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Abstract—Computer simulation of realistic crowd behavior has
been the focus of active research for more than two decades
now. In crowd simulation, there is usually a trade-off between
performance and realistic crowd behavior. In this paper, we
propose a model, based on potential fields, that enables the
introduction of many behaviors in crowd simulations, while
keeping good performance. The model uses multiple groups to
guide agents to various different goals in the environment, and
combines potential fields and reciprocal velocity obstacles (RVO)
approaches, where the first sets the preferred velocities of the
agents according to their current goals, whereas the second
makes the agents avoid collisions. We used three scenarios to
demonstrate the capabilities of our model for simulating crowds
in which the agents present greater variety of behaviors in real-
time without using a complex architecture.

Keywords-potential fields; reciprocal velocity obstacles; scal-
able behaviors; crowd simulation;

I. INTRODUCTION

Crowd simulation has become the focus of interest in many
areas, such as entertainment, building analysis, crowd evacu-
ation studies during emergency situations, and collaborative
virtual environments. In most applications, crowd behavior
needs to be simulated realistically. Thus, even though, in
a crowd, individuals present certain crowd behaviors, they
still try to follow their own goals and desires. Also, it is
necessary to take into account physical restrictions that prevent
individuals from passing through one another or through solid
objects. When the number of individuals in a simulation
(agents) is low, all those factors are easier to account for and
the simulation can still run in real-time. However, for large
crowds, realism and real-time compete for the computational
resources, and, many times, render the simulation infeasible.

Currently, it is still computationally very costly to efficiently
treat a large crowd simulation by considering it as the union
of the individual trajectories of all agents as they pursue their
individual goals and desires in the simulated environment.
A well-known approach to deal with large crowds is the
use of potential fields [1], [2] to guide agents with common
characteristics (including goals) to their respective goals, as
Treuille et al. propose in [3]. Potential fields are effective
to guide crowds with thousands of agents in real-time, but
only when a few number of fields is used (what means a few
number of goals in the simulation), since the computation of

potential fields is costly (the cost is proportional to the field’s
number of cells).

The major contribution of this work is the use of multiple
potential fields to increase the number of goals in a simu-
lation, while keeping the computational cost affordable by
precomputing those fields. Our model allows the introduction
of local goals through the use of local groups (called secondary
groups), which enable momentary changes of the agents’ main
goals. Another contribution of this work is the combination of
potential fields and reciprocal velocity obstacles (RVO) [4] ap-
proaches in order to handle collision avoidance. In our model,
potential fields are responsible for global navigation, helping
agents to avoid collisions with the scenario by providing them
the preferred velocities, whereas RVO treats the collisions
between agents and also prevents them from entering areas
occupied by obstacles.

The remainder of this paper is organized as follows. In
Section II, we discuss the most relevant related work. In Sec-
tion III, we present our multipotential field model. In Section
IV, we present the tests that were devised to demonstrate the
usefulness of our technique, and discuss the respective results.
Finally, in Section V, we draw some conclusions.

II. RELATED WORK

Collective behaviors have been studied since the late 19th
century, but only at the end of the 80s did researchers begin
to simulate those types of behaviors with computers [5]. As a
pioneer, in 1987, Reynolds [6] presented an agent-based model
for reproducing flock behavior through the use of three simple
rules. Since then, many approaches have been proposed to
solve the varied problems of this multidisciplinary field.

In the following, we cite just a few relevant works on crowd
behavior that are based on different approaches: rules [6], [7],
[8], [9], [10], particles [11], [12], fluids [3], [13], guidance
fields [14], [15], [16], [17], [18], geometry [4], [19], exam-
ples [20], synthetic vision [21], space colonization [22], and
principle of least-effort [23], [24]. Some of those approaches
have been combined to produce models that are capable of
using the advantages of each approach when necessary. For
example, Pelechano et al. [25] combined a particles-based
model with a rule-based model that uses psychological rules;
Yersin et al. [26] divided the environment in regions of interest,
each of which is ruled by a different approach; Xiong et al.



Fig. 1. Overview of the multipotential field model.

[27] proposed a way in which two models coexist and work
collaboratively during the crowd simulation; Narain et al. [28]
simulated discrete agents in a continuous flow; and Singh et al.
[29] used multiple steering approaches according to an agent’s
current situation.

