
shares with our work the idea of looking at collections
of time-series to identify trend patterns. The work of Viau
and McGuffin [20] explores the use of different data charts
to visualize multidimensional data using visual connections
between charts to correlate information; strategy we used for

HR#Zone Effort#Index Effort#Level Pace Fuel#Source
1 60$75% Easy Slow Primarily4Fats
2 75$85% Moderate Moderate Carbs4and4Fats
3 85$95$% Difficult Fast Primarily4Carbs
4 95$100% Very4Hard Sprint All4Carbs

Figure 2. Heart Rate Training Zones. Effort index given as percentage of
the maximum heart rate. (from [26])

our distance marks (section III-E2). The track view (section
III-D) shares with the work of Tominski et al. [21], the concept
of visualizing multidimensional data along a track. However,
our design is confined in to a 2D visualization, as opposed to
the 3D visualization of the mentioned work. Finally, the work
by Legg et al. [22] also produces visualizations for sports data,
specifically for performance analysis. However, their focus is
on real-time analysis and glyph-based visualization, while this
work focuses on post-activity analysis and heart health.

Physical Fitness and Races

There are several studies that correlat fitness levels with
well-being [1], [2], [3]. The Physical Activity Guidelines
Report [23] presents proofs of the importance of physical
fitness. In [3] consistent evidence is given about the direct
association of myocardial infarction to physical inactivity and
that people with low fitness levels have a higher risk of
developing cardiovascular diseases. Running helps improve
physical fitness, and there are studies [24], [25] that correlate
heart health to the time one takes to run a given distance.
Running data, therefore, can provide important indicators of
overall fitness. For this analysis, the heartbeat of each indi-
vidual can be normalized as a percentage of the individual’s
maximum heart rate (MHR), and different effort levels can be
identified using this information. In Figure 2, from [26], four
main HR zones are identified. Training programs often rely
on defining how long or how far a runner should stay in each
HR zone. Exercising at HR zone 4 for a long period can be
dangerous, and there is a great concern about mortality and
cardiac diseases [27], [28], [29]. Related to this is the study
on human limits [30], [31] and strategies in different aspects
like hydration [32] and energy consumption [33].

III. VISUALIZATION DESIGNS FOR RUNNING DATA

In this section we describe visualization designs for running
data. We first pose the driving questions we discussed with an
expert in exercise physiology. Once our goals were defined,
we created distinct visualization designs, which are described
first individually, and later by their common functionalities.

A. Driving Questions

The conception of the visualization designs was driven
towards helping answering questions about a street race using
public data from several participants. The questions are usually
asked by someone organizing a race or by a physiological
specialist. Those have been selected based on the experience
of one of the authors, who is a physiological researcher, that



usually searches for the answers without a visualization tool.
Below, we enumerate such questions:

1) Is there a predominant effort level in the race? Where
does the effort level changes?

2) Which parts of the race require more effort?
3) Are there any common patterns among runners during

the race? Can we identify the source of such patterns?
4) Can we identify the running strategies for a given race?
5) Are there people running at dangerous effort levels?
6) How can we compare races?

B. Visualization Design 1: Line Graph Heatmap

The building blocks of the visualization designs are the
activities’ trackpoints. Trackpoints are samples of the athlete’s
state collected by the monitor device at regular intervals.
Common to the visualization designs is the rendering of
consecutive trackpoints using a solid circle (particle). Each
trackpoint is rendered only if the current visualization time
is within the range of the trackpoint. After rendered, each
trackpoint fades according to user parameters.

The first visualization displays multiple time series (runners)
similar to a conventional line graph with a set of improve-
ments. The vertical axis represents the effort level, while the
horizontal axis represents the distance from the start line, see
Figure 3. The color of the trackpoint represents the HR value
of the trackpoint in relation to the MHR and is mapped to
a color gradient (black, red, orange, and yellow). The color
mapping scheme is designed to relate HR to the respective
effort zones. HR training corresponds to the use of HR data to
customize a given workout to improve a runner’s performance
[34], [35], [26]. The cardiovascular system reflects the body
stress at any given moment, and by keeping track of the HR
one can estimate the effort at any given time. Differences in
HR measurements, when compared to rest state, can provide
immediate feedback on how tired the body is. Those differ-
ences indicate how hard the body is working, and how adapted
it is to a given workload.

