
Parallel Image Segmentation Using

Reduction-Sweeps On Multicore Processors and

GPUs

Renato Farias, Ricardo Farias, Ricardo Marroquim

Programa de Engenharia de Sistemas de Computacao

Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brazil

Email: {rmfarias,rfarias,marroquim}@cos.ufrj.br

Esteban Clua

Instituto de Computacao

Universidade Federal Fluminense

Niteroi, Brazil

Email: esteban@ic.uff.br

Abstract—In this paper we introduce the Reduction Sweep
algorithm, a novel graph-based image segmentation algorithm
that is designed for easy parallelization. It is based on a clustering
approach focusing on local image characteristics. Each pixel
is compared with its neighbors in an implicitly independent
manner, and those deemed sufficiently similar according to a
color criterion are joined. We achieve fast execution times while
still maintaining the visual quality of the results. The algorithm
is presented in four different implementations: sequential CPU,
parallel CPU, GPU, and hybrid CPU-GPU. We compare the
execution times of the four versions with each other and with
other closely related image segmentation algorithms.

Keywords-Image segmentation; computer vision; GPU pro-
gramming, parallel programming;

I. INTRODUCTION

Image segmentation is an image processing technique that

divides an image into contiguous regions, or segments. All

pixels in one of these segments are similar according to some

criterion, such as color or intensity. By forming these clusters

of similar elements, the process eliminates noise and facilitates

posterior analysis.

Segmentation is a crucial step for many applications where

it is important to discern objects or boundaries within the

image. Some examples are: pattern recognition applied to

medical imaging [1] [2]; object recognition for AI and robotics

[3] [4]; and the labeling and categorization of content in

images [5] [6].

There has been much research done on the subject, but many

of the approaches are inherently sequential in nature, making

them difficult to parallelize. There are some methods in which

parallelization is achieved by dividing the image, executing the

algorithm over each of the parts, then stitching the borders

between results. This solution may be better than a purely

sequential one in terms of performance, but it is still not ideal

for many applications.

We present a graph-based image segmentation algorithm de-

signed with easy and efficient parallelization in mind. Because

it only uses local image characteristics, the Reduction Sweep

algorithm can compare and join many different regions of the

image independently. This leads to faster execution without

sacrificing visual quality. No prior knowledge of the image is

required, although tweaking the parameters may lead to better

results for individual images.

This paper is organized as follows: Section II provides a

brief overview of related research on image segmentation.

Section III presents the Reduction Sweep algorithm and ex-

plains its steps in detail. Section IV describes the four different

implementations of the algorithm. Section V presents the

results while section VI draws some conclusions and provides

some future directions.

II. RELATED WORK

In this section we will go over other efforts in the field

of image segmentation. We focus on, but are not limited

to, works that make use of graphs and that present GPU

implementations, since they are more closely related to our

approach.

Baatz and Schape [7] present an image segmentation algo-

rithm that combines local and global optimization techniques

with homogeneity definitions based on spectral and spatial

information. Initially, each pixel represents its own image

segment, and at each iteration a pair of segments are merged

if they satisfy a chosen criterion. They proposed several strate-

gies for the two important decisions of choosing what pair of

segments to compare at each iteration and what criterion to

use to compare them.

Felzenszwalb and Huttenlocher [8] propose a graph-based

approach to image segmentation. Each pixel represents a node

in the graph and adjacent pixels have non-directed edges

connecting them. Theses edges possess weights representing

the degree of dissimilarity between pixels according to some

criterion. The list of all edges is sorted in order of increasing

dissimilarity and are compared in this order. Note that, though

the algorithm is greedy in its decisions, the segmentation

produces good results because the threshold which must be

surpassed for two segments to remain distinct is adapted based

on the internal difference of each segment’s own pixels.



(a) Original (b) Baatz [7] (c) Felzenszwalb [8] (d) Reduction Sweep

Fig. 1. Beach comparisons.

(a) Original (b) Baatz [7] (c) Felzenszwalb [8] (d) Reduction Sweep

Fig. 2. Lakeside comparisons.

