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Abstract. This paper reports an experimental assessment of how appropriate and accurate the self-
similarity or box-counting fractal dimension is for practical applications to the analysis and
characterization of natural objects. The effects of the partial fractality of real objects as well as the
limited representation allowed by typical spatially quantized images are investigated through a series
of experimental measurements respectively to two Koch curves. Practical guidelines are established
and discussed that can help in obtaining more precise and meaningful experimental results. These
guidelines are illustrated with respect to images of synthetic neural cells.

1. Introduction

Fractal geometry provides an elegant framework that
can be taken as basis for theoretically analysing and
characterizing complex curves exhibiting some kind of
intrinsic ~ self-similarity at different magnification
scales [Mandelbrot (1983), Peitgen-Saupe (1988),
Falconer (1990), Edgar (1990), Gleick (1990)].
Contrariwise to traditional Euclidian geometry, which
deals with smooth curves presenting continuous
derivatives and which tend to straight lines as the
magnification scale is increased, fractal elements are
characterized by irregularity within a range of distinct
magnification scales. Fractal elements such as Koch’s
curves involve the recursive repetition ad infinitum of
an elementary geometric pattern, in such a way that
parts of the curve appear similar whatever the scale in
which they are observed. The self-similarity (also
known as box-counting or Bouligand-Minkowski, or
simply Minkowski) dimension [Peitgen-Saupe (1988),
Falconer (1990)], henceforth abbreviated as D,
provides a measure of the degree of ‘space-filling’
exhibited by a particular fractal curve. In two-
dimensional spaces, D can take any value inside the
interval [1,2]. Low values of D indicate that the fractal
curves tend to a traditional curve with topological
dimension of 1; high values of D indicate that the
fractal curve tends to the two-dimensional surface.
The fractal dimension presents fundamental
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importance in fractal geometry, as well as many
practical applications. It should be observed that the
box-counting dimension is not the same as the
Hausdorff dimension [Falconer (1990)].

Over the last decade, the box-counting
dimension has been increasingly applied as a means of
characterizing the shape of a series of natural objects,
from neurons to clouds. One of the recent applications
of the box-counting dimension has been to the
characterization of space coverage by dendritical and
axonal arborizations of neural cells [Montague-
Friedlander (1989), Montague-Friedlander (1991)],
which is of special interest regarding the current
research activities being pursued by us at the
Cybernetic Vision Research Group, IFSC-USP, thus
motivating the work reported in this paper. More
specifically, we have been concerned about how much
the accuracy of the box-counting dimension is distorted
by the following two issues: (a) natural objects, such as
a neuron, are not fractal at all the possible
magnification scales, a property that will be henceforth
denominated limited (or partial) fractality, and (b) the
discrete nature of the images in which such features are
usually represented limits the accuracy for the
estimation of D.

This paper presents an experimental
assessment of the accuracy of the box-counting
approach. The effects of limited fractality and the
spatial quantization imposed by typical computer
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images are discussed from the perspective of obtained
measurements with respect to two Koch curves, whose
theoretical ~self-similarity fractal dimensions are
precisely known. The obtained results are discussed
and taken as basis to define some practical guidelines
that can contribute to more accurate experimental
estimations of D. Such results are then applied
respectively to the characterization of synthetic neural
cells generated by a stochastic vectorial grammar
[Coelho-Costa (1994)]. The principal contributions of
the present paper consists in: (i) the indication that,
unlike it has been so often adopted in the literature,
extreme care should be taken while experimentally
estimating and interpreting the box-counting
dimension, and (ii) some practical results and
guidelines allowing such a more careful assessment are
presented and exemplified respectively to the
characterization of neural cells.

2. The Box-Counting Dimension and Koch Curves

Let us illustrate the concept and interpretation of D in
terms of the broadly known Koch curves. Such curves
are best described from the perspective of their
recursive construction, which is characterized by the
replacement of each of the straight line segments at a
given generating stage by a basic geometric pattern
henceforth to be called the generating pattern. Figure
1 illustrates two Koch curves that are respectively
produced by the recursive replacement construction
[Mandelbrot (1977), Stevens (1989), Peitgen-Saupe
(1988), Edgar (1990)].