Currently, two approaches have been widely used in games,
mainly because of their suitability for reproducing crowd
behavior in real-time. The first approach is fluid based and
was introduced by Treuille, Cooper and Popović [3] as an
improvement to Hughes’s work [30] to achieve more realistic
crowd behaviors by grouping the agents in the simulation
according to common goals. Each group is represented as a
grid of cells, for which a potential field that guides the agents
in the group towards their goal is computed. This model unifies
the methodologies of global and local path planning with those
of collision avoidance. Its major advantage is the ability to
simulate the behavior of many agents in real-time realistically.
However, real-time simulation can be obtained only if the
number of groups is small, because the potential fields are
computed for each time step, and that leads the agents to lose
their individuality. The second approach is geometrical based
and arose from the concept of Velocity Obstacle established

in the field of robotics by Fiorini and Shiller [31], where a
robot is able to avoid collisions with moving obstacles, based
on their velocities. In 2008, van den Berg et al. [4] extended
the concept of Velocity Obstacle to account for the reactive
behavior of the other agents, assuming that the agents avoid
each other in the same manner, and that novel method was
called Reciprocal Velocity Obstacle (RVO). The method was
further optimized in [19] to become more robust, and the
new concept resultant was called Optimal Reciprocal Collision
Avoidance (ORCA). That approach can treat collisions among
many agents and obstacles, locally, in a very efficient way,
also presenting believable crowd behavior.

In this work, we put those two approaches to work together
into a novel model, where precomputed potential fields are
responsible for obstacle avoidance and for providing the
preferred velocities of the agents to the RVO algorithm, which
is in charge of moving the agents without collision among
themselves efficiently. Narain et al. [28] also presented a model
in which continuous fields are responsible for providing the
preferred velocities for the agents without considering their
neighbors, and, by employing a new mathematical constraint,
the inter-agent separation in the continuous domain is en-



forced. The main drawback of that model is that the collision
avoidance method employed only considers local information,
i.e., future collision from distant agents cannot be anticipated.
That model, despite its efficiency, only provide good results
in dense situations.

Many crowd simulation methods focus on navigational
issues in crowds represented as conglomerate of agents with
global goals. However, crowd simulations that show believable
behaviors are also important. For example, it is relevant to
simulate the interaction between an agent and its environment,
as well as the interpersonal relationships among agents. To
confer believable behaviors to crowd simulation, methods
such as behavior maps [32], composite agents [33], situation
agents [34], transactional analysis [35], scalable situation-
based behaviors [36] and data-driven methods [37], [38], [39],
[20], [40] have been developed.

Aiming to provide heterogeneous behaviors to the agents in
the simulation, in this work, we introduce the use of potential
fields for helping the agents to achieve local goals. Those fields
will be used to momentarily change the agent’s main goal to
a local goal, allowing the introduction of scalable situation-
based behaviors.

III. THE MULTIPOTENTIAL FIELD MODEL

In models based on potential fields, agents with the same
characteristics are grouped, and a potential field is generated
for each group. A potential field is defined over a regular grid,
the cells of which store the field values, which are used to
compute the velocities of agents in the group. The size of the
grid is determined by the size of its cells. Thus, depending
upon the size of the environment and upon the size of the cells,
the number of cells in the grid can be huge, and, therefore,
computing the potential field can become very costly.

In Treuille’s work [3], the computation of a potential field
depends on topographical and flow speeds. However, since
the flow speed depends on the density of the crowd, which
changes continuously, the potential fields need to be updated
at every time step of the simulation.

In this work, we compute potential fields considering only
topographical speed. Thus, potential fields need to be re-
computed only when the grid changes, i.e., by adding or
removing goals and obstacle cells. That decision led to a
drastic reduction of the computational cost of a time step,
since potential fields are no longer computed at each time
step. Consequently, the spared computational power allows
for more potential fields to be used in order to provide varied
local goals in real-time simulations. Due to the use of multiple
potential fields, we named the proposed model multipotential
field model.

An agent, in our model, sets its preferred velocity according
to the potential field where it stands, and that velocity is used
as input to the RVO algorithm. Thus, RVO is responsible for
treating the collisions among the agents and for giving them
the best routes according to their positions, to their preferred
velocities and to the local crowd density.

The developed model is shown, step by step, in Figure 1.
In the next subsections, each of those steps is detailed (Step
A in Subsection A, Step B in Subsection B, and so on).