(a) Original (b) Baatz [7] (c) Felzenszwalb [8] (d) Reduction Sweep

Fig. 3. Sidney comparisons.

The active contour algorithm is the basis of the work of

Zhiyu He and Falko Kuester [9]. Their approach consists in

identifying segments borders using a reference curve which

is repeatedly adjusted with a combination of external forces

(calculated from the image) and internal forces (calculated

from the contours themselves). They focused on a GPU im-

plementation for calculating the external force using Gradient

Vector Flow (GVF). GVF is able to capture concavities and

is less sensitive to the initialization compared to the original

active contour algorithm.

In the work of Alexey Abramov et al. [10], a real-time

GPU image segmentation is presented that makes use of

the Potts model from statistical mechanics. Their algorithm

equates image segments to the equal-spin regions of a system

of ferromagnets and finds them by calculating the equilibrium

states of the system. It is a non-parametrized parallel algorithm

aimed at segmentations where there is no prior knowledge of

the images.

Brian Fulkerson and Stefano Soatto [11] present a GPU-

based image segmentation implementation of the quick shift

algorithm. They use a density probability function to connect

each point to the next point of higher density probability,

resulting in a tree. The edges of the tree are distances based on

color and space (x,y) differences between the pixels. Lastly,



the edges with distances greater than a specified threshold

are broken; the resulting disconnected parts form the image

segments.

Ying Zhuge et al. [12] use a fuzzy logic approach to segment

volumetric data. The voxels of the image are given a fuzzy

adjacency value which increases the closer they are spatially,

as well as a value based on their affinity considering the

whole image. These two attributes are used to lump together

the voxels that best represent the global characteristics of the

image.

Another graph-based approach is proposed by Lattari et al.

[13] to identify and separate human skin. Their premise is

that the colors of human skin inhabit a small part of the RGB

spectrum. They build a graph with each pixel as a node and

use a color-based heuristic to give weights to the edges. A

minimum cut algorithm is applied to divide the graph in two

disjoint parts: pixels belonging to human skin and pixels not

belonging to human skin.

Jan Wassenberg et al. [14] introduce a parallel algorithm

based on graphs with a cut heuristic and a minimum-spanning

tree algorithm. The authors note that using a graph-based

method increases the amount of data handled since each

pixel is part of several edges. However, the advantage of the

minimum-spanning tree is that it offers the opportunity for

parallelization since it can be constructed from sub-trees.

In this paper, we compare our results with those of Baatz

and Schape [7] and Felzenszwalb and Huttenlocher [8], since

these approaches most closely resemble ours. Both Wassen-

berg et al [14] and Lattari et al [13] also employ graph-based

approaches, however, the former limits the size of regions

while the latter is directed at a specific context. Both diverge

from our goal of having a general segmentation algorithm for

delineating an arbitrary number of unbounded regions.

III. ALGORITHM

The criterion used to compare the segments and the order

in which they are compared are two decisions that heavily

impact the quality of the results [7]. In this section, we will

explore our approach from a high-level perspective.

A. The disjoint set

Our algorithm utilizes directed graphs to represent image

segments. The segments will be referred to as ‘regions’, while

the terms ‘node’ and ‘pixel’ will be used interchangeably. Re-

gions start with a single node. Adjacent regions are compared

and merged if they are deemed to be sufficiently similar. The

regions are combined into progressively larger regions, and

the resulting segmentation is a disjoint set of regions.

Every node has the following attributes:

Size How many pixels are part of the region to which this

pixel belongs

Next The index of the next node in the region

Color The pixel’s (r,g,b) color

Initially, all nodes constitute regions of Size 1 and Next equal

to their own index. Only one node per region has its Next index

pointing to itself; we call this node the representative node

Algorithm 1 The Reduction Sweep algorithm.