Instead of a single line segment, the initial
shape can alternatively be a triangle, a square, or any
other polygon. It is henceforth assumed that, at the
generating stage n=0, the polygons have S sides, each
possessing length &(0), thus adding up to the total
perimeter of P(0)=S.8(0). It is also assumed that the
generating pattern is composed by N segments with
relative lengths r = 8(n)/T(n) = constant, where 8(n)
and T(n) are, respectively, the absolute length of each
segment and the distance between the initial and final
point of the generating pattern at the n-th generation
stage (n=1,2,...). Under these circumstances, the box-
counting dimension is given as D=Log(N)/Log(1/r)
[Peitgen (1988), Falconer (1990), Stevens (1989)],
which leads to D;=Log(4)/Log(3) and Dy,=
Log(8)/Log(4)=1.5 respectively to the Koch curves
depicted in Figure 1(a) and (b). The higher value
obtained for the Koch curve represented in Figure 1(b)
expresses the fact that it provides a relatively higher
degree of ‘space-filling’.
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In addition, it is straightforward to verify that
8(m)=r. d(n-1)=r". &), that the amount of line
segments at the n-th stage is A(n)=N".S, and that,
consequently, P(n)=A(n).8(n)=N".S.r".5(0)=
(N.r)".P(0). It follows directly that when n—ee the
perimeter will also be infinite.
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Figure 1 - Two Koch curves.

The counting box technique [Falconer (1990),
Feder (1988), Montague-Friedlander (1989),
Montague-Friedlander (1991)] is one of the most
commonly adopted approaches for the experimental
characterization of the fractal nature of objects. Its
basic processing step consists in projecting the shape to
be investigated onto a regular orthogonal grid, with
cells (i.e. ‘boxes’) of size dxd, and counting the
number N(d) of cells that happen to contain part of the
projected shape. Such a procedure is repeated for a
series of different values of d and it can be verified that
the absolute value of the slope of the least mean square
(or eigenvalue/eigenvector) fitting applied to the set of
sampled values {Log(d), Log(N(d))} provides an
approximation of D. As observed in the previous
section, this approximation will however suffer the
effects caused by image quantization and the partial
fractality exhibited by natural objects. As far as this
latter effect is concerned, some insight can be gained
about how it affects the box-counting dimension
estimation of shapes exhibiting partial fractality by
means of some theoretical reasoning. Let us assume
that a specific Koch curve was produced only up to the
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The Box-Counting Dimension

maximum generating stage N. The obtained Koch
curve will thus be composed by straight line segments
with length 8(N)= r"8(0). As d becomes smaller, it
will reach a stage where it gets smaller than §(N) and,
from this point on, the curve will no longer be
measured as a fractal, but rather as a conventional
curve with D=1. It is thus clear that the curve
Log(N(d))x Log(d) will typically include two distinct
regions: one in which the fractal nature of the shape is
dominant (D>1) and the other where the &N) has
become larger than d (D=1). The overall shape of such
a predicted overall shape for the curve
Log(N(d))xLog(d) is presented in Figure 2. Although
the point P has been indicated as dividing the two parts
of the curve, it should be observed that the transition
from one region to the other will not be so abrupt and
that an intermediate region will be obtained. Figure 2
also presents the convention for W and S that is
adopted in the next Section.

X
b 4
7'y
3

Log(N(d))

Figure 2 - The overall shape of the curve Log(N(d))x
Log(d) with respect to a partially fractal shape.

In spite of all the potential of the discrete
nature of the image and the partial fractality of real
shapes for disrupting the estimation of the fractal
dimension, little attention has been paid to such
important issues. In practice, the majority of
experimental works reported in the literature have been
limited to estimating N(d) for a series of d and
processing linear regression over the whole curve
Log(N(d))x Log(d). The next section presents an
experimental assessment of the counting-boxes strategy
respectively to the two Koch curves showed in Figure
1, as well as some guidelines that can be applied in
order to obtain more precise estimation of D.
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3. Experimental Results

This section presents a series of experimental
investigations aimed at characterizing the suitability of
the box-counting dimension as a practical means for
shape characterization and analysis. The underlying
approach has been to apply the counting-boxes
algorithm over the two Koch curves presented in
Figure 1, whose ideal continuous representations have
theoretical fractal dimensions known to be equal to
Log(4)/Log(3) and 1.5 respectively. The Koch curves
were obtained by using an algorithm for straight line
segment generation which produces straight features
obeying the grid-intersect quantization scheme
[Stevens (1989), Freeman (1974)]. The obtained
results are presented and discussed in the following
subsections.

3.1. Influence of the Limited Resolution Implied by
the Image Spatial Quantization

As the generating stage of the Koch curves increases,
the new details added to the overall fractal curve
become smaller and smaller. When the spatial
sampling limit resolution in which the image is being
generated is reached, the added features will no longer
be representable and the overall curve will cease to
grow.

This suggests a test can be devised to express
the degradation implied by the finite spatial sampling
resolution onto the representation of fractal objects.
Such a test consists in calculating the difference D,
between the images representing the fractal curves at
the generating stages i and i-1, i=0,1,2,... (i=-1
correspond to a single pixel) This difference expresses
the number pixels that appear at a given generating
stage and do not appear in the subsequent stage and
vice-versa. It can be verified that D; follow the
recursive relation D= (4/3)“Di_1, with respect to the
Koch curves in Figure 1(a). Such theoretical results
(curve A), together with the respective experimental
results (curve B), are showed in Figures 3(a), (b) and
(c) respectively to 8(0)=50, 100 and 200. Similar
results for the Koch curve in Figure 1(b) are
depicted in Figures 4(a), (b) and (c), where the
theoretical values of D; (curve B) are know to obey the
the recursive relation D;=2. D, ,.