The intensity of the exercise is closely related to the actual
HR reading (as a percentage of the MHR) [26]. Based on the
HR it is possible to identify the effort level, energy source, and
performance-related fitness that will benefit from the activity.
Notice from Figure 2 that the range of the different effort zones
is not the same. We used layers with the same thickness to
lay emphasis on the variation in the zones of higher effort,
which is the focus of most of the questions presented before.
In other words, the changes in the low effort zone (black layer)
become smoother while the change of the visualization in the
high effort zone (yellow layer) is more noticeable.

The color of each trackpoint is linearly interpolated to a
given color-scale based on the layer it belongs. Each layer
keeps track of how many runners are inside its effort zone at
any given time. This is visually represented by filling a part of
the layer area, bottom to top, proportional to the percentage
of runners inside it, with a faded version of the layer color
(see Figure 3). This allows one to keep track of a runner and
see if his condition is similar to others. Furthermore, we can
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Figure 3. Line Graph Heatmap Consecutive frames of the line graph
heatmap showing how the number of runners in each effort zone is rep-
resented. In the four vertical layers, from yellow to black, we display the
different effort levels. From left to right we display the HR for 4 runners
(illustrated as points 1 to 4) as function of distance. We used horizontal strips
in each effort layer with varying height to encode the number of runners in a
given time at that effort level. Such design allows to verify how many runners
are in a given effort zone, and how the runners relate to the others.

see the distribution of effort at different times during the race
(Q1). One problem of the line graph heatmap is information
overlap. To highlight the actual state of each runner, we add
a border to the current trackpoint. To reduce the clutter that
comes from the overlap with past trackpoints, an adjustable
decay factor provides a tradeoff between history length and
readability that can be modified during visualization.

C. Visualization Design 2: Linear Heatmap

The second visualization design is called Linear Heatmap
since it represents each runner’s activity as a horizontal line
with colors to indicate the effort level and horizontal space to
represent distance covered. The prior design, the line graphs
heatmap, is useful to see the overall effort level at different
times, but not at different places along the course. If the decay
was reduced until the trails become the whole line graphs,
such comparison would be possible, however, the overlap
of lines would still persist and complicate such task. The
purpose of this new design is to provide a way to compare the
effort and speed of the runners, while avoiding data overlap.
The trackpoints are positioned from left to right according
to the distance covered and rendered when the animation
time surpass the trackpoint’s key time. The result is a set of
horizontal lines starting as dots in the left and increasing in
length to the right as the runners get closer to the goal.

We also used a different colormap to represent the speed
in the trackpoints. The datasets usually contain outliers (mea-
surement errors in the monitor device) in the speed values way
above the average speed. In this case, normalizing the values
based on the minimum and maximum would bias the result,
bringing almost every trackpoint to the same small portion
of the color range. To solve this issue, we use a blue-white-
red colormap, where white is the average speed in the whole
dataset, red marks the trackpoints that are N times the standard
deviation above the average speed, and blue marks the ones
that are N times the standard deviation below it, with N being
a parameter that can be modified in real time. Without the
overlapping of runners, now, we can: identify the predominant
effort level in the race, as well as in a given part of the course
(now in distance, not in time as in the line graph heatmap)
(Q1); find the section of the course that demands more effort



Figure 4. Linear Heatmap for the heart rate, measured as percentage of
maximum heart rate, (top) and speed (bottom). (Average speed = 10 km/h;
Std Dev = 1.4 km/h; N = 3)

(Q2); identify common patterns of effort variation among the
runners and look for an explanation to them in the slope and
speed variation (Q3); and use the linear heatmap with the
speed color mapping to see the running strategy of the race,
i.e. how runners change their speed during the race (Q4) (see
Figure 4). One drawback of this design is that neighboring time
series’ representation will begin to overlap if their number is
greater than the vertical resolution of the available display are
in pixels. The same happens to the samples of a single runner
if there are more of them than the horizontal resolution.