1: iteration ⇐ 0
2: start ⇐ 0
3: offset ⇐ 2
4: while start < width− 1 or start < height− 1 do

5: for y ⇐ 0 to height− 1 do

6: for x ⇐ start, start+ offset, start+ offset× 2,

. . . , width− 2 do

7: Verify edge (x, y), (x+ 1, y)
8: for y ⇐ 0, offset÷2, (offset÷2)×2, . . . , height−2

do

9: for x ⇐ start, start+ offset, start+ offset× 2,

. . . , width− 2 do

10: limit ⇐ (offset÷ 2)− 1
11: if y + limit > height then

12: limit ⇐ height− y − 1
13: for n ⇐ 0 to limit− 1 do

14: Verify edge (x, y + n), (x+ 1, y + n+ 1)
15: Verify edge (x+ 1, y + n), (x, y + n+ 1)
16: for y ⇐ start, start + offset, start + offset × 2,

. . . , height− 2 do

17: for x ⇐ 0 to width− 1 do

18: Verify edge (x, y), (x, y + 1)
19: for y ⇐ start, start + offset, start + offset × 2,

. . . , height− 2 do

20: for x ⇐ 0, offset, offset× 2, . . . , width− 2 do

21: limit ⇐ offset− 1
22: if x+ limit > width then

23: limit ⇐ width− x− 1
24: for n ⇐ 0 to limit− 1 do

25: Verify edge (x+ n, y), (x+ n+ 1, y + 1)
26: Verify edge (x+ n+ 1, y), (x+ n, y + 1)
27: iteration ⇐ iteration+ 1
28: start ⇐ 2iteration − 1
29: offset ⇐ offset× 2

and it holds information about the region. By keeping only this

node up-to-date with the region’s size and color information,

we are spared the cost of having to update every node in the

region. All other nodes in the region can eventually reach the

representative node by iterating over Next.

The two most important operations of the disjoint set are:

Find Receives the index i of a node belonging to a certain

region A and returns the index j of the representative

node of A by iterating over Next until it finds a node

whose Next is equal to its own index. Also sets the

Next of node i as j to speed up future searches.

Join Receives the indexes of two nodes representing re-

gions A and B and compares them. If the given

criterion is satisfied a merge happens; in that case,

assuming that A’s Size is smaller than B’s Size,

this operation will make A’s representative node’s

Next point to B’s representative node, and update the

Color and Size attributes in B’s representative node.



(a) Original (b) Baatz [7] (c) Felzenszwalb [8] (d) Reduction Sweep

Fig. 4. Morumbi comparisons.

(a) Original (b) Baatz [7]

(c) Felzenszwalb [8] (d) Reduction Sweep

Fig. 5. Ilha Grande comparisons.

The new Color is calculated as follows:

Colornew =
ColorA × SizeA + ColorB × SizeB

SizeA + SizeB

Before segmentation occurs, we smooth the pixels of the set

by applying a Gaussian blur. For a fair comparison, we used

the same Gaussian blur as Felzenszwalb and Huttenlocher [8].

B. Merge criterion

We chose a color-based merge criterion for our tests, where

the color of a region is the average of its pixels. We check

if the Euclidean distance in RGB space between the color of

two regions is below or equal to a certain threshold. So, given

two regions A and B, each with a color vector C = (r,g,b), the

comparison is:

CB − CA ≤ t
√

(rB − rA)2 + (gB − gA)2 + (bB − bA)2 ≤ t

In practice, to avoid having to calculate a square root, we

square both sides of the equation, giving us:

(rB − rA)
2 + (gB − gA)

2 + (bB − bA)
2 ≤ t2

C. Sweep Order

Our algorithm uses the concept of edges but it does so

implicitly, without building a list as in Felzenszwalb and

Huttenlocher [8]. An edge is simply a pair of adjacent pixels.

This means that pixels on the corner of an image have three

incident edges, pixels on the borders have five, and all other

pixels have valence eight.

It is important to verify all edges to achieve the best possible

segmentation. To verify an edge means to take both pixels

that comprise it, use the Find operation to retrieve their rep-

resentative nodes, and then use the Join operation to compare

them using the criterion explored in the previous sub-section.