A. Setting up places and groups

In this first step, the environment must be manually covered
by places representing its walkable regions. A place represents
a region of the environment and it is composed of one or more
groups. Each group belonging to a place represents its region
as a grid, in which its cells contain the information used to
guide the agents in that group to their goal. Places exist to
allow a better management of the groups that share the same
characteristics (region, cell size, obstacles, etc.), except goals.
Figure 2 shows a place with two groups that have different
goals.

Fig. 2. An environment with an obstacle represented as an ellipse. For that
environment and the expected flow (represented by the arrows), a place is
created with two groups with different goals (yellow cells represent goals and
gray cells represent obstacles).

Places are classified into two types: primary and secondary.
Throughout the article, when referring to a group as primary
or secondary, we mean that it belongs to a place of that type.
A primary group guides agents to a main goal, whereas a
secondary group guides agents to a local goal. In this work, a
local behavior is represented as the movement to a local goal
or to a sequence of local goals. Thus, secondary groups are
used to provide local behaviors to agents through local goals.
A local behavior consisting of a sequence of local goals can
be provided by establishing connections between groups. For
example, the goal of group A leads to group B, and the goal
of group B leads to group C, and so on. Each group keeps
the number of agents that are assigned to it at every time step,
the so-called active agents of that group. That information can
be used to limit the number of agents in secondary groups.

B. Creating connections between groups and adding actions

A connection is a simple association between two groups,
regardless of the places to which they belong (they can belong
to the same place or to two different places). However, two
groups can be connected only if they have a transition area
in common through which the agents can switch from one
group to the other. The cooperation between groups is only
possible if connections between them are established, i.e.,
a group needs to know the other groups with which it can
interact when actions are triggered. Then, in this second step,
those connections are manually created (an example can be
seen in step B of Figure 1), and will be used by actions.

Two types of events trigger actions: the event of an agent
entering a new group, and the event of an agent reaching a



goal. In the first type of event yet two cases are possible:
the agent enters a primary group; or the agent enters a
secondary group. In the first case, the triggered action is an
immediate change of group, so that the agent’s current group
is instantaneously changed for the new group it entered. In
the second case, the triggered action is also a change of
group. However, secondary groups do not allow a new agent
to become instantaneously active. Thus, a decision has to
be made as to whether or not the incoming agent will be
accepted into the group. That decision can be the result of
a random process, or can be the result of an analysis of the
list of personal states of the agent with respect to the group’s
requirements.

In the second type of event, when the agent reaches a goal,
the triggered action(s) can be defined by the user, depending
on the type of behavior that fits best a specific situation.
Some of the actions can be simple, direct actions, such as:
changing the group of an agent; making an agent to wait for
s seconds; making an agent to look at a specific direction;
removing an agent from the simulation; etc. Other actions can
be a combination of simple actions that are specified at certain
goals, such as: wait for s seconds and then change the agent’s
group. A sequence of connected groups with actions on goals
can be used to reproduce some scenarios, as shown in Table
I. The secondary groups shown in Table I deviate the agents
from their main goal, but, after performing the actions of those
groups, the agents must return to their original groups that lead
them to their main goals.

TABLE I
EXAMPLES OF REPRODUCIBLE SCENARIOS.

Scenarios Secondary groups Action on the goals

Supermarket Groups for things to
be taken

Stop and get
something

Museum Groups for pictures to
be observed

Stop and observe a
picture

Square
Groups for benches,
observable places,
observable artists

Stop and sit; stop and
observe a place; stop
and observe an artist

Finally, potential fields (based on Treuille’s approach) do
not produce local minima, but it is necessary to be careful
when creating and connecting them to avoid unpleasant situa-
tions, such as secondary groups that do not let agents achieve
their main goals.

C. Setting up agents

An agent must have the necessary attributes to act in
conformity with its groups. It has information about a primary
group (which leads it to a main goal) and the group in which
it is active at the moment (current group). It is necessary to
keep the primary group, because after local interactions (by
secondary groups) the agent must return to it. The group where
an agent is active at a given moment determines the speed
of that agent. However, that speed cannot exceed the agent’s
maximum speed. Thus, agents with different speeds (children,
elderly, etc.) can coexist within a group.

Also, an agent will have all the characteristics needed by
the RVO algorithm (radius, velocity, preferred velocity, maxi-
mum speed, maximum neighbor distance, etc.). Moreover, the
user can define personal states to the agents, and also can
assign constraints to the secondary groups, such that an agent
becomes active for a secondary group only if it respects the
group’s constraints.