By comparing the theoretical with the
experimental results in Figures 3 and 4, it can be easily
verified that the values of these latter start to collapse
after reaching a critical value of i, thus indicating that
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Figure 3 - Differences between generate of stage
for the Koch curves in Figure 1(a).

the new added details will no longer be properly
represented starting from the generating stage i. As it
could be expected, the critical point is reached earlier
for smaller 8(0) in both curves. For the Koch curve in
Figure 1(a), only 3 generating stages are properly
processed for 8(0)=50, which is extended to 4 stages in
the case of &0)=100 and 200. The second Koch curve
starts to deteriorate after 3 generation stages for
8(0)=50 and 100 and 4 stages for 8(0)=200. it can be
verified that the critical value of i is associated to the
stage where the straight line segments constituting the
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Figure 4 - Differences between generate of stages
for the Koch curves in Figure 1(b).

generating pattern reaches the dimension of a pixel in
the image.

3.2. The Influence of the Partial Fractality

In addition to the limit imposed by the discrete nature
of the image space, natural objects often present an
inherent limited fractality. The dendritical
arborizations of neural cells, for instance, have its
fractal characteristics limited by the finite orders of
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dendritic branches. In order to investigate how such a
property can influence the estimation of D, a series of
images containing Koch curves generated up to the
maximum the generating stage N=0,1,2,3, and 4 were
processed in order to obtain the diagrams of Log(N(d))
in terms of Log(d) that are depicted in Figures 5 and 6.
A straight line (dashed) with slope of -1 was also
added to the plots in order to provide a reference for
visual comparison. As it was expected, the curves for
N=0, which correspond to typical straight lines,
presents a strong similarity with the reference curve
possessing slope of -1. It should be observed that the
experimental curves becomes more and more noisy as
Log(d) is increased. Such an effect is caused by a
combination of the finite extent of the generated Koch
curves and the spatially quantized nature of the image
space. It can be also verified that, as N,,,, increases,
the curves tend to become more and more inclined, i.e.
the value of the absolute value of their respective
overall slope increases, thus surpassing the topological
dimension. This effect is more evident for the curves
in Figure 6, which were obtained.
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Figure 5 - Curves Log(N(d))xLog(d) for the Koch
curve in Figure 1(a).

As it would be expected, the obtained curve
converges to a standard curve with D=1 for N=0 (i.e. a
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single line is represented in the image). The two
regions discussed in the previous section (D=1 and
D>1) can be identified with the aid of a ruler in many
of the graphs in Figure 5 and 6.

The relative errors (in %) of the estimated D
in terms of the position S (see Figure 2) assumed for
the linear regression for W=10, 20 and 30 are
presented in Figures 7 and 8 respectively to the Koch
curves in Figures 1(a) and (b). One of the first
interesting features to be observed in such graphs
regards the reduction of the overall estimation error
(ie. the average value of the curves along the
domain S) caused by the increase of the fractality (i.e.
larger N) of the respective Koch curves. It can be
readily verified that rather noisy results were
obtained at the right portion of the plots for W=10,
which reflect the fact that the narrow window too
sensitive to the noisy portions (Figures 5 and 6).
The effectiveness of larger values of W as a means of
‘smoothing’ the obtained curves is clearly verified.
However, larger values of W also imply a higher
average value of the obtained errors. The effect of S
over the error is also substantial. As N increases, the
value of S for which the error is minimum tend to shift
to the right.

4.0 40
=309 "~ ~ 304 -
= = 2 N
Z 204 - Z 2041 )
e oo
< <
= 1.0—\ = 1.0
0.0 T 00— 71—
00 05 1.0 1.5 20 00 05 1.0 15 20
Log(d) Log(d)
(a) (b)
4.0 40
=30+ - | =304 -~ .
2 e 2 L.
oo B0
o o
- 1.0 ~ 1.0
0.0 —TT 0.0 ————
0.0 05 1.0 15 20 0.0 05 1.0 15 20
Log(d) Log(d)
(© ()]
40
=~ 30K - .
2 * s
z 20‘\‘\
&0
<
- I'O_
0.0 L
00 05 10 15 20
Log(d)
©

