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Fig. 1. Resulting simulations of at least two different interacting fluids.

Abstract—In this work, the regional level set is employed to
track interfaces in multiphase fluid simulations, while considering
the behavior of the film between distinct phases. Also, properties
of each phase are tracked as they merge or split, and an
algorithm to apply these operations is proposed. Furthermore,
it is introduced a method to handle undesired volume changes
that tries to minimize the total volume error by making local
corrections trough an additional advection step. Moreover, it is
put forward an accurate volume calculation technique that takes
advantage of the phase distribution determined by the chosen
interpolation method. Finally, particles are employed to avoid
volumes losses due to discretization’s problems.
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I. INTRODUCTION

Standard examples of multiphase fluid simulations encom-

pass systems where oil floats over water, soap bubbles move

on a liquid surface, or two adjacent air bubbles are in contact,

separated by a liquid film. In the latter, the film thickness

indicates how easily the film can be ruptured and the two

adjacent phases merged. Based on this, thickness values are

evolved over time and film rupture conditions are tested.

In the multiphase context, it is particularly important to

avoid the volume loss induced by discretization errors and

the way fluid interfaces are evolved. In fact, if unattended, the

accumulated volume loss can even bring about the removal of

a whole phase. Thus, it is advisable to have a way to enforce

that each phase’s volume is equal to its original value plus the

in-and-outflows contributions over time.

Both pure Lagrangian and Eulerian single phase models,

besides several hybrid versions, have been extended to the

multiphase context. In hybrid models, particles can be used

to track interfaces in an Eulerian framework [1], but can

also interfere with the simulation [2]. Also, Guendelman [3]

uses particles that have escaped from the air into the liquid

medium, to create air bubbles and Mihalef [4] creates them as

a by-product of the marker level set evolution method. These

techniques, however, are not specifically addressed for volume

preservation, though they favor it by producing more detailed

surfaces. Their capacity to prevent, for example, the stop in

the evolution of thin fluid streams, which is related to volume

losses, depends on having an adequate parametrization of the

model and a sufficient density of particles.

In this work, particles are used to prevent volume losses

of phases that became too small. Yet, for larger volumes, an

explicit correction scheme is applied. In these cases, phase

volumes are controlled under the regional level set (RLS)

context [5], which extends to the multiflow context, the good

properties of the standard level set. Thus, volume control

can be achieved without the use of volume-of-fluid based

alternatives [6]. Despite directly addressing the control of the

volume, these methods have some known drawbacks with

respect to the interface evolution. Additionally, to prove that

there is no need to increase the resolution to correct minor

volume problems, this work specially focuses on low scale

mesh examples.

Contributions: To detect, merge and split regions, it is

introduced a flood fill segmentation algorithm that is executed

in parallel for each material. Plus, a more precise volume

computation method is proposed, which is based on the phase

distribution determined by the RLS within a cell. Also, a

volume correction method is formulated to minimize the total

volume error trough local volume corrections determined by an

additional level set advection. Moreover, the expected(target)



volume of a phase is updated considering inflow/outflow

amounts and each particle’s volume is corrected based on the

volume of the phase that generated it.

A. Related work

To support multiple materials, the classic approach to track

interfaces, the level set method [7], must be extended as

it can only represent the interface between two materials.

Accordingly, the techniques introduced by Losasso [8] and

Vese [9] can evolve the interfaces of multiple fluids, despite

the complexity increase when the number of materials grows.

The former employs a level set per material, always merging

adjacent phases of the same fluid. Also, as the evolution

of each level set in done independently, it generates contra-

dictions in the interface’s representation. In the latter, sign

combinations of n level sets represent up to 2n phases. Still,

this method presents undesired artifacts, specially where two

regions intersect.

To evolve film-like thin surfaces, Wojtan [10] developed

hybrids of grid and explicit surfaces, albeit its complex topol-

ogy change process. Also, Brochu [11] disturbed samples to

capture thin features. Both methods were only used in one or

two phase flows, while employing a traditional level set.

Robust advection models, such as back and forth error com-

pensation and correction [12], modified MacCormack [13],

and the use of cubic interpolated polynomials [14] can be used

to reduce volume errors. Other possible solutions are hybrid

approaches, like the particle level set [1], and volume of fluid

methods [6].

