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Fig. 1. Deformed shapes obtained using several methods extended by Conformal Geometric Algebra: Spline aligned deformation (left armadillo), generalized
barycentric coordinates (max-face and hand), Free-Form Deformation (horse), Harmonic Coordinates (caw) and As-Rigid-As-Possible Surface Modeling (right
armadillo)

Abstract—We illustrate the suitability of Conformal Geometric
Algebra for representing deformable mesh models. State-of-the-
art modeling tools allow the user to deform 3D models (or
region of interest) by selecting sets of points on the surface,
called handles, and move them freely. The deformed surface
should look “naturally” stretched and bent. Mesh representations
based on Conformal Geometric Algebra extend, quite naturally,
the existing deformable mesh representations by introducing
rigid-body-motion handles, a.k.a motor handles, instead of just
translation handles. We show how these mesh representations
conduct to a fast and easy formulation for the Spline-aligned
deformation and a formulation for linear surface deformation
based on generalized barycentric coordinates. Also, we reformu-
late the Free-Form Deformation (FFD), Harmonic Coordinates
(HC) and As-Rigid-As-Possible (ARAP) Surface Modeling into
the Conformal Geometric Algebra framework and discuss the
advantages of these reformulations.

Keywords-I.3.5.d Computer Graphics; Computational Geome-
try and Object Modeling; geometric algorithms, languages, and
systems

I. INTRODUCTION

Modern day graphic systems are an amalgam of matrix,
vector, and tensor algebras. These algebras run fast in com-
puters, but the intricacies of the algebraic representation make
it difficult to do the geometric insight. Within the last decade,
Geometric Algebra has emerged as a powerful alternative to
the classical matrix, vector and tensor algebras as a com-
prehensive conceptual language and computational system for
computer science. Great research has been done demonstrating
its powers of synthesis, especially with regards to control
systems generated by twist groups and motor algebras ([1],

[2]), but little research focuses on their application to surface
modeling and animation. Although Geometric Algebra has
been used for doing computer graphics ([3], [4]), its use for
mesh deformation remains a relatively esoteric exercise. As
a result, many of its formal characteristics have yet to be
explored. We aim for illustrating the suitability of the confor-
mal model of Geometric Algebra for representing deformable
mesh models and encourage its use in geometric modeling
applications.

In Conformal Geometric Algebra (CGA), rigid body mo-
tions can be represented as compact multivectors called Mo-
tors. Unlike homogeneous matrices, motors are linear trans-
formations. CGA motors can be efficiently interpolated for
generating continuously deformed motions, and that is one of
the main features that we exploit in this work. On the other
hand, the interpolation of matrices is difficult and expensive.
The logarithm of a matrix can be defined but is not elementary
and not in closed form. A straightforward way to compute it is
to take the eigenvalue decomposition of the rigid body motion
matrix in the homogeneous coordinate framework, and take the
N th root of the diagonal matrix. Such numerical techniques
makes the matrix logarithm expensive to compute and hard to
analyze.

A. Contributions

• A Conformal Geometric Algebra representation of de-
formable meshes that leads to an efficient formulation
for spline-aligned deformations. We avoid the complex
mathematical formulations related to such deformations.
Instead we deal with a motor interpolation problem which



has a simple and elegant formulation. Deformations pro-
duced are predictable and visually pleasant and they are
computed at interactive rates for large models (over a
hundred thousand vertices) without even using the power
of GPU.

• A linear deformation method based on generalized
barycentric coordinates. Motors are used for representing
general surface deformations imposing positional and
rotational constraints. Our method computes a local trans-
formation for each vertex by interpolating user-defined
key motors using the generalized barycentric coordinates
computed on the surface. This method is also capable of
deforming large meshes at interactive rates.

• Reformulation of popular methods such as FFD ([5]),
Harmonic Coordinates ([6]) and ARAP Surface Model-
ing ([7]) into the Conformal Geometric Algebra. These
reformulations extend the capabilities of the methods and
leads to improvements in their quality or efficiency.