Since one node stores a region’s up-to-date information and

any verification will read from and possibly (in the case of a

merge) write to this node, only one of a region’s incident edges

can be verified per iteration. The worst case for parallelism

occurs when each verification results in a merge, reducing the

number of regions that can be verified in the next iteration.

Because we have no prior knowledge of the image, we assume

the worst case always happens to guarantee safe, independent



(a) Original (b) Baatz [7] (c) Felzenszwalb [8] (d) Reduction Sweep

Fig. 6. Museu comparisons.

verifications.

Changes to the order in which the edges are verified will

produce different segmentations. We developed three sweep

orders: Horizontal First, which verifies all horizontal edges

before the vertical and diagonal edges; Vertical First, which

verifies all vertical edges before the horizontal and diagonal

edges; and a Mixed order, which alternatively verifies hori-

zontal, vertical, and diagonal edges. We limit our descriptions

and results to the Mixed sweep order, since it is the one that

gives the best visual results.

Figure Fig. 7 illustrates the Mixed sweep order on a small

image where regions are represented by red rectangles. As

can be seen, the number of edges incident to different regions

decreases exponentially with each iteration, similar to what

happens in parallel programming’s reduction technique. Note

that it is possible for both nodes of an edge to belong to

the same region due to a previous merge, and that the edges

incident to the same region or pair of regions must be executed

by the same thread to prevent concurrency issues.

D. Post-process

Our algorithm also possesses a last step meant to eliminate

regions that are too small. The sweep order used is the same,

but the edge verifications do not use the criterion described in

section III-B; instead, two regions are merged if at least one

of their Size attributes are under the minimum allowed size.

The post-processing step is inherently sequential because we

can make no assumptions about which edges we can verify

independently.

IV. IMPLEMENTATION

We developed four implementations of the Reduction Sweep

algorithm. The first is a sequential CPU implementation which

acted as our proof-of-concept. The second is a parallel CPU

implementation which uses the pthreads library. The third

implementation uses CUDA 4 to execute the algorithm on the

GPU.

By comparing individual iteration execution times from the

second and third implementations, we observed that while

initial iterations tend to be faster on the GPU, later ones are

faster on the CPU. The fourth implementation is a hybrid of

the second and third implementations that attempts to take

advantage of this; it performs only a specified number of

sweep iterations on the GPU, then returns to the CPU and

finishes the process.

(a) Iteration 1

(b) Iteration 2

(c) Iteration 3

Fig. 7. Illustrated example of the Reduction Sweeps performed on an 8x8
image. Each iteration performs horizontal, diagonal, vertical, and (again)
diagonal verifications. The exception is Iteration 1, which skips the first
diagonal sweep due to the algorithm’s formulation.

V. RESULTS

Table I shows the average total execution times for all

algorithms tested in this paper. Table II shows the average

execution times for the Reduction Sweeps of each implemen-

tation, ignoring various overheads. Each algorithm was run

100 times on each image. We used the 64-bit distribution of

Ubuntu 12.04, on a computer with 16GB of RAM, an Intel

Core i7 CPU, and an Nvidia GeForce GTX 470. We manually

selected the parameters for each algorithm and image to give

the best visual results; they are shown in Table VI.

The sequential implementation of our Reduction Sweep

algorithm is already 8 to 14 times faster than the algorithm it is

based on [8], and 24 to 62 times faster than Baatz and Schape

[7], depending on the image. We also observed that our total

execution time tends to increase almost linearly with the image

area, and the execution time of the actual Reduction Sweeps

increases practically sub-linearly with image area (Table V).

Table IV shows the speed-ups that the parallel implemen-



(a) Original (b) Reduction Sweep

Fig. 8. Maracana comparisons.