Kim [15] proposed a volume control method that can be

employed together with the previous techniques and uses the

RLS. Its objective is to correct the volume of air bubbles by

changing the field of velocity divergents. As a result, regions

are inflated or deflated.

B. Technique overview

At first, pressure and velocity values sampled in a regular

MAC grid [16] are updated through the solution of a variable

coefficient Poisson system [17]. In this setup, surface tension

forces are provided by the ghost fluid method [18]. Then, the

RLS evolves fluid interfaces, eventually determining topologi-

cal changes and turning regions into particles and vice-versa.

All these aspects are described in section II, while section

III focuses on the detection of new regional distributions.

Afterwards, region volumes are evaluated - Section IV explains

how - and an additional RLS advection step is executed to

correct possible volume errors - Section V accounts for that

point. Finally, for visualization, region interface meshes are

exported to Blender [19] to be rendered using Yafaray [20] -

See section VI. Section VII is dedicated to results and future

works while section VIII reports the conclusions of the work.

II. TECHNICAL BACKGROUND

In this section it is detailed known techniques employed to

perform a multiphase fluid simulation.

A. Fluid dynamics

A classical Navier-Stokes system of equations for inviscid

fluids is solved through the widely known Chorin’s method.

Firstly, external forces are applied to the velocity field, which

is, then, advected through a Runge-Kutta scheme of 2nd

or higher order. Lastly, a Poisson’s system is solved by

the conjugate gradient method [21] to make the velocities

divergent-free.

However, in the case of multiphase simulations, the coef-

ficients of this system become variable since the density is

no longer constant. In this case, a simplified version of Liu’s

method [22] is used as density is assumed continuous across

interfaces. Also, surface tension forces are applied through the

ghost fluid method [18]. Then, for each cell C, the Poisson’s

system is discretized as:

∑

C′∈NC

pC′ − pC
ρCC′

=
∆x2

∆t
∇ · ~uC +

∑

C′∈NC

JCC′

ρCC′

, (1)

where ∆x is the cell edge length. NC is the set of cells

adjacent to C, while CC ′ refers to the face between C and

C ′. JCC′ = σκCC′ is the jump of pressure across the face

CC ′ when its adjacent cells are in different phases. σ is the

surface tension coefficient between the materials of these two

phases and κCC′ is the interface’s curvature at CC ′, which is

obtained by using the operator ∇ ·
( ∇φ

|| ∇φ ||

)

.

In the above equation, the term
JCC′

ρCC′

accounts for the

surface tension force at CC ′ in accordance with the ghost

fluid method. This approach extrapolates pressure profiles,

from each side of an interface to the other, so that the

pressure derivative becomes continuous and differentiable at

the interface, even though the pressure itself is not. The sign

of JCC′ is + or − depending on whether C is, respectively,

on the lower or higher side of the jump in the pressure graph.

The density value at the center of the face CC ′ is estimated

based on the technique presented by Kang [17]. It is obtained

by interpolating the densities of the regions of C and C ′,

so that there is a continuous density transition between these

cells. Firstly, the regional tuple 〈 rCC′ , φCC′〉 is computed

at the center of the face. Afterwards, a continuous Heaviside

function approximation H - like the one expressed in (12), is

applied to φCC′ . In this case, the width of the interval where

H is non-constant is equal to the film thickness at CC ′. Then,

ρCC′ is computed by:

ρCC′ = ρCout
+ (ρCin

− ρCout
)H(φCC′), (2)

where Cin and Cout are, between the cells C and C ′, respec-

tively, the one in the region containing the center of CC ′ and

the other cell.

To ensure the convergence of the numerical simulation, a

time step is computed for each iteration following Kang’s

approach [17]. It enforces a CFL condition [23] that considers

the joint influence of external forces, advection and surface

tension in the velocities’ updates.