B. Related work

There have been many approaches for mesh modeling and
editing. Each approach uses a different deformable mesh
representation for the formulation and actual computing of
the deformations. Space deformation techniques typically need
to embed a surface mesh inside a volume geometry. The
surface is typically represented as a function of its barycentric
coordinates in the volume space. The deformation of the space
inside the volume is transferred to the embedded surface. FFD
techniques ([5]) need to embed a surface mesh inside a volume
lattice. Other techniques have replaced the lattice with more
general volumes ([3], [8], [9]). Among these techniques, the
cage-based methods provide the ability to use unstructured
meshes for deforming the subspaces inside them ([6], [10]–
[12], [12]–[14]). In sections V and VI we show how FFD
and Harmonic Coordinates methods ([5], [6]) can be easily
extended by reformulating them in the CGA framework.

Spline-aligned methods are in the same spirit as the free-
form deformation, but instead of using a volume to deform the
space they use a 3D spline curve. A surface is represented as
a spline function of a scalar field associated to the surface, the
curve is defined by specifying where a few vertices of the mesh
should deform to, and defining a set of constraints to a linear
system ([15]–[18]). In section III we use the CGA framework
to formulate a Spline-aligned method in which the surface
is represented as a spline function acting on motors. Space
deformation is directly transferred to the mesh by applying
the interpolated motors.

Skinning techniques ([19], [20]) are probably the most
popular mesh deformation techniques. Kavan et. al. ([4]) uses
the dual quaternion framework for improving the interpolation
of positional and directional quantities. They show that by
reformulating the geometric skinning in the motor algebra,
instead of linear matrix algebra, the quality of joint transfor-
mations blending can be improved, removing artifacts from
model skin without increasing performance costs.

Gradient domain deformation techniques are characterized
by applying modifications to differential rather than spatial
coordinates of the models. Such methods try to preserve some
differential properties of the mesh, mostly manipulating the
differential coordinates of the undeformed mesh (i.e., gradient
fields, Laplacian coordinates or the first/second fundamental
forms of a surface) and then reconstructing the deformed mesh
from the modified differential coordinates ([21]–[25]). The
so-called As-Rigid-As-Possible (ARAP) deformation methods
tend to produce physically plausible results at relatively low
cost by solving a non-linear least squares problem ([7], [26],
[27]). In section VII we show how to recast the ARAP
method described in [7] into Geometric Algebra producing
a formulation with a better geometric interpretation. Recent
surveys on Gradient domain deformations can be found in
[28] and [29].

In [30] a conformal deformation method, based on a quater-
nionic Dirac operator, is presented. The authors look for the
best quasi-conformal deformation for a given surface i.e., a
deformation that preserve angles on the surface as much as
possible. The authors uses discrete differential geometry to
setup a quaternion-based eigenvalue problem that leads to the
desired solution. In contrast, the techniques discussed in this
paper are not enforcing quasi-conformality, i.e., our usage of
CGA motors does not automatically enforce globally quasi-
conformal deformations.

II. MATHEMATICAL BACKGROUND

A thorough introduction to CGA is far beyond the scope
of this paper, for foundations on the subject with emphasis in
computer science and computer graphics we refer the reader to
[31], [32]. Here we present a brief introduction to the basics.

A. Universal Geometric Algebra

A geometric algebra is constructed over a real vector space
Rr,s with dimension r + s = n, which means r basis vectors
have a positive square, and s have a negative square. The
associative geometric product is defined by the simple rule that
the square of any vector is a scalar aa = a2 ∈ R. The vector a
is said to be null if it squares to zero a2 = 0. From the vector
space Rr,s, the geometric product generates the real geometric
algebra Gr,s with elements {A,R,M, ...} called multivectors.

