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Abstract. In this work we propose the application of the watershed segmentation method in the
automatic detection and classification of mammographic calcifications. Only two simple textbook
shape factors, the compactness and the first invariant moment, are used to build a nearest-neighbour
classifier. Using mammographic sections of biopsy-proven cases, we demonstrate the effectiveness

of the proposed technique.

1 Introduction

Breast cancer is a subject of great concern in medi-
cine, since it is a leading cause of death by cancer of
women in middle age and older. Prevention of this
disease is unfortunately very difficulty, because the
causes of breast cancer are not yet fully understood.
Of all the breast screening techniques, mammogra-
phy has proven to be the only one which allows the
diagnosis of breast cancer at its earliest stage, when
it 1s still possible to treat the disease very effectively
[2].

One of the major signs for the early diagnosis
of breast cancer is the presence of malignant calci-
fications-in mammograms. Automatic methods for
the detection and classification of calcifications offer
therefore significant help to radiologists in improving
the efficiency of screening programs.

The segmentation of the calcifications is a dif-
ficult step in automatic methods, because mammo-
graphic images usually have poor contrast. Many
different approaches to the problem of calcification
segmentation can be found in the literature. For in-
stance, Shen et al. [11, 12] employed a region grow-
ing technique, whereas Chan et al. [5] investigated
a difference-image technique. Davies and Dance [6]
tried a method based on a local-area thresholding
process.

In this paper we propose the application of the
watershed method in the segmentation of calcifica-
tions in mammograms. The watershed method is a
powerful Mathematical Morphology tool for segmen-
tation that does not involve any heuristics, unlike
classic methods like, for example, region growing.

The criterion for differentiating the benign and

malignant calcifications in the classification step is
their shape. We make use of only two simple text-
book shape factors, the compactness and the first in-
variant moment, to build a nearest-neighbour classi-
fier. Using mammographic sections of biopsy-proven
cases, we demonstrate the effectiveness of the pro-
posed technique.

In the following sections, we first give a detailed
explanation of the watershed method, and then de-
scribe the shape factors and the nearest-neighbour
classifier used. Then we show the results obtained
for biopsy-proven calcifications and close up by of-
fering some remarks on_the benefits-andlimitations
of the technique proposed, comparing it also with a
previous work on the field.

2 The Watershed Method

The watershed method is a powerful Mathematical
Morphology tool for segmentation [3, 14]. This tool
is useful not only for segmenting gray-level images
(as we show in section 2.1 below), but also for bi-
nary segmentation, i. e., the problem of separating
overlapping particles [4, 10].

2.1 The Watershed Transformation

In order to understand the watershed transforma-
tion, it is useful to think of an image as a relief,
where the bright areas correspond to the elevations
of the terrain, and the dark areas to the depressions.
If one drop of water is released on any point of the
relief, it will slide down until it gets to a regional
minimum. The set of all points where the drop of
water is bound to end up in a given regional min-
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mmum M is defined as the catchment basin W(M)
associated with the minimum M. The contours of
the catchment basins form the watershed line, which
is the output of the watershed transformation.

In a completely equivalent manner (and maybe
easier to visualize) one may suppose that water is
oozing and rising at equal speed from every region-
al minimum, starting from the lowest minimum and
then from each of the others as soon as the waterlev-
el reaches its altitude. Dams are built in the places
where water from different minima would merge. Af-
ter the relief i1s completely flooded, the dams rising
above the waterlevel constitute the watershed line,
which is composed of closed contours that involve
each of the regional minima and correspond to the
crest lines of the relief. This “flooding interpreta-
tion” of the watershed transformation is illustrated
in fig. 1.

We remark that the watershed transformation
can be defined entirely in terms of Mathematical
Morphology operations, however, the most efficient
implementations use pixels queues and rely on the
flooding interpretation itself [14].

2.2 Segmentation of Gray-level Images by
the Watershed Method

The transition from one region to another in an im-
age 1s marked by a sharp change in the grey-level.
Now, the gradient operator has the property of de-
tecting such changes: Transition regions become
bright in the gradient, whereas relatively uniform
regions become dark, so that the crest lines of the
gradient correspond approximately to the contours
of the regions in the original image. Hence, a proce-
dure for segmenting the regions would be simply to
apply the watershed transformation on the gradient
of the image.

Unfortunately, in real-world images there is al-
ways a considerable amount of noise, which intro-
duces a great number of spurious catchment basins in
the determination of the watershed line, yielding an
over-segmented image. An initial low-pass filtering
of the image improves the result, but is not sufficient
to solve the problem.

The most commom procedure to overcome the
over-segmentation problem is to modify the gradien-
t homotopy, in such a way that its crest lines cor-
respond to the contours of only the desired regions,
which are specified by providing markers for each one
of them. A background marker is also required. The
modification of the gradient homotopy is then ac-
complished by imposing the markers as the regional
minima of the gradient and then suppressing all the
other minima by way of a morphological reconstruc-
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tion operation. The composition of modification of
gradient homotopy and plain watershed transforma-
tion is known as the geodesic watershed transforma-
tion. We also refer to it simply as the watershed
segmentation method.

Note that the the markers may be obtained au-
tomatically or specified manually. In the latter case,
the method combines computer processing with hu-
man expertise. In the case of the mammographic cal-
cifications, for instance, an experienced radiologist
can provide the markers very easily using a mouse,
discarding artifacts which otherwise could be mistak-
en by automatic methods as true calcifications.

In fig. 2, we illustrate the concepts discussed
above for an image of a single mammographic calcifi-
cation. Note that the image is blurred (due to mag-
nification by bilinear interpolation) and