D. Visualization Design 3: Augmented Track View

The third visualization design focuses on the geo-spatial
data of the dataset. The main purpose is to view and annotate
the race course to understand the patterns and events found
in the other views. This design is basically a sketch of the
race course with the trackpoints representing the runner’s state
along the competition (see Figure 5). The trackpoint position
(in the visualization) is based on the trackpoint latitude and
longitude to form the shape of the race course. This course
sketch is created using the geo-spatial data from a single
chosen runner, which is usually very similar among runners.
Inclination and even altitude itself have great influence in the
runners’ performance and are usually the main cause for the
variation in effort patterns shown in the other visualizations.
To represent altitude we encode it using shadows. We draw
the full course three times, with different offsets in some
direction to simulate shadowing. The offset is proportional to
the trackpoint altitude at that geo-spatial location. The three
layered layouts with the altitude-based offsetting makes the
course looks like a surface extruded from the plane and under
a directional light source. A problem that may arise from the
directional offset is that only the top layer will be visible
when the course direction is too close to the light direction.

Course 
segment 
direction

Course 
width 

modulated 
by altitude

Higher parts 
of the 
course 
appear 
wider

Offset 
direction

Highest 
point

Lowest
point

Figure 5. Extruded course with proportional altitude: In cases where
regions of the course match the offset direction, shadows are occluded by the
top layer itself, hiding the slope information. We create a second representation
of the altitude by making the course width relative to the altitude at each point,
and higher altitude sections become wider.

Figure 6. Filter to remove trackpoints with effort rate below 90% of MHR.

To overcome this, the altitude is also mapped to the course
width as an additional hint, making the higher sections of
the course wider, as it would be if a bird eye view of a
3D representation of the course was used (Figure 5). Finally,
the runners trackpoints are rendered, on top of the extruded
course, with the same motion trail animation of the line graph
heatmap. High number of runners may lead to overlap in the
track, which makes it difficult to see the changes in effort
level over time and at different parts of the course as well.
The linear heatmap is more suitable to such purpose.

E. Correlated Features among Visualization Designs

We used common features among the visualization designs.
The goal was to correlate information between designs in such
a way that a pattern that is only visible in one design can be
exposed in another, as shown below.

1) Filters: Filters can be applied to the linear and line
graphs heatmaps to reduce the visual overload to reveal
interesting patterns. By choosing a distance interval the user
can customize the visualization to show, in that range, only
the trackpoints whose data are situated in a defined span of
values. The range and parameters of each filter can be defined
at any moment during the visualization and, since the filtering
is computed at runtime, the result is immediately visible.
Filters can be dragged along the horizontal axis and overlapped
to create more complex filtering schemes. The filters are



Figure 7. Adidas Summer Run in São Paulo Top row: one alignment of increase in effort marked in the linear heatmap; the same position is marked in
the line graph heatmap, the thickness of the stripes of the effort zones shows that the majority of runners is above 85% MHR; the same position marked in
the track view turns out to be the beginning of a ramp. Bottom row: combination of filters to find trackpoints that indicate a possible risk state.

important to identify behaviors, for example, athletes pushing
their HR close to their MHR (see Figure 6). From this we
can identify regions of the course where the behavior begins
and ends. Based on that, we can redefine the course to avoid
stressing too much the majority of the athletes or an athlete
can prepare an activity strategy based on past experiences.

2) Distance markers: Distance markers are used to cor-
relate patterns found in the different views. They are tools
for annotation along the race course, for example, to insert a
description label for a section of the race, or to mark a point
where there is a an increase in effort level. Figure 1 shows an
example where distance markers are used to correlate events
in the linear heatmap effort view to the location in the track
view, thus allowing one to investigate causes of some of the
patterns found in the linear heatmap (Q3).

3) Runner trackers: The focus of the visualization is the
entire dataset (all runners). However, there are situations in
which it is interesting to follow a particular runner or make
a detailed comparison between performances of two runners.
The runner tracker is a tool to provide a summary of a runner’s
state during the race. The information that can be visualized
are the MHR and the variation of effort rate, speed, and
altitude. The properties chart keep a small history of the last
values of the variable and extreme values. The area chart
baseline is defined by the runner’s mean value during the
race, and it appears upside down when the value is below
the average. In the altitude chart the base line is always 0,
representing the sea level. We show the altitude itself, since the
inclination becomes evident in the altitude area graph. Runner
trackers can be used in all the three views (Figure 8 shows a
runner tracker in the course view) and always point to the last
rendered trackpoint of the runner in the animation.

Figure 8. Runner trackers Tracker following a runner in the course view,
displaying runner id, name of the activity tcx file, MHR, among other info.

IV. DATASETS AND PROTOTYPE CONSIDERATIONS

A prototype was created to validate our design proposals.
We describe below considerations on the data we used and
details on how we created renderings for each design.