For a pair of vectors, a symmetric inner product a · b = b ·a
and antisymmetric outer product a∧b = −b∧a can be defined
implicitly by the geometric product ab = a · b + a ∧ b and
ba = b · a+ b ∧ a. It is easy to prove that a · b = 1

2 (ab+ ba)
is scalar valued, while the quantity a∧ b = 1

2 (ab− ba), called
a bivector or 2-vector, is a new algebraic entity that can be
visualized as the two-dimensional analogue of a direction, that
is, a planar direction.

The outer product can be generalized iteratively to define
k-vectors by a ∧Ak = 1

2 (aAk + (−1)kAka) which generates
a (k + 1)-vector from k-vector Ak. It follows that the outer
product of k-vectors is the completely antisymmetric part of
their geometric product: a1 ∧ a2 ∧ ... ∧ ak = 〈a1a2...ak〉k
where the angle bracket means k-vector part, and k is its



grade. The term grade is used to refer to the number of vectors
in any exterior product. This product vanishes if and only if
the vectors are linearly dependent. Consequently, the maximal
grade for nonzero k-vectors is k = n. It follows that every
multivector A can be expanded into its k-vector parts and the
entire algebra can be decomposed into k-vector subspaces:

Gr,s =

n∑
k=0

Gr,sk = {A =

n∑
k=0

〈A〉k}

This is called a grading of the algebra.
Reversing the order of multiplication is called reversion, as

expressed by (a1a2...ak )̃ = ak...a2a1 and (a1∧a2∧...∧ak )̃ =
ak ∧ ... ∧ a2 ∧ a1, and the reverse of an arbitrary multivector
is defined by Ã =

∑n
k=0 〈Ã〉k.

B. Conformal Geometric Algebra

The conformal group is the group of transformations that
preserve angles. These include the rigid transformations. The
conformal group on R3 has a natural representation in terms
of rotations in a 5D space, with signature R4,1. So, in the
same way that projective transformations are linearized by
working in a 4D homogeneous space, conformal transforma-
tions are linearized in a 5D space. The conformal vector space
poses five vectors {o, e1, e2, e3,∞}, i.e., the euclidean basis
{e1, e2, e3} plus the Minkowski basis {o,∞}. Minkowski
basis vectors are null vectors o2 = ∞2 = 0 not orthogonal
between them o · ∞ = −1 but are still orthogonal to the
Euclidean basis vectors. The o vector can be interpreted as
the point at the origin and the ∞ as the point at infinity. A
general null vector p can be constructed given a Euclidean
vector p as p = o+ p + 1

2‖p‖
2∞. This null vector p can be

interpreted as a Euclidean point. The existence of null vectors
is guaranteed by the fact that the conformal vector space has a
mixed signature. The main advantage of basing the description
in a conformal setting is that distance is encoded simply. The
Euclidean distance of two points p and q is defined as its inner
product p · q = − 1

2‖p− q‖2.
1) CGA Motors: Rigid body motions in the Euclidean

space R3 are represented by orthogonal transformations in
G4,1. A motor M is an even-grade multivector satisfying
MM̃ = 1 and is generated by reflections in well-chosen
planes. Pure translation Tv over a vector v is generated by
double reflection in two parallel planes separated by a vector
v/2 and pure rotation RBθ is generated by double reflection
in two incident planes at the origin with a relative angle of θ/2
between them. A motor can be represented as M = Tv RBθ.
Motors can transform any geometric entity using the geometric
product as A′ = M A M̃ . Every motor can be written in terms
of the exponential of a bivector as M = eB . The bivector B
is the generator of the motion, and is an element of the Lie
algebra of the conformal group.

2) Motor Interpolation: A motor can be applied gradually
to geometric entities by splitting it in n equal parts through
M1/n = eB/n and then applying them in n time steps. A
simple way to get the linear interpolation between two motors

M1 = eB1 and M2 = eB2 is Mα = e(1−α)B1+αB2 . This for-
mulation requires to take the motor logarithms B1 = log(M1)
and B2 = log(M2). An expression for the motor logarithm
may be found in [31].