B. Regional level set

The regional function is defined as the tuple:

fR(~x) = 〈 r(~x), φ(~x) 〉 , (3)

where ~x is a position in space, r(~x) is the identifier of the

region that contains ~x and φ(~x) is the distance of ~x to the

nearest point on an interface. Zheng [5] introduced a series

of operators to be applied to regional tuples. Those used in a

linear interpolations are:

• Sum:

〈r1, φ1〉+ 〈r2, φ2〉 =











〈r1, φ1 + φ2〉 , if r1 = r2

〈r1, φ1 − φ2〉 , if φ1 ≥ φ2

〈r2, φ2 − φ1〉 , if φ1 < φ2

(4)

• Multiplication by a scalar:

α 〈r1, φ1〉 = 〈r1, αφ1〉 , α ∈ R
+ (5)

Nevertheless, it is possible that some of the properties of

the standard math operations are not satisfied by the above

definitions. For instance, the regional sum operator is not

commutative. Thus, a trilinear interpolation (TLI), performed

to obtain a regional tuple at any position in a cell, becomes

inconsistent as the result depends on which axis is interpolated

first. To avoid this, Kim [24] summed a sequence of regional

tuples at once, while maintaining the addition’s commutative

property.

Regarding a TLI, for a point ~p with cell coordinates (x, y, z)
in a unit-length cell Cijk, it can be expressed as:

1
∑

l=0

1
∑

m=0

1
∑

n=0

|1−l−x||1−m−y||1−n−z| < r, φ >i+l,j+m,k+n

(6)

Then, defining:

φ∗
l,m,n(x, y, z) = |1−l−x||1−m−y||1−n−z|φi+l,j+m,k+n,

(7)

to calculate the Equation (6) with the improved sum operator,

at first, the partial sum of φ∗ values per region is computed:

Ψq =
∑

∀r(i+l,j+m,k+n)=rq

φ∗
l,m,n(x, y, z) (8)

Then, the two biggest values of Ψ, Ψ1 ≥ Ψ2, are taken, with

r1 being the region relative to Ψ1. The final result is given by

TLI(p) = 〈r1,Ψ1 −Ψ2〉 .
Altogether, besides guaranteeing a mathematical property,

this approach leads to a more regular segmentation of the

space, as seen in Figure 2.

Fig. 2. Bilinear interpolation between four regional tuples using the operator
proposed by Kim [24].

To obtain an initial regional distribution, for each cell C,

a label identifying the fluid material at C is attributed to rC .

Also, for every cell adjacent to another containing a different

fluid, let φ = ∆x/2. For the other cells, φ is obtained by

a fast-marching propagation algorithm. This algorithm is also

employed in the re-calculation process, executed after every

level set advection, to make φ recover the property of being

a distance function.

The re-calculation process starts by setting φCB
,for every

cell CB immediately near an interface. It receives a value

that estimates the minimal distance from the center of CB

to another region. There are different alternatives for that

estimation. In the most employed one, only points on segments

between cell centers are considered.

Next, the values of the cells near the interface are ex-

trapolated to those farther from them. This task is executed

in parallel with one thread per each cell C. It is checked

whether, for an adjacent cell C ′, φC′ is not null. If this is

true, an estimation of the distance from the center of C to a

border is performed based on the data relative to C ′. Then,

the updated value of φC is the minimum between the just

computed estimate and its previous value. Thus, in n − 1
iterations, cells distant up to n∆x from a border will have

their values defined.

C. Film handling

An essential aspect of multiphase simulations is the film

between two adjacent regions. If these regions contain the

same material, the presence of a film is mandatory as, oth-

erwise, the two regions would have merged. If, instead, they

are of different fluids, a film can exist or not and its destruction

will not determine topological changes. In this work, adjacent

regions are always interfaced by a film that is assumed to be

composed of a predefined material, commonly water or a gas.

Film dynamics can be extremely complex, although accept-

able results can be produced by simplified low-order methods

that only consider some of the involved factors. Here, Zheng’s

approach [5] for realistic simulation of bubbles is applied to a

more general context. By that approach, ”region thicknesses”

(rt) are evolved and film thicknesses are obtained by averaging

the rt of adjacent regions. If a region is not created by a

topological operation, its initial rt has a pre-established value

l0, here set to 0.1∆x. This value is also the film thickness used

for the visualization, since small variations would not make

much visual impact. rt values are updated at every iteration

through the equation below, where the two last terms refer, by

order, to surface deformation and drainage:

rttr = rtt−1
r − rtt−1

r

(At
r −At−1

r )

At
r

−
(

l0 − lmin

tdrain

)

∆t, (9)

where rttr and At
r are, respectively, the rt and region border

area of region r at the t-th time step, tdrain is the estimated

maximum time for a rt to be reduced to lmin, the minimum

thickness a film can have without being ruptured.