D. Computing potential fields

At this step, for each group of each place, a potential field is
computed in a similar manner as that proposed by Treuille et
al. [3], but modified in such a way that the computation does
not have to be performed at each time step (see discussion in
the beginning of Section III).

The potential field approach proposed in [3] is derived from
four hypothesis: 1) Each person tries to reach a geographic
goal; 2) People move as fast as possible; 3) There is a
discomfort field g that may change the path of people; and 4)
A person must choose the shortest path that takes less time and
avoids discomfort. Our modifications occur in the speed field
computation and we also do not allow a dynamic discomfort
field.

Mathematically, the fourth hypothesis means that, given the
set Π of all paths from a person’s location x to some point
in the fixed goal G, that person must choose the path P ∈ Π
that minimizes

α

∫
P

1ds︸ ︷︷ ︸
PathLength

+β

∫
P

1dt︸ ︷︷ ︸
Time

+ γ

∫
P

gdt︸ ︷︷ ︸
Discomfort

, (1)

where α, β and γ are weights, and g is a discomfort field.
Assuming a fixed speed field f , and knowing that ds = fdt,
equation (1) can be rewritten as∫

P

Cds, (2)

where
C ≡ αf + β + γg

f
(3)

is the unit cost field. Our model does not allow a dynamic
discomfort field, since the potential field is precomputed, but
g remains in Equation 1 because it is still possible to define
a static discomfort field.

The speed field f necessary to compute C measures the
maximum speed allowed in each direction at each point,
and is no longer dependent on the local crowd density, but
only on the topography of the terrain. After computing f
and C, we define a potential function φ that, at a specific
location x, represents the cost of reaching the goal through
the optimal path beginning at x (φ = 0 at the goal location).
Thus, at any location, a person should move in the negative
direction of the local gradient of φ. The function φ satisfies
the eikonal equation: ‖ ∇φ(x) ‖= C. Finally, we compute the
velocity field, multiplying the speed field by the normalized
gradient of the potential field at corresponding locations. For a
more detailed explanation of the potential and velocity fields’
computation, we refer the reader to Treuille’s work [3].



E. Computing preferred velocities

After computing the fields, the main loop of the simulation
starts, encompassing this and the next two steps. At this step,
the agents’ preferred velocities are computed, by interpolating
the velocity field of their current group according to the agent’s
position in that field.

F. Avoiding collisions

In our model, the preferred velocities provided by the
potential fields prevent collision of the agents with static
obstacles in the scenario, whereas the RVO algorithm prevents
collisions of the agents with one another. That algorithm also
needs the information concerning the static obstacles in order
to impede that an agent that deviates from another agent
trespasses the boundaries of an obstacle.

Thus, in this step, the RVO algorithm treats collisions
among the agents, using the preferred velocities provided
by the potential field as input, and provides collision-free
velocities and positions of the agents. This algorithm was
selected due to its efficiency and due to the visual results it
provides.

The RVO algorithm is based on velocity, i.e., the new veloc-
ity of an agent is computed taking into account the velocities
of the other agents that are inside its area of perception. The
inherent interdependency involved in this type of computation
is efficiently resolved through linear programming.

When dealing with collision avoidance between moving
obstacles, it is always necessary to look for an efficient way of
finding the neighbors of an agent. The RVO algorithm uses a
k-d tree for performing a fast spatial search. Finally, the algo-
rithm is natively parallel, which also increases its performance
when many processors are available. For a detailed explanation
of RVO, we refer the reader to van den Berg’s work [4], [19].

G. Handling events

In this last step, the agents are monitored to detect when
they produce events that trigger corresponding actions. If an
agent reaches the goal of its group, the actions associated
with that event are performed. In the case of entering the area
of another group, it will be necessary to analyze the agent’s
personal states and the group’s restrictions in order to verify
whether or not the agent can change its group for that new
group. It is up to the user to define the agent’s personal states
and the group’s restrictions. For example, an user may define
that a group should have at most five agents at any instant, or
that a specific agent is not allowed to enter a given group.
Whenever an agent leaves a group and enters another, the
number of agents of the groups involved must be updated as
well as the agent’s current group.