III. SPLINE ALIGNED DEFORMATION

We show a generic way to interpolate conformal motors
through polynomial curves and spline curves. Interpolated
motors are used to deform the 3D space and thus, the meshes
parameterized in that space. Resulting deformations are known
as spline aligned deformations or spline path deformations.

Let the spline function S(λ) ∈ G4,1 be defined as the
convex combination of the key motors R = {Rj}nj=1 and let
the parameter λ(pi) be the real valued function λ : R3 7→ R
such that 0 ≤ λi ≤ 1.

S(λi) = exp

 n∑
j=1

Wj(λi) log(Rj)

 (1)

The range of the basis function Wj(λi) is a set of n scalars wij
forming a partition of unity

∑
wij = 1. Several schemes for

basis functions are explored including linear, quadratic, cubic
Bézier and cubic B-Splines. The spline function S(λ) can be
viewed as producing a motor Mi for a given point pi ∈ R3 in
the sense that Mi = S(λ(pi)). In 3D space we can find a real
scalar field of the form λ : R3 7→ R for a mesh M (or region
of interest) by solving the discrete Laplace equation ∆λ =
0 with Dirichlet boundary conditions as described in section
VIII. Then, the function S will transform the conformal space,
constraining it to follow the curved path and the orientation
of the combined motors.

Given a surface represented by a meshM = {P,G} where
P is the set of m conformal points P = {pi}mi=1 and G is
the connectivity graph, we define the deformation function f
of the form f : M 7→ M which maps the mesh M into a
deformed version M′′ = {p′′ = f(p) | p ∈ P, p′′ ∈ P ′′} as
follows:

f(pi) = Mi pi M̃i (2)

where Mi = S(λ(pi)) is called the deforming motor.

A. Treatment of Handles
Mesh editing operations are usually specified through the

manipulation of handles that allows the user to deform the
3D models (or region of interest) by selecting a set of points
on the surface and move or rotate them. We denote handles
as Hi. By convention, all vertices on H1 have the weights
λ(pi) = 0,∀pi ∈ H1 and conversely all vertices on Hn have
the weights λ(pi) = 1,∀pi ∈ Hn. So that (1) reduces to
S(0) = R1 and S(1) = Rn for vertices on handles H1 and
Hn. The rest of key motors also contributes to deform the
mesh, but the vertices on their handles are not transformed
“rigidly”.

In order to bind the “resting-pose” mesh M to the key
motors, we compute the points p′i using the key motors defined
for the undeformed mesh:

p′i = M̃i pi Mi



The original points pi are not needed anymore. Having the key
motorsR and the scalar weights wij we are able to compute the
motors Mi at any time, so the points p′i are what is needed for
reconstructing the mesh by pi = Mi p

′
i M̃i. Mesh deformation

is achieved by modifying the key motors using the handle
metaphor.

B. Spline Path Deformation

Linear interpolation is the simplest case for path deforma-
tion, though compelling deformations can be achieved even
with this simple approach (Fig. 2). As expected, the surface
is stretched (i.e., pure translation applied) or bent uniformly
along a circular path. A simple extension of the linear case is to
have three conformal motors R1, R2 and R3 bound to the mesh
and interpolate them using (1) with the quadratic Lagrange
Polynomial weights wi1 = 2λ2i − 3λi + 1, wi2 = −4λ2i + 4λi
and wi3 = 2λ2i−λi. The paths are now quadratic curves passing
through all the key motors and relatively complex poses can
be produced with this method (Fig. 3).

This is straightforward to generalize further the previous
cases to support general spline path deformation. Having n
conformal motors R = {Rj}nj=1 bound to the mesh, the spline
path deformation is obtained by interpolating them using (1)
with suitable spline weights, for instance the B-Spline weights
wij = Nj,d(λi) (where d is the degree of the B-Spline).