Films are ruptured not only if their thicknesses are less than

lmin, but also when a film’s density is smaller than those of



the adjacent regions. This occurs, for instance, when a falling

water drop reaches the surface of a water body. If there is an

indication that the film between two adjacent regions of the

same material should be severed, the regions are merged into a

new region, whose rt is the maximum between the thicknesses

of the original ones.

D. Topological changes

Due to the possible occurrence of topological changes, a

region neighbor graph (RG), which uniquely identifies regions

and interfaces, is rebuilt at every step. It is computed by

checking the pairs of adjacent cells that are in different regions.

For a mild number of regions, the incidence matrix of the RG is

found and its lower triangular part is stored in a boolean array.

However, for a greater number of regions, a more compact

model where adjacencies are listed must be used.

To identify when merge or split operations have happened

and track properties accordingly, each region of the previous

iteration’s RG is mapped into those of the new RG that were

originated from it. This mapping is obtained by examining

the change of each cell’s region label. A previous region

with multiple correspondences identifies a split, while a region

without a match is turned into a particle so that it is not

lost. Also, merge situations are identified when a region at

the new RG is inversely mapped into more than one region in

the previous RG.

With the mapping, region features can be tracked from one

iteration to the next as follows:

I) If a region R is created as a result of the split of a region

S, then the target volume of R is chosen so that the ratio

between the volumes of R and S is equal to the ratio θ between

their target volumes. For simplicity, rtR can be made equal to

l0 or rtS . Alternatively, it can be given by a combination of

these values, such as l0+θ(rtS−l0), so that larger components

tend to burst first.

II) When regions merge, the target volume of the resulting

region is the sum of those of the merged regions, while the new

rt is the maximum rt between those of the regions involved.

III) Particles that replace regions inherit their characteristics.

E. Particles

Spherical particles can be used to preserve volumes, besides

conferring more realistic physical and visual features on the

simulation. Here, the focus is to substitute small fluid compo-

nents that would, otherwise, be removed from the simulation

due to the adopted space discretization. A particle itself is

defined by its radius, center position, type of fluid and velocity.

To move a particle p, its velocity and position are integrated

over time using the forward euler scheme. Also, following the

works of Kim [24] and Cleary [25], the effect of gravity is

applied trough the force:

~Fb = Vp(ρp − ρfluidAt(~xp))~g, (10)

where Vp and ρp are, respectively, the volume and density

of p, and ~g = 9.81 m/s2 (−ĵ). Besides, in accordance with

Busaryev’s research [26], It is applied the drag force:

~Fd = cdr
2
p ‖ ~u(~xp)− ~up ‖ (~u(~xp)− ~up), (11)

where cd ∈ [0.05, 0.5] kg/m3, rp is the radius of p, and ~u(~xp)
is a velocity vector estimated at p’s position using the velocity

components sampled on the grid.

In this work, particles are created from regions when they

reach a minimum volume Vp < Vmin to avoid regions

becoming too small and disappearing. However, if some region

does so, i.e., if a region was removed during the advection

process, a particle is created to replace it.

When a particle is created, it is positioned at the estimated

center of the original region. This position is defined as the

average of the positions of the centers of the region’s cells,

weighted by their respective φ values. Its radius is determined

so that it has the same volume as its original region. Also, to

allow corrections of the particles’ volumes, a target radius is

defined for each particle so that their target volumes would be

the same as those of their respective original regions. A region

converted into a particle is marked as inactive to no longer be

considered, for example, when testing film rupture conditions.

Plus, its target volume is reduced to zero, so that a volume

controlling method would shrink it until it disappears.