IV. RESULTS AND DISCUSSION

The tests were performed with a MacBook of 2.13 GHz
Intel Core 2 Duo processor, 4.0 GB of RAM and an NVidia
GeForce 9400M graphics card with 256 MB of RAM. The
algorithm was written in C/C++ using the open source high
performance 3D graphics toolkit OpenSceneGraph [41]. A

model with some useful animations, available in the open
source project ReplicantBody [42], was used.

The tests were performed to analyze both the performance
of the model and the behavior of the agents. We begin
analyzing the use of secondary groups to reproduce a scenario
with varied local behaviors, and comparing the performances
of simulations with precomputed potential fields to those in
which potential fields are computed every time step. Then, we
show that the secondary groups also can be used to organize
agents in specific situations. Finally, an evacuation scenario
is presented showing that the model can handle evacuation
situations and also that groups can be connected to create large
scenarios with varied groups. The presented results are related
only to the simulation step (execution time in milliseconds).

A. Results

Our simulations were performed in the following scenarios:
• Art gallery. This scenario was used to demonstrate the

suitability of the model for simulating an environment
with varied behaviors. In this scenario, eight secondary
groups (six with 4 x 8 cells and two with 6 x 12
cells) were used to lead agents to specific points of
the environment. For those groups, the following actions
were defined to be performed on their goals: an agent
turns to look at a pre-defined point, stops for five seconds
and then returns to its main goal. The agents randomly
become active for those secondary groups and only three
agents can be active in a group at a time. Two primary
groups with 16 x 6 cells were used to cover the entire
environment to keep the agents walking in the room. Up
to three hundred agents interact with the scenario. Each
simulation was performed for five minutes. Results can
be seen in figures 3, 4 and 5.

Fig. 3. Average execution time (ms) for simulations performed in the art
gallery scenario. The graph shows that the addition of secondary groups barely
affects the execution time of the model.

• Metro entrance. This scenario was used to demon-
strate the suitability of the model for organizing the



Fig. 4. Average execution time (ms) for simulations performed in the art
gallery scenario with three hundred agents. The graph shows the performance
gain when precomputing potential fields.

Fig. 5. Average execution time (ms) for simulations performed in the art
gallery scenario. The graph shows that the addition of agents has a linear
impact in the execution time of the model.

flow of agents into an environment. In that scenario,
two secondary groups with 20 x 16 cells were used to
organize the flow in a metro entrance with four passages.
One of the secondary groups leads agents to the upper
passages, whereas the other group leads agents to the
lower passages. Two primary groups with 12 x 4 cells
were used to cover the entire environment to keep the
agents walking in the corridor. Up to three hundred agents
interact with the scenario. Each simulation was performed
for five minutes. Results can be seen in Figure 6.

• Building evacuation. This scenario was used to demon-
strate the suitability of the model for simulating evac-
uation scenarios and for representing scenarios as set
of connected groups. The scenario is composed of four
rooms and two corridors (six primary groups (four with
10 x 9 cells, one with 11 x 3 cells and one with 3 x 7 cells
)), from where up to nine hundred agents must evacuate.
The performance of each simulation was measured until

Fig. 6. Average execution time (ms) for simulations performed in metro
entrance scenario.

all agents left the building. Results can be seen in Figure
7.

Fig. 7. Average execution time (ms) for simulations performed in the
building evacuation scenario.

B. Discussions

1) Performance analysis: The results obtained with the first
scenario’s simulations showed that increasing the number of
secondary groups causes little impact on performance. Since
the potential fields are precomputed, the increase in execution
time observed by adding groups (Figure 3) is justified by
the search for groups by agents. Also, it is perceivable that
the higher the number of agents is, the higher the cost of
searching for groups becomes. In Figure 4, we compare the
performances (execution time) of simulations in which the
potential fields were precomputed against those in which the
potential fields were computed every time step. The results
show a great performance gain, a reduction of more than 50%
of the execution time in the simulation with eight groups
and three hundred agents. In Figure 5, we can observe that
execution time grows linearly with the addition of agents
regardless of the number of groups. That linear growth was
expected, because RVO has linear behavior.

The results obtained with the second and third scenarios also
showed the expected linear behavior (figures 6 and 7). Com-
paring the three scenarios with 300 agents, we can observe that
the first two have a similar performance with execution time
of five milliseconds approximately, whereas the third scenario
has an execution time of six milliseconds approximately. That
difference is justified by the characteristics of an evacuation
scenario, since in that kind of scenario the crowd is more



dense, i.e., agents have more interactions with one another
and more interactions lead to more computational cost to
treat the collisions among agents. The RVO algorithm has
some adjustable parameters that allow relieving the cost of
collision avoidance, such as, the number of neighbors to take
into account and the maximal distance to them.