In terms of flexibility this method is much more powerful
than linear and quadratic methods as can be seen in Fig. 4.

Fig. 2. Linear weights wi
1 = 1− λi, wi

2 = λi

Fig. 3. Lagrange Polynomial weights

Fig. 4. Cubic B-Spline weights

C. Path Deformation through B-Spline Fitting

We show how the set of key motors {Qi}ni=0 can be fitted by
a cubic B-Spline deformer function. Our goal is to determine
the set of motors {Rj}nj=0 such that

Qi = exp

 n∑
j=0

Nj(λi) log(Rj)

 (3)

where Nj(λi) are the cubic B-Spline weights. This problem
can be solved using the well known linear least squares fitting
as follows. Lets rewrite (3) in matrix form:

Q = A R (4)

where the column vector Q is {log(Qi)}ni=0, the column vector
R is {log(Rj)}mj=0 and the matrix Aij = Nj(λi). In general,
the matrix A is of dimensions n+ 1×m+ 1, where n > m
since we want to solve the linear system in the least squares
sense. The best solution is obtained by solving the LLS normal
equations:

AT Q = (AT A) R (5)

The matrix (AT A) can be ill-conditioned depending on the
chosen knot vector. In that case the system can be solved by
SVD, otherwise it can be prefactored by Cholesky method.
The system must be solved six times for different right-hand-
sides, since the bivector basis for the logarithm of a motor has
six basis-bivector components {e12, e31, e23, e1∞, e2∞, e3∞}.

As an application example we have implemented the Inverse
Kinematic (IK) solver FABRIK ([33]) that control a single
kinetic chain. The joints in the chain are the key motors
{Qi}ni=0 which in turn controls the path deformation of the
female model. Results can be seen in Fig. 5.

IV. DEFORMATION BASED ON GENERALIZED
BARYCENTRIC COORDINATES

We can adapt the path deformation method described in
section III to achieve mesh deformation with multiple hard
handles. The idea is to bind each motor Rj with a set of
vertices Hj , so that λj(pi) = 1,∀pi ∈ Hj and gradually



Fig. 5. B-Spline Fitting and Inverse Kinematics

decrease the influence of motor Rj in the vertices outside the
handle Hj so that λj(pi) = 0,∀pi ∈

⋃n
k Hk,∀k 6= j. Doing

the same for all key motors we end with n scalar fields λj ,
so that Mi = exp(

∑n
j=1 λ

i
j log(Rj)). Each scalar field λj is

computed using the discrete Laplace equation with boundary
conditions set to 1 for vertices on Hj and set to 0 for vertices
on all the other handles (see section VIII). Laplace equation
will smoothly interpolate the boundary conditions throughout
the rest of mesh vertices.

The end result is that each vertex pi of the mesh M has
associated a set of scalars {λj}nj=1. As these scalar fields are
harmonic functions, and due to the nature of the boundary con-
ditions used for their computation, the sum of the scalar values
associated with each vertex is equal to one i.e.,

∑n
j λ

i
j = 1.

In effect, the scalars {λj}nj=1 are the barycentric coordinates
of the vertices, also known as Harmonic Coordinates, with
respect to the motors {Rj}nj=1. These Harmonic Coordinates
are in fact the same as the ones described in [6] but are
computed at the surface level, not in 3D space as in [6] which
are more involved to compute.

Fine detail deformation can be achieved as shown in Fig. 6.
Four motor handles are used for changing the facial expres-
sions of the Max-face model. The method can also be used
for global deformation as shown in the bottom row of Fig. 6.