Moreover, particles can be converted back to regions in two

specific cases. The first is when a particle contacts a region

of its same material. In this case, the particle will be united

to the region. The second situation is when the particle has

a volume Vp >= 1.5Vmin. Note that there is a discrepancy

of 0.5Vmin in relation to the minimum volume that a region

can have. This is done to avoid successive changes between

representations.

Finally, to convert a particle into a region, the RLS is rebuilt

near it and the materials of the affected cells are updated. In

parallel, each cell checks if it is near any particle that will be

converted. If it is distant up to rp +
√
3∆x from the center

of such particle, its regional tuple and fluid type are modified

accordingly.

III. REGION DETECTION ALGORITHM

As a means to know which regions exist at any given time, it

is used a flood fill segmentation algorithm, once employed by

Greenwood [27] to detect air pockets and adapted by Kim [24]
to detect regional configurations. While Kim performs regional

fusion on a separate phase after region detection, here it

is incorporated in the flood fill algorithm. Additionally, the

algorithm is executed with one thread per cell, while flooding

different fluids at the same time.

The general idea is to always have at least an active cell for

each type of fluid, from which the flood will be made, and to

only stop when all cells have been visited. Hence, every time

there is not an active cell for a given fluid, a random unvisited

cell of the fluid is activated and it is created a new region for

it. Then, each active cell floods to adjacent unvisited cells of

the same fluid, while testing film rupture conditions for cells

that have different original regions. The visit procedure, by

itself, can be seen on Figure 3.



if cto is not Fluid then

rt(cto) = rt(cfrom)
else if rt−1(cfrom) = rt−1(cto) then

rt(cto) = rt(cfrom)
activate cto

else if fluidAt(cfrom) = fluidAt(cto) then

lfilm = 0.5 ∗ (lrt(cfrom) + lrt−1(cto))
if (lfilm < lmin Or ρfluidAt(cfrom) > ρfilm) then

lrt(cto) = max(lrt(cfrom), lrt−1(cto))
rt(cto) = rt(cfrom)
activate cto

Fig. 3. Procedure visit(cfrom, cto) that visits the cell cto coming from the
cell cfrom.

The detection algorithm works basically with two maps,

one of the current regional configuration and one with the

disposition of the different fluids. Examples of iterations of the

algorithm can be seen at the Figure 4. On the first image, a cell

of each fluid has been activated at the start of the algorithm.

Then, adjacent cells of the same respective material will be

flooded. On the second image, a random cell has been activated

for the green fluid, as it has run out of active cells. Also, film

rupture conditions are tested at the transitions C1 → C ′
1 and

C2 → C ′
2.

Fig. 4. Two iterations of the proposed region detection algorithm.

Because of the need to track properties between successive

iterations, the previous algorithm is, in practice, carried out

in two phases that have their own steps of characteristics

transfer. At the first one, a simple segmentation of the space

is performed based on region and material dispositions. At

the second, film ruptures are tested and regions are merged.

Considering splits and merges in different phases considerably

simplifies the tracking of region features.

IV. VOLUME AND AREA CALCULATION

To calculate the volume and area of each fluid region,

Kim [15] integrates a given function using, for each cell,

8 Gauss quadrature points. In the case of the volume, the

Heaviside function below is computed at these points:

H(Φ) =















0, if Φ ≤ −ǫ

1, if Φ ≥ ǫ

0.5 + 0.75
Φ

ǫ
− 0.25

Φ3

ǫ3
, if | Φ |< ǫ

, (12)

where ǫ = 0.1∆x is the thickness of the film and Φ(x, y, z)
is equal to the distance function for positions inside the

region whose volume is wanted and, otherwise, is equal to its

negative. Analogously, the area of the surface of a fluid region

is calculated using the derivative of the Heaviside function.

The volume error produced by the above formulation has

been proved to be O(∆x3). Nevertheless, there could be

sequences of cells whose contribution to the total volume of

the regions covering them is negligible when calculated by

that method. Hence, it is quite inappropriate to employ it for

some low scale instances.