Beach Lakeside Sidney Morumbi Museum Ilha Grande Maracana Maracana
200x300 481x321 1024x828 1000x1000 1280x857 2177x833 2800x2800 5000x5000

Baatz [7] 344.35 926.41 5603.78 6949.96 11736.57 27193.53 90846.92 328283.91

Felzenszwalb [8] 113.79 294.30 1898.82 2276.31 2473.24 4596.48 22117.43 75058.91

RS-Sequential 13.83 32.81 181.59 223.76 206.39 436.63 1714.78 5369.67

RS-Threads 14.49 30.35 121.15 145.25 146.13 273.71 1110.71 3722.75

RS-GPU 79.41 98.30 206.51 234.06 242.60 382.56 1400.60 4457.67

RS-Hybrid 82.98 101.19 211.52 257.00 254.04 378.01 1402.69 4565.99

TABLE I
TOTAL EXECUTION TIMES IN MILLISECONDS. ALL STEPS ARE TAKEN INTO ACCOUNT, INCLUDING OVERHEADS SUCH AS THE INITIAL SMOOTHING,

MEMORY ALLOCATION, MEMORY TRANSFER (GPU), AND POST-PROCESSING.

Beach Lakeside Sidney Morumbi Museum Ilha Grande Maracana Maracana
200x300 481x321 1024x828 1000x1000 1280x857 2177x833 2800x2800 5000x5000

Sequential 5.56 15.72 95.48 118.89 98.68 247.08 862.46 2425.36

Threads 4.76 9.12 32.61 40.67 35.67 79.78 264.41 765.46

GPU 4.86 12.79 42.41 48.65 50.72 90.05 309.93 870.68

Hybrid 6.41 10.82 43.41 68.97 59.23 84.30 287.70 989.36

TABLE II
EXECUTION TIMES (IN MILLISECONDS) OF ONLY THE REDUCTION SWEEPS STEP, NOT INCLUDING OVERHEADS SUCH AS THE INITIAL SMOOTHING,

MEMORY ALLOCATION, MEMORY TRANSFER (GPU), AND POST-PROCESSING.

tations achieved relative to the sequential implementation. We

built our algorithm with parallelism in mind, so we were sur-

prised to find that the parallel implementations achieved only

slight speed-ups compared to the sequential implementation.

In fact, in many cases, the parallel implementations lost to

the sequential implementation. This can be attributed, in part,

to the steps of the process that weren’t optimized (the initial

smoothing) or that are inherently sequential (the post-process).

The two implementations that make use of the GPU were also

hindered by the random nature of memory accesses during the

Sweeps, which leads to divergences among the threads. When

we consider only the Reduction Sweeps (Table II), the speed-

ups achieved are 2 to 4 times higher.

The Hybrid implementation did not improve on the GPU

implementation in any significant way, doing worse on half

of the images; it inherits the GPU overheads, and its CPU

iterations are slightly slower, possibly due to reduced cache

coherence after copying the data back to RAM.

According to the Berkeley Computer Vision Group’s image

segmentation benchmark [15], the Reduction Sweep algorithm

achieves an F-measure of 0.558. This is slightly lower than the

F-measure of 0.58 of Felzenszwalb and Huttenlocher’s graph-

based algorithm [8], but with significant speed-ups.



Smoothing1 Allocation2 cudaMemcpy Sweeps3 cudaMemcpy Sweeps3 Post- Extraction5

(CPU → GPU) (GPU) (GPU → CPU) (CPU) process4

Sequential 49.76 2.69 – – – 98.68(11) 48.02 5.32

Threads 49.99 2.68 – – – 35.67(11) 50.60 5.31

GPU 47.96 60.10 5.35 50.72(11) 5.30 – 48.91 22.62

Hybrid 49.36 59.57 5.32 20.71(3) 5.26 38.52(8) 52.27 21.45

Sequential 1586.49 56.35 – – – 2425.36 1150.39 127.47

Threads 1592.74 55.87 – – – 765.46 1157.40 127.64

GPU 1598.68 114.49 92.19 870.68 92.72 – 1171.20 486.68

Hybrid 1592.87 114.12 91.92 713.59 92.33 275.77 1169.48 485.33

TABLE III
EXECUTION TIMES (IN MILLISECONDS) OF ALL STEPS ON THE Museum (TOP) AND Maracana5000 (BOTTOM) IMAGES. 1APPLICATION OF A GAUSSIAN

BLUR. 2INCLUDES BOTH MALLOC AND CUDAMALLOC, WHEN APPLICABLE. 3THE NUMBERS IN PARENTHESIS REFER TO HOW MANY ITERATIONS WERE

PERFORMED ON THE CPU OR GPU. 4DESCRIBED IN SECTION III-D. 5REFERS TO EXTRACTING THE FINAL RGB CHANNELS FROM THE DISJOINT SET.