V. FREE FORM DEFORMATION

The FFD method need the definition of a lattice of control
points Pu,v,k. An object embedded within the lattice is then
deformed by defining the following mapping from the lattice
to the object.

pi =

n∑
u=1

m∑
v=1

l∑
k=1

Bu(λi1)Bv(λi2)Bk(λi3)Pu,v,k (6)

where Bu, Bv and Bk are Bézier basis functions and
{λi1, λi2, λi3} are the local coordinates of the point pi in
the lattice space. The user thus deals with a level of detail
dictated by the density of the control lattice. Interactions of
the user are basically to specify new positions for the control

Fig. 6. Top and Middle rows: motor handles deform Max’s face. Bottom
row: motor handles deform the hand’s fingers.

points. Rotational information is not taken into account by
the deformation system, so in some cases it is very difficult
to produce convincing deformations when they involve large
rotations of the lattice. We show that this limitation can be
overcome easily by introducing conformal motors into the
system.

The control points Pu,v,k of the 3D lattice are replaced by
conformal motors Ru,v,k which are bound to the mesh vertices
pi by means of the motor Mi so that the mesh vertices can be
expressed in terms of the motors as pi = Mi o M̃i, where o is
the conformal point at the origin and the motor Mi is defined
as:

Mi = exp

(
n∑
u=1

m∑
v=1

l∑
k=1

wiu,v,k log(Ru,v,k)

)
(7)

wiu,v,k = Bu(λi1)Bv(λi2)Bk(λi3) (8)

Conformal motors allow us to extend the FFD handles from
simple positional constraints to motions that deform the
space beyond translations, including rotations and screws. Two
immediate improvements resulting from this adaptation are
the better bending and twisting of meshes. We can see the
comparison of our technique with the classic FFD in Fig. 7.

VI. HARMONIC COORDINATES

The HC method consists of binding a cage to the mesh M
so that Euclidean vertices pi can be expressed in terms of the
cage vertices Pj so that pi =

∑n
j=1 λ

i
jPj . So, each vertex

pi has associated a set of scalars {λj}nj=1. The scalars are
the generalized barycentric coordinates of the vertex pi since



(a) Superposition (b) CGA-FFD (c) FFD

(d) Superposition (e) CGA-FFD (f) FFD

Fig. 7. Comparison of CGA-based FFD and the classic FFD methods. The
deformed lattice is the same for each comparison, though some CGA-based
handles are rotated in order to align the rotation field to follow the deformed
lattice.

they are positive and form a partition of unity
∑n
j λ

i
j = 1

and are interpolants with respect to the cage vertices. When
the barycentric coordinates are harmonic functions, they are
known as Harmonic Coordinates.

As occurs with the FFD method, the interactions of the user
are basically specifying new poses for the cages. Rotational
information is not taken into account by the deformation
system, so it is hard to produce complex deformations such
as the ones shown in Fig. 8. We show that this limitation can
be easily overcome by introducing conformal motors into the
system.

The idea is pretty similar to the FFD case, the cage vertices
Pj are replaced by conformal motors Rj which are bound to
the conformal vertices pi by means of the motor Mi so that
the mesh vertices can be expressed in terms of the motors as
pi = Mi o M̃i, where o is the conformal point at the origin
and the motor Mi is defined as Mi = exp(

∑n
j=1 λ

i
j log(Rj)).

The usage of motor handles allows us to deform the space
beyond translations as can be seen in Fig. 8. The handle
positions don’t need to be modified in order to deform the
space. Complex deformations that are hard to achieve with
the positional handles can be achieved easily using the motor
handles.

VII. AS-RIGID-AS-POSSIBLE SURFACE MODELING

The main idea of this method is breaking the surface into
overlapping cells Ci and seek for keeping the cells transforma-
tions as rigid as possible in the least squares sense. Overlap of
the cells is necessary to avoid surface stretching or shearing
at the boundary of the cells. The cell rigidity measure is:

E(Ci, C′i) =
∑

j∈N (i)

wij‖(p′i − p′j)− Ri(pi − pj)‖2 (9)

where pi are the original mesh vertices, p′i are the deformed
vertices, pj ∈ N (i) are the incident one-ring neighbors of

Fig. 8. First row: cow’s back is deformed by rotating the motor handles (no
translation applied). Bottom row: cow’s shape is turned into a camel shape
by rotating several handles and translating the handles around the neck.

pi (similarly for p′j) and the weights wij are the cotangent
weights. The matrix Ri is the best rigid transformation, in
the least squares sense, relating the original and the deformed
vertices.