In order to guarantee that the sum of the volume con-

tributions computed at a cell is equal to volume of the

cell itself, a possible solution would be finding, for ev-

ery region rk crossing a cell C, the volume of the set

Sk = {p ∈ C| the r-coordinate of TLI(p) = rk}. Since that

is considerably complicated, however, the calculus of TLI
is reformulated by changing the definition of Ψq given in

Equation (8) to Ψ(k) = maxri+l,j+m,k+n=rq φ
∗
l,m,n(x, y, z).

This change determines that any segment parallel to an axis

crosses at most two different sets Sk. This makes it easier to

find the volume of the regions crossing a cell from the areas

occupied by these regions on two parallel faces, which can be

accomplished as follows:

I) In C, find the intersection of each region crossing C,

with two parallel faces of it, Fi, i = 1, 2. The boundary of

each intersection consists of linear segments that separates the

regions of two adjacent vertices and a rational curve separating

the regions of the pair of opposite vertices whose product of φ-

coordinates is larger. The diagonal defined by these vertices is

called the major diagonal of the face. The major cell diagonal

is defined similarly, as the one among the 4 cell diagonals,

where the product specified above is the largest one.

II) Project one of these faces onto the other. The intersection

of the partitions obtained in I form eight or nine components,

each one associated to a pair of vertices laying on a different

Fi. In four of them, these vertices are adjacent. Other four

belong to the major diagonal of the faces orthogonal to Fi,

with i = 1, 2. Finally, the central component, if it exists, is

related to the vertices of the major cell diagonal.

III) The whole cylinder bounded by copies X1 and X2 of

a component X found in II, one on each Fi, is immersed in

the regions of the pair(v1, v2) of vertices associated to X. The

volume of each of these regions within the cylinder can be

obtained by multiplying the area of X by a factor of the form

φ∗
1/(φ

∗
1 + φ∗

2). Here, φ∗
i - with i = 1, 2 - is an average of the

function φ∗ defined in Equation (7), considering only points

in Xi related to vertex vi.



Fig. 5. Intersection of partitions of two parallel faces projected on a plane,
and its 9 components.

Adding these volumes to their respective region volume

accumulator, for all the components, the sum of their volume

contributions is equal to the volume of the cell C itself.

Besides, despite the previous long description, it can be proved

that the process can be implemented with considerably less

operations than the known quadrature points approach.

V. VOLUME CORRECTION

Volume correction is performed trough an additional level

set advection step using a corrector velocity field in a way

that preserves the direction of the border’s local motion. In

contrast, Kim [15] corrects the volume omnidirectionally, i.e.,

fluid masses only inflate or deflate. This can be proper for

some bubble evolution cases, but not to sustain the motion of a

tiny fluid fillet where the border’s motion must be constrained

to its extremity.

A correction procedure is run at every iteration. Let F be

a face between a cell in the region R and one in a different

region R′. A component V elRF of the corrector field that is

orthogonal to F fosters a variation on the volume of R of

magnitude:

V elFR∆t(∆x2), (13)

where V elFR will be valued so that the correction it determines

is proportional to both the velocity at F and R’s volume error.

Greater corrections will, then, be made where the interface

moves faster while the border is kept unchanged where the

level set velocity is parallel to it. This has proved to be

adequate for the contexts where volume corrections are usually

most necessary, such as thin flat regions, tiny fillets and drops,

besides groups of adjacent bubbles.

The volume correction performed locally at F during a ∆t
interval is defined as:

∆V ol =|| V oltargetR −V olcurrentR || || ~uF · N̂F ||
∑

f∈R−border || ~uf · N̂f ||
,

(14)

where N̂F is the border normal at the center of F and ~uF is

the velocity at that point. Both are not necessarily orthogonal

to F .

Matching Equations (13) and (14), the magnitude of V elFR
can be extracted. Its sign is chosen so that V eltF points inwards

or outwards the region R, according to if the target value is,

respectively, lower or greater than the current one. This assures

that no border face will contribute to the increase of R’s error.

In general, the rule for the sign of a velocity in the corrector

field is:

sign(V elFR) = sign(nF (V oltargetR − V olcurrentR )), (15)

where nF is the component of NF orthogonal to F .