Finally, the results showed that the performance of the
model is more affected by adding agents than by adding
groups, and that computational cost grows linearly according
to the number of agents. Thus, even with a low number of
agents in the first two scenarios (because of their nature), it
is easy to forecast their performance behavior with a higher
number of agents.

2) Behavior analysis: The proposed model uses potential
fields for global navigation and RVO for local collision avoid-
ance. Thus, it is expected that the agents behave according
to RVO when avoiding collisions, making turns and adapting
their velocities. In all scenarios, it is possible to observe
emergent behaviors and the variety of agents with differ-
ent velocities interacting with the groups (see accompanying
video). In our model, predictive behavior is no longer provided
by potential fields since they are not density dependent nor
dynamic (in Treuille’s model [3], for example, agents reacts
to each other in advance because discomfort is set in front of
them). Nevertheless, that kind of behavior can be achieved by
RVO, only setting its parameters accordingly.

In the first scenario, the agents are always interacting with
secondary groups, giving the crowd heterogeneous behaviors
with no need to pre-configure each agent individually to
interact with the environment (Figure 8).

Fig. 8. Art gallery scenario with eight secondary groups (highlighted
boundaries represent secondary groups, yellow cells represent goals and gray
cells represent obstacles). Agents randomly enter in secondary groups. They
interact with those groups stopping at goals to observe points of interest.

The second scenario shows that the secondary groups can
successfully organize the flow of agents in a crowd (Figure
9), and the third scenario shows that the model also can
be used for building evacuation simulations (Figure 10).
In those last two scenarios, it is perceivable the formation
of jams/bottlenecks and arching at the passages, what was
expected, since RVO is able to reproduce those and other
emergent behaviors.

In the first two scenarios, the agents change directions
instantaneously when they start to suffer the action of another
group. That behavior can be visually awkward depending on

Fig. 9. Metro entrance scenario (highlighted boundaries represent secondary
groups, yellow cells represent goals and gray cells represent obstacles). Two
secondary groups were used to organize the flow of the agents at the passages.

Fig. 10. Building evacuation scenario with six primary groups (highlighted
boundaries represent groups, yellow cells represent goals and gray cells
represent obstacles). Agents evacuating 4 rooms of a building, forming arches
at exits.

the velocity of the agent and on the turn made by it, because
inertia is not taken into account in the model.

V. CONCLUSIONS

The model proposed in this work enables the introduction
of many behaviors in crowd simulations. That is possible
through the use of secondary groups in an approach based
on potential fields. The use of potential fields with RVO is
another contribution of this work. The potential fields are
used to provide the agents with preferred velocities toward
their goals, whereas RVO is used to treat collisions among the
agents and to prevent them from penetrating into obstacles.

The tests have shown the suitability of the model for repre-
senting a variety of scenarios: scenarios with secondary goals
like art galleries, museums, and malls; scenarios where there is
a need for organizing the flow of the agents such as in narrow
passages, and in building entrances and exits. Moreover, the
model includes all the advantages of RVO, supporting dense
crowds and presenting many emergent behaviors, and can also
be used to represent evacuation scenarios.

In our work, potential fields are precomputed, thus, the use
of many of those fields presents little impact on performance,
since that impact is related to the search of groups during the
simulation. Also, the execution time of a simulation grows
linearly according to the number of agents.

Despite the useful characteristics of our model, some im-
provements can still be proposed, such as the use of a hierar-
chical structure to maintain the groups, and the introduction
of a way to lead an agent to pass inside a secondary group



and interact with it. A spatial partitioning technique could be
used to reduce the cost of searching groups. And, finally, it
is necessary to investigate a way to avoid abrupt turns by the
agents while changing groups.

REFERENCES

[1] C. Warren, “Global path planning using artificial potential fields,” in
Robotics and Automation, 1989. Proceedings., 1989 IEEE International
Conference on, 1989, pp. 316–321 vol.1.

[2] ——, “Multiple robot path coordination using artificial potential fields,”
in Robotics and Automation, 1990. Proceedings., 1990 IEEE Interna-
tional Conference on, 1990, pp. 500–505 vol.1.

[3] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” in SIG-
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