So, the best rigid deformation is obtained by solving the
following optimization problem:

argmin
p′,R

m∑
1

wiE(Ci, C′i) (10)

This is a non-linear optimization problem that can be
efficiently solved by a simple iterative method that solves two
linear least squares sub-problems on each iteration.

We show how to reformulate this method to their more
encompassing Geometric Algebra counterpart. Our aim is pro-
ducing a coordinate-free formulation with a better geometric
interpretation and update the use of Geometric Algebra to the
non-linear variational deformation methods. To this goal we
have to express the rigid energy in terms of Euclidean rotors
Mi = e−

1
2Biθi where Bi is a Euclidean bivector:

E(Ci, C′i) =
∑

j∈N (i)

wij‖v′ij −MivijM̃i‖2 (11)

where vij = pi − pj and v′ij = p′i − p′j . Following [34], by
differentiating (11) w.r.t. Mi, we get the optimality condition∑
j∈N (i) wij(MivijM̃i) ∧ v′ij = 0, which makes sense since

we want the Mi which makes vij “most parallel” to v′ij .
That is equivalent to finding the rotor Mi that maximizes the
following energy

∑
j∈N (i) wij(MivijM̃i) · v′ij . The solution

for Mi utilizes the linear algebra framework of quaternions in
which the optimal rotor Mi is the eigenvector associated with
the largest positive eigenvalue of a matrix P ([35]), which
is constructed from the elements of the covariance matrix
S =

∑
j∈N (i) wijvijv

′T
ij , so that

P =


Sa S12 − S21 S20 − S02 S01 − S10

S12 − S21 Sb S01 + S10 S20 + S02

S20 − S02 S01 + S10 Sc S12 + S21

S01 − S10 S20 + S02 S12 + S21 Sd


Sa = S00 + S11 + S22 Sb = S00 − S11 − S22



Sc = −S00 + S11 − S22 Sd = −S00 − S11 + S22

Since the matrix P is symmetric the eigenvectors are real. The
eigenvector with the largest eigenvalue is the quaternion we
want q = q0 + iqx + jqy + kqz .

Mi =
1

‖q‖
(q0 − qze12 − qxe23 − qye31)

The second step is computing the optimal vertices p′i that
minimizes the rigidity energy (11) in the least squares sense.
This can be achieved by taking the partial derivatives of (11)
w.r.t. p′i and equating the result to zero, which results in:∑
j∈N (i)

wijv
′
ij =

∑
j∈N (i)

wij
2

(MivijM̃i +MjvijM̃j) (12)

The minimum is attained when the total change on deformed
edges v′ij is equal to the change on the sets of rigid edges
generated by the rigid motions Mi and Mj . Equation (12)
can be expressed in matrix form as ∆P′ = C, where ∆ is
the symmetric Laplace-Beltrami operator, P′ is the column of
target positions and C is the right hand side of (12). That
is, a Poisson equation. Handle constraints of the form p′i =
ci are incorporated into the system by means of substituting
the corresponding variables i.e., erasing respective rows and
columns from ∆ and updating the right-hand side with the
values ci. The system is then solved in the least squares sense:

(∆T∆) P′ = ∆T C (13)

The sparse symmetric-matrix ∆T∆ can be pre-factored with
Cholesky decomposition. Mesh deformations are achieved by
repositioning the constrained vertices p′i = ci, solving the
linear subproblem for rotors Mi, updating the C column and
solving the LLS system for p′i. Having a good initial guess,
the convergence is typically achieved in less than 10 iterations
(three to four iterations already provides compelling results).