Figure 6 - Curves Log(N(d))xLog(d) for the Koch
curve in Figure 1(b).
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Errors for W=10 and generating stages N=1, 2, 3 and 4.
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Figure 7 - Errors (in %) respectively to the Koch curve in Figure 1(a).
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Figure 8 - Errors (in %) respectively to the Koch curve in Figure 1(b).
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3.3. Practical Guidelines for
Experimental Estimation of D

Improving the

As indicated by the above presented results, it is clear
that D can vary wildly according to the region
overwhich the linear regression needed for the
estimation of D is performed. It can be verified that
the most important issue behind the accurate
estimation of D consists in identifying the appropriate
range of values of d to be used during the linear
regression.  As verified in the previous sections, this
window should be defined in terms of the region where
the curve exhibit fractal features and be limited by the
resolution of the spatial quantization in the image.
While the latter constraint can be reasonably well
defined by adopting the minimum value of d to be
larger than &8(N) (i.e. size in pixels of the smallest
segments in the image), the problem of identifying an
appropriate region where the object is fractal is not
straightforward to be accomplished. Moreover, as
indicated in Figures 5 to 8, the fractal region tends to
correspond to large wvalues of d, where the
experimentally derived values of Log(N(d)) are most
noisy. The choice of the appropriate region, i.e. the
selection of S and W, can be done with basis on the
graphical representation of the curve Log(N(d) )xLog(d)
by identifying the region where D=1, which always
extend from d=1. This can be done visually by using a
ruler, in such a means that the point where the curve
breaks from this region is taken as a good value for S.
The value of W can then be set as equal to the extent
from S to the point where the curve Log(N(d))xLog(d)
becomes too noisy. This technique has been verified to
lead to good results, including the situations depicted
in Figures 5 and 6. Let us consider, for instance,
Figure 6(c). It is easily verified that S should be
selected as approximately S=10°"=5 and that W=10"* -
10°7=20, which lead to an error smaller than 10%.

4. Application to the
Characterization of Neural Cells

Morphometric

In this section, the above proposed guidelines are
illustrated with respect to images of synthesized neural
cells, presented in Figure 9(a) and (b), which exhibit
fractality arising from the recursive patterns of
dendritical branching, which is obviously limited. The
Log(N(d))xLog(d) curves obtained for such objects are
presented in ‘Figure 10(a) and (b), respectively. By
using the proposed guidelines, the values of D,=1.384
and Dy=1.476 were obtained with respect to the neural
cells in Figures 9(a) and (b). The fact that D,<D,
reflects the higher ‘space filling’ characteristic
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exhibited by the neural cell in Figure 7(b). It is
interesting to notice that, were the suggested guidelines
not applied, the obtained values of D could have been
resulted much smaller.

(a)

Figure 9 - Neural cells.
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Figure 10 - Curves Log(N(d))xLog(d) for the neurons
in Figures 9(a) and (b).

S. Concluding Remarks

This paper has addressed the problem of accurate
estimation of the Minkowski dimension through the
box-counting algorithm that has been so often applied
as a means of shape characterization and analysis. It
has been verified and discussed that two major effects
contributes to producing distorted values of D, namely
the finite spatial resolution allowed by computer
images and the limited fractality of real objects. The
assessment of the box-counting approach, performed
respectively to two Koch curves for which the
theoretical Ds are precisely known, substantiated that
wildly varying results can be obtained if extreme care
is not taken. Such an experimental assessment
indicated that the limited spatial resolution of real
computer images severely constraints the fidelity in
which fractal elements can be represented.  For
objects possessing width of about 100 pixels, no more
than 3 or 4 fractal generating order will be properly
represented. It was also verified that the
Log(N(d))xLog(d) curve typically presents two
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constituent regions, one in which D=1 (topological
section) that is followed by another region in which
D>1 (fractal section). The errors for the estimation of
D Interms of S, W and the object fractality were
investigated and a series of results were obtained.
Firstly, it was verified that the fractality of the
produced Koch curves affect directly the average value
of the error. It was also verified that the regions where
d is large are typically characterized by noise caused by
the finite extent of the Koch curves and the discrete
nature of the image space. The value of W was
verified to provide an effective means for smoothing
such noise. In brief, it was clearly verified that, unless
great care is taken for selecting the region where the
least mean square fitting is applied, large errors will be
obtained. Practical guidelines were proposed as a
means of improving the accuracy for the estimation of
D, which were verified to produce good results. Such
guidelines were illustrate with respect to two
synthetically generated neural cells.

Although the proposed technique has yielded
good results, it depends on an operator-assisted choice
of S and W, which can imply some subjectiveness to
the overall process. Efforts are currently being made
towards developing a fully automated process for the
accurate estimation of D, and a novel multi-scale
approach to accurate curvature estimation is being
considered as a means of characterizing the curve
Log(N(d))xLog(d) and providing an accurate choice of
S and W. Such developments should also include
averaging for several positions and orientations of the
grid.
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