However, the above process only corrects the volume error

of a single region R, without considering the surrounding

ones, whose volumes will also be affected by the correction

applied to R. Thereafter, the treatment of a region can spoil

the correction made in another. Thus, applying the scheme to

the current regions sequentially, do not eliminate all errors,

though they tend to be mostly reduced over time.

To smooth the convergence process, the calculus of V elFR
is based not only on the current iteration’s data, but also on

previous iterations’ values, provided that F already belonged

to the R-border at those iterations. Defining Γ as the sequence

of steps with this property, the magnitude of V elFR can be

expressed as:

|| V elFR ||= 1

∆x2∆t

{

∆V ol +
1

16

∑

τ∈Γ

∆V olτ∆τ

}

, (16)

where ∆V olτ is ∆V ol at iteration τ . whose time step is ∆τ .

Towards a more global approach, it is taken the neighbor-

hood graph (NG) of the set of regions, and its edges are

oriented in the direction of the regions with greater labels.

Then, let A be the incidence matrix of the (NG), whose

dimension is the number nR of regions × the number nI of

different interfaces. Consider, now, the following system:

A(nR×NI)f(NI×1) = V olerror(nR×1), (17)

where f , and V olerror are the vectors whose components are,

respectively, the flow of volume through every interface during

∆t and the individual volume error of each region.

Afterwards, an initial guess f0 is computed. Its component

relative to an interface between r1 and r2 is given by:

f0(r1, r2) = 0.5

[

Ir1,r2
Ir2

V olerrorr2 − Ir1,r2
Ir1

V olerrorr1

]

,

(18)

where Ir1,r2 =
∑

f∈Ω1,2
|| N̂ · ~u || ∆t∆x2. N̂ · ~u is estimated

at the center of each face f ∈ Ω1,2, the set of faces separating

r1 and r2. Also, Iri =
∑

n Iri,rn where rn is a region adjacent

to ri, with i = 1, 2.

In general, f0 is not a solution of (17) since its components

only take into account the errors of two adjacent regions.

However, to avoid that unnecessarily large corrections are

obtained, it is found the solution f closest to f0. This result is

given by the orthogonal projection of f0 onto the linear variety

which constitutes the solutions of the linear system.

It can be observed that the subspace orthogonal to the linear

variety Af = V olerror is the image of the operator AT , the

set {ATλ, λ ∈ R
nR}. Thus, || f − f0 || can be minimized by

making f = f0 +ATλ. Then, as f solves (17):

A(f0 +ATλ) = V olerror → AATλ = V olerror −Af0 (19)



Since A is an incidence matrix, AAT is a laplacian matrix.

Hence, (19) is a Poisson system that can be solved the usual

way. For instance, using the conjugate gradient method. Thus,

the system is solved for λ and the flow f is calculated for each

interface to determine values of the corrector field. Explicitly,

for a face F belonging to the interface I:

V elFR =
| ~uF · N̂F |

∑

G∈I | ~uG · N̂G |
fI

∆t∆x
, (20)

which will be used to perform an additional level set advection

step.

In turn, a particle p has its volume corrected trough the

update of its radius so that it can regain the previously lost

volume and even change back to a region.

rt+1
p = rtp +

(

rt0p − rtp
tcp

)

, (21)

where tcp = 20 determines a volume correction rate.

As a particle is created, in order to maintain the overall

target volume of the regions, the volume of its original region

is distributed among the other regions according to their

fraction of the total target volume on the system. Analogously,

when a particle is converted back to a region, part of the target

volume of all regions is removed. Also, in this case, due to

differences between particle and region representations, the

target volume of the new region is defined as its volume after

the level set reconstruction.

A final remark, the value obtained from Equation (13) is

used to increment or decrement the target volume of regions

as a result of fluid inflows and outflows.

VI. VISUALIZATION

Yafaray is used to render the evolution of the fluid flow.

For each rendered frame, the marching cubes algorithm [28]

is used the create meshes that represent the interfaces at the

time of a frame. In fact, for each interface, two meshes are

built to characterize region-film-region transitions. In the case

of a particle, however, there is only a single mesh representing

a sphere.