Beach Lakeside Sidney Morumbi Museum Ilha Grande Maracana Maracana
200x300 481x321 1024x828 1000x1000 1280x857 2177x833 2800x2800 5000x5000

Threads 0.95 (1.17) 1.08 (1.72) 1.50 (2.93) 1.54 (2.92) 1.41 (2.77) 1.60 (3.10) 1.54 (3.26) 1.44 (3.17)

GPU 0.17 (1.14) 0.33 (1.23) 0.88 (2.25) 0.96 (2.44) 0.85 (1.95) 1.14 (2.74) 1.22 (2.78) 1.21 (2.79)

Hybrid 0.17 (0.87) 0.32 (1.45) 0.86 (2.20) 0.87 (1.72) 0.81 (1.67) 1.16 (2.93) 1.22 (3.00) 1.18 (2.45)

TABLE IV
SPEED-UPS OF THE DIFFERENT IMPLEMENTATIONS COMPARED TO THE SEQUENTIAL CPU IMPLEMENTATION. THE VALUES IN PARENTHESIS ARE THE

SPEED-UPS CONSIDERING ONLY THE REDUCTION SWEEPS, AS IN TABLE II.

Maracana350 Maracana700 Maracana1400 Maracana2800 Maracana5600 Maracana11200

Area 122500 490000 (4) 1960000 (4) 7840000 (4) 31360000 (4) 125440000 (4)

Total 26.97 70.13 (2.60) 284.85 (4.06) 1117.81 (3.92) 4644.24 (4.15) 19896.39 (4.28)

Reduction Sweeps 8.43 18.48 (2.19) 76.44 (4.14) 263.29 (3.45) 933.14 (3.54) 3353.43 (3.59)

TABLE V
EXECUTION TIMES (IN MILLISECONDS) ON THE SAME IMAGE AT DIFFERENT SIZES, USING THE PARALLEL CPU IMPLEMENTATION. INCREASES

COMPARED TO THE PREVIOUS IMAGE ARE SHOWN IN PARENTHESIS.

Beach Lakeside Sidney Morumbi Museum Ilha Grande Maracana

Baatz [7] 0.3/30/20 0.3/15/40 0.3/10/50 0.3/10/50 0.3/10/50 0.3/10/50 0.3/10/50

Felzenszwalb [8] 0.5/50/50 0.5/20/50 0.5/50/200 0.5/50/200 0.5/50/200 0.5/50/200 0.5/50/200

Reduction Sweep 0.5/30/50 0.5/30/50 0.5/40/200 0.5/40/200 0.5/25/100 0.5/35/200 0.5/40/200

TABLE VI
EXECUTION PARAMETERS: SMOOTHING FACTOR (σ), THRESHOLD, AND MINIMUM SEGMENT SIZE.

VI. CONCLUSIONS

In this work, we presented the Reduction Sweep algorithm,

a novel graph-based parallel segmentation method. We de-

scribed four implementations of the algorithm, and how each

compares to closely related classic algorithms [7] [8] in terms

of execution time and visual quality. We also explained the

significance of the speed-ups (and in some cases, slow-downs)

achieved.

We discovered that the actual gain from parallelism was

lower than expected. This shows that, despite the independence

among edge verifications, the un-optimized or sequential steps

of the segmentation process, the necessity of synchronizing

threads at each iteration, and the random nature of memory

accesses when finding representative pixels, had a significant

impact, especially on the GPU.

There are several possibilities for future work. One would

be to modify the Hybrid implementation to keep the data

in the CPU’s memory (zero-copy), eliminating the memory

allocation and copy overheads. Another possibility would be

to devise new sweep orders that mesh better with the GPU

architecture, or new merge criteria that aren’t based on color.