A. Running Data: Garmin Connect

The Garmin Connect website [36] stores a massive amount
of public training data, uploaded by users, that can be filtered
according to date, total distance, location, etc. Each activity
has a time-ordered sequence of trackpoints exported in the
Garmin’s Training Center XML format (TCX). Trackpoints
are samples of a time series, each with a time instant as



key property plus several other variables. The number of
variables available depends on the model of the HR monitor.
We constrained this range to HR, speed, altitude, latitude, and
longitude. Different monitors and other accessories can store
other data (e.g. cadence and calories), but their low availability
could significantly reduce the size of our datasets.

Each dataset is comprised of a set of TCX files, and each
file stores the data of a single runner in the same race. We
used datasets of sizes ranging from 60 to 483 runners. The
number of trackpoints of each runner in a dataset depends
on the monitor sampling rate, and the distance of the race.
In the smallest dataset, the number of trackpoints per runner
was between 200 and 1000 with an average of 89 trackpoints
per minute (1.48 Hz). For the largest dataset, in both distance
and number of runners, it ranged from 3000 to 7000 with an
average of 218 trackpoints per minute (3.6 Hz).

B. Implementation Details

The prototype import TCX files to be displayed using the
visualization designs proposed. The interface allows the user
to set the parameters for each design and control how the time-
series will be displayed and animated. Common to all designs
is the rendering of color-coded particles for each trackpoint.
To avoid rendering every trackpoint at each frame, we render
to an accumulative texture (called history texture). Trackpoints
are rendered only once per animation frame.

For each animation frame we render the background of the
actual visual design (horizontal layers for the line graph and
course sketch for the course view) followed by the history
texture containing the trackpoints, and finally the distance
markers, filters, and runner trackers. As a result, we can render
a dataset composed of almost 500 runners and more than
a million trackpoints (particles) in real-time. To create the
fading trail effect for both the line graph and the course view,
we render a white rectangle with transparency in the history
texture, over the trackpoint, at regular time intervals. The
decay factor controls how often the rectangle is rendered and
its opacity value. Decreasing the interval among renderings,
or increasing opacity will result in a faster trackpoint decay.
Due to the order in which the trackpoints are rendered, older
trackpoints will fade first, creating the motion trail effect.

V. USE CASES

We downloaded training data from GarminConnect of three
different races: 10 km (also called 10K), 15K, and 42K. To
allow the comparison of a race in different years, we obtained
data for the 15K and 42K from two consecutive years.

The 10K race evaluated was the Adidas Run in São Paulo,
Brazil. In Figure 7, we observe a high number of runners
running close to their HR limit (third and forth HR zones).
This behavior changes when the race distance increases, since
it is harder to sustain higher effort levels for longer time
periods. Another interesting result is the aligned increase (or
decrease) of effort levels at specific points in the distance
axis of the linear heatmap. In Figure 7 we marked one such
alignment with a vertical line, and looked for the respective

place along the race course using the augmented track view.
We found it to be the start of a steep slope in the lowest part
of the course. We also evaluated the results to find patterns of
low physical fitness. For this purpose, we used a combination
of two filters, one that only accepts trackpoints with speed
below 9 km/h, and a second that only accepts trackpoints
with effort level above 95% MHR. Such combination of high
effort and low speed might be an indication of health hazards.
The bottom row of Figure 7 shows, from left to right, the
trackpoints filtered only by speed, only by effort, and by
both variables. Observe that there are a substantial number
of runners that satisfy both filters, a clear sign of alert.

The second race we studied was the São Silvestre race, a
15K race that takes place every year in São Paulo, Brazil,
on December 31st. We downloaded two datasets of this race
(2010 and 2011). Since the race course changed in 2011, it
is possible to verify different patterns when comparing the
visualization for the years of 2010 and 2011 (Figure 9). The
distance markers in this figure are used to correlate changes
in the effort and speed in the linear heatmap to the respective
spots in the course view. In comparison to the 10K race studied
before, we observe that high effort readings decrease, since
runners have to sustain effort for a longer period, and therefore
run at a lower intensity level. This use case illustrates the
ability to compare different races, as raised in (Q6).