The Euclidean rotors are as efficient as quaternions (indeed
they are quite the same). Rotors requires less storage than
rotation matrices (just four numbers) and operations such
as scalar multiplication, composition of transformations, and
addition are more efficient than matrices. The Fig. 9 shows
that our results are exactly the same as the results produced
by the formulation in [7].

Fig. 9. Deformations obtained minimizing the GA-based ARAP energy.

VIII. HARMONIC FIELD COMPUTATION

We define the harmonic mapping λ(p) of the form λ :
M 7→ R, as a solution of the Laplace’s equation ∆λ = 0,

subject to Dirichlet boundary constraints, where ∆ represents
the Laplacian operator (∇2).

In the discrete setup, the Laplace operator ∆ turns into the
Laplace-Beltrami operator ∆M w.r.t the mesh M. Let the
user define n sets of fixed vertices Fi and m sets of handle
vertices Hj . Dirichlet boundary conditions for λ(p) with p ∈
Fi,∀i are set to 0, and for λ(p) with p ∈ Hj ,∀j are set
to 1. Having that, the finite differences discretization of the
Laplace-Beltrami equation is as follows:

∆Mλ(pi) = wi
∑

pj∈N1(pi)

wij(λ(pj)− λ(pi)) (14)

where pj ∈ N1(pi) are the incident one-ring neighbors of pi.
The normalization weights wi = 1∑

j wij
and the edge weights

wij = wji are the Mean-Value weights ([36]). Mean-Value
weights are always positive, no matter the triangle quality, and
therefore always produce smooth scalar fields.

Equation (14) can be expressed as a linear matrix system
LMλ = 0 where LM is sparse and positive semi-definite. This
system can be efficiently solved for large meshes by sparse
direct solvers like the SuperLU package ([37]).

IX. IMPLEMENTATION DETAILS

All the deformation methods described in this paper have
been implemented using the Gaigen2 Geometric Algebra pack-
age ([38]). Gaigen2 is a C++ library designed to be as efficient
as 4D linear matrix algebra (i.e., homogeneous coordinates).
We have tested our implementations on meshes with increasing
complexity and all have ran at interactive frame rates without
using the power of the GPU.

X. CONCLUSION AND FUTURE WORK

This paper investigates the emerging field of Conformal
Geometric Algebra as a new tool for mesh deformation. The
ability of expressing rigid-body transformations in a linear
space is immensely useful when attempting to smoothly inter-
polate positions and orientations, since the space of rotation
matrices is not linear. For this, geometric algebra can be
regarded as a technique related to the use of quaternions
and dual quaternions. The sub-algebra of Euclidean rotors is
isomorphic to quaternions and the sub-algebra of conformal
motors is isomorphic to dual quaternions. However, quater-
nions and dual quaternions can only be applied to vectors
(i.e., pure quaternions). On the other hand, Euclidean rotors
and conformal motors can be applied to any geometric entity
that can be expressed in the algebra.

We have demonstrated that Conformal Geometric Algebra
is a powerful tool for representing deformable meshes. The
effort needed for integrating it into the existing methods is
minimal and it pays off. We have demonstrated how the
CGA-based mesh representations conduct to a fast and easy
formulation for the Spline-aligned deformation and a formu-
lation for linear surface deformation based on generalized
barycentric coordinates. Also, we have reformulated the Free-
Form Deformation (FFD), Harmonic Coordinates (HC) and
As-Rigid-As-Possible (ARAP) Surface Modeling techniques



into the CGA framework and discussed the advantages of these
reformulations.

There is a lot of room for future work. In particular the
development of appropriate numerical techniques for motor
estimation completely within the framework of geometric
algebra as well as having an appropriate discretization theory
for Geometric Calculus. We believe that these tools will have
an enormous impact in this field.
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