Lastly, expanding this segmentation from 2D images to 3D

volumes would be another possibility.

ACKNOWLEDGMENT

Renato Farias is thankful for the scholarship granted by

CAPES. Esteban Clua is thankful to Nvidia and FAPERJ.

REFERENCES

[1] F. Ma, M. Bajger, J. P. Slavotinek, and M. J. Bottema, “Two graph theory
based methods for identifying the pectoral muscle in mammograms,”
Pattern Recogn., vol. 40, no. 9, pp. 2592–2602, Sep. 2007. [Online].
Available: http://dx.doi.org/10.1016/j.patcog.2006.12.011



[2] L. Xu, B. Stojkovic, H. Ding, Q. Song, X. Wu, M. Sonka, and
J. Xu, “Faster segmentation algorithm for optical coherence tomography
images with guaranteed smoothness,” in Proceedings of the Second

international conference on Machine learning in medical imaging, ser.
MLMI’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 308–316.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2046063.2046101

[3] Z. Kira, “Inter-robot transfer learning for perceptual classification,”
in Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems: volume 1 - Volume 1, ser. AAMAS
’10. Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2010, pp. 13–20. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1838206.1838209

[4] L. Markham, S. C. Melton, and Z. Dodds, “Robot control via
region-based 3d reconstruction,” in Proceedings of the 10th IASTED

International Conference on Intelligent Systems and Control, ser. ISC
’07. Anaheim, CA, USA: ACTA Press, 2007, pp. 29–34. [Online].
Available: http://dl.acm.org/citation.cfm?id=1647449.1647455

[5] N. D. Anh, P. T. Bao, B. N. Nam, and N. H. Hoang, “A new
cbir system using sift combined with neural network and graph-based
segmentation,” in Proceedings of the Second international conference on

Intelligent information and database systems: Part I, ser. ACIIDS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 294–301. [Online].
Available: http://dl.acm.org/citation.cfm?id=1894753.1894789

[6] K. Ren and J. Calic, “Freeeye: interactive intuitive interface for
large-scale image browsing,” in Proceedings of the 17th ACM

international conference on Multimedia, ser. MM ’09. New
York, NY, USA: ACM, 2009, pp. 757–760. [Online]. Available:
http://doi.acm.org/10.1145/1631272.1631406

[7] M. Baatz and A. Schape, “Multiresolution segmentation: an optimization
approach for high quality multi-scale image segmentation,” Journal of

Photogrammetry and Remote Sensing, vol. 58, no. 3–4, pp. 12–23, 2000.
[8] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image

segmentation,” International Journal of Computer Vision, vol. 59, no. 2,
2004.

[9] Z. He and F. Kuester, “Gpu-based active contour segmentation using
gradient vector flow,” International Symposium on Visual Computing,
2006.

[10] A. Abramov, T. Kulvicius, F. Worgotter, and B. Dellen, “Real-time image
segmentation on a gpu,” Facing the Multicore-Challange, 2010.

[11] B. Fulkerson and S. Soatto, “Really quick shift: Image segmentation on
a gpu,” Workshop on Computer Vision using GPUs, 2010.

[12] Y. Zhuge, Y. Cao, J. K. Udupa, and R. W. Miller, “Gpu accelerated fuzzy
connected image segmentation by using cuda,” Annual International

Conference of the IEEE Engineering in Medicine and Biology Society,
2009.

[13] L. Lattari, A. Montenegro, A. Conci, E. Clua, V. Mota, M. B. Vieira,
and G. Lizarraga, “Using graph cuts in gpus for color based human
skin segmentation,” Integrated Computer-Aided Enginnering, vol. 18,
no. 41–59, 2011.

[14] J. Wessenberg, W. Middelmann, and P. Sanders, “An efficient parallel
algorithm for graph-based image segmentation,” Computer Analysis of

Images and Patterns, 2009.
[15] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection

and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 33, no. 5, pp. 898–916, May 2011. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2010.161