The surface border of a region ri is obtained by slightly

moving its representation produced by the marching cubes,

towards the interior of ri. This accounts for the presence

of a film between ri and adjacent regions rj and makes

the interface between them have a representation for each of

these regions. In fact, this displacement is performed when

the regional level set is evaluated. Let k be a point where the

regional tuple is 〈rk, φk〉. If rk = ri, then an ǫ is subtracted

from φk, or else, summed to it. If the value of φk becomes

negative, φk is set to zero in order to avoid inconsistencies on

the interface’s representation, even tough it makes its thickness

lesser than the expected.

For interfaces between fluid regions and non-fluid cells, or

the exterior of the grid, the marching squares algorithm is

employed. Thus, for each face F in a region r, that separates

a fluid cell from a non-fluid cell, or from the exterior of the

grid, all of its vertices are visited in a predefined order. Besides

the points on the F-edges at the border of r, the F vertices in

r are also introduced in the mesh representing the r-border.

Afterwards, each interface’s diffuse color is defined and

a refraction index is calculated according to the type of its

adjacent materials, as required by the raytracer. Then, a file is

saved with parameters such as the frame rate and, for each

frame, all interfaces in a Wavefront (.obj) file. Colors and

refraction indices are saved on a separate file. Finally, Blender

is used to configure the scene and rendering parameters, and

a Python script is executed to load and render each frame,

which are grouped into a movie.

VII. RESULTS AND DISCUSSION

In this section, it is exposed some results of the methods

described and some of their limitations, while possible future

works are suggested. To better understand the results, consider

that all the computation and render were performed on a 22×
22 × 22 low resolution grid. Still, considerably good results

were obtained.

A. Performances

The implementation was done using the Compute Unified

Device Architecture (CUDA) [29] technology to accelerate

the simulation. All simulation and rendering were executed

in a computer running Ubuntu 12.04 LTS with the following

specifications: Intel R© CoreTM i7-2630QM 2.00GHz processor,

8GB of memory, video card GeForce GT 540M. The average

times spent on each iteration can be seen on Table I. Lastly,

for the final render, it was spent, on average, 31 minutes per

frame.

TABLE I
AVERAGE TIME SPENT PER ITERATION OF THE CASES IN FIGURE 1.

Case A B C D

Average Time (s) 1.01 0.94 0.80 1.00

Mean

1.01

B. Quality

As a measure of the quality of the techniques proposed, it

was evaluated the evolution of the volume error in a system

having fluid inflow and outflow. The chart illustrated in Figure

6 shows the evolution of the volume error as a percentage of

the current volume of each region. Note that the error oscillates

but does not get bigger, as expected when not using a volume

control method.

C. Limitation and Future Works

When applied to the multi-region context, the standard

marching cubes (MC) approach creates holes within cells

or inconsistent topologies. Thus, the implementation of an

artifact-free MC that approximates the region distribution

established by the RLS should be considered in a future work.

Also, it is suggested the use of a more robust technique to

solve Poisson’s equations, such as a preconditioned conjugate

gradient for the variable coeficients case, and the consideration

of viscous fluids. Furthermore, as the CUDA technology was



Fig. 6. Evolution of the relative volume error at an inflow/outflow simulation.

only employed to speed up the application, it can be performed

further analysis and optimization of key algorithms.

Finally, the robustness of the proposed volume control

method can be enhanced by combining it with other tech-

niques, such as the particle level set (PLS) [1], and the back

and forth error compensation and correction [12]. Also, the

PLS can be used to create droplets from escaped particles,

increasing the realism of the simulation.

VIII. CONCLUSION

In this work, the regional level set was employed to evolve

multiple interfaces in a multiphase flow simulation together

with a particle system, which is used to avoid the loss of small

regions. In addition, the flood fill segmentation algorithm was

modified to account for the merge and division of regions, and

it was developed a more precise volume computation method.

Besides, it was proposed a volume correction method that

performs corrections minimizing the global volume error on

the system. Plus, it takes advantage of the error history while

fostering the movement of the fluid. Also, region’s target

volumes were updated according to fluid inflows and outflows.

Altogether, a considerable conservation of each phase’s vol-

ume was observed even on a very low resolution grid.

Lastly, well-known tools were used to implement a generic

solution to the final render that can be easily adapted for other

applications.
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