The last use case was the 2010 and 2011 New York City
Marathons (42K). These were the largest datasets with 473
runners in 2010 and 483 in 2011, with more than a million
trackpoints in each race. In Figure 10 we compare the linear
heatmaps for both years. We observe that runners sustain an
even smaller effort level throughout the race in comparison
to the 10K and 15K races, revealing the running strategies
for different race distances (Q4). We also observe that there
is a similar pattern in the linear heatmap that is kept nearly
unchanged for both 2010 and 2011 years, even though they
come from a distinct set of runners. Since the course track
was the same, we conclude that it has a great impact in the
changes of the heart rate measurements for the runners.

VI. EVALUATION AND FEEDBACK

The visualization designs were driven by questions posed in
Section III-A by an expert on exercise physiology. We evaluate
below how our designs helped answering these questions:

Q1: Effort levels can change during the race, and becomes
important to identify where and why such changes occur.
Using the line graph heatmap, we keep track of the number of
runners in each effort zone at any time, independent of their
location in the track. This information is conveyed in a stripe
with its thickness proportional to this number. Alternatively,
the linear heatmap allows one to observe changes in effort
level throughout race length by looking at the color changes
along the horizontal axis. The use cases we used allowed
us to observe such patterns in races of different distances.
For example, comparing the 10K race (Figure 7) against the
marathon (Figure 10) we observe that runners sustain high
effort levels in the shorter race.



Figure 9. São Silvestre Race in São Paulo Augmented track view and linear heatmaps used to compare the datasets from 2010 (top) and 2011 (bottom).
Distance markers are used to point alignment patterns in the linear heatmaps, showing that different courses create very different profiles of effort and speed.

Figure 10. Effort profile from New York City Marathons Linear heatmaps showing the effort profile of the datasets from 2010 (top) and 2011 (bottom).
Both show a small yellow area when compared to the effort profiles in the shorter races, indicating a more moderate effort level. Even though the data are
from different years, since the course remained the same, the effort profiles are almost identical.

Q2: The most effort demanding part of a race can be
identified in the linear effort heatmap as the vertical section
where the particles have the brightest overall color. The use
cases revealed that they are usually sections of long or strong
increase in altitude, or the race final dash, where competition
increases toward a better classification.

Q3: In the linear heatmap we observe an overall behavior
with noisy vertical stripes created by changes in color shades.
The distance at where such changes occur can be marked in
the race track, and appears in both the effort and speed linear
heatmaps. We verify that an increase in effort is caused by an
increase in speed or at an uphill section of the track.

Q4: The speed linear heatmap reveal the running strategy of
the race. The alignments in color changes represent an incre-
ment or decrement in the overall speed, and helps identifying
parts of the track with high and low overall speed.

Q5: Identifying people running at risky levels is a major
concern. It can help defining safer race tracks and running

strategies, as well as creating different pace groups. With filters
in the linear heatmap, we could see people running slow but at
high effort level and identify the section where such behavior
begins. Further analysis of the same section in the speed
heatmap and track view tells whether such speed is below the
predominant value for the section and whether the cause is an
increase in elevation. Speed below the local average, especially
in sections of constant altitude is a indicator of fatigue.

Q6: Each of the three designs is useful to compare different
races. The line graph heatmap shows the overall effort varia-
tion in time, the linear heatmap shows the effort and speed
outcomes, and the track view display the race topography.
This allows one to compare different races, but also to find
differences in different in distinct instances of the same race.
In the use cases, we compared races from consecutive years.
As the course of the São Silvestre race changed from 2010 to
2011, the effort and speed profiles are very different, while,
in the the New York marathons, they were basically the same.



VII. CONCLUSIONS AND FUTURE WORK

We presented three different designs, to visualize data
collected from multiple runners in a given running race, that
can be used together to bypass their individual limitations.
They were motivated by a set of questions formulated by
an expert on exercise physiology, and use cases to evaluate
the visual analysis of different running events. The designs
we created proved to be a useful tool for the comparison of
different races, allowing, for instance, to assess the physical
condition of the studied population. We expect such designs
to be useful for elaborating new running strategies, or to help
organizers to better plan running events by understanding how
the race course affects the runners. The analysis of related
datasets, like similar groups of runners on the same, and
also on different races, can allow the comparison between
those groups, establishing training goals for groups of lesser
performance, for example. Other similar datasets that could
benefit from our designs include the history of activities of
a single person and groups of runners in different races.
Also, the use of more variables and the analysis of other
exercise modes, like cycling, are examples of topics for further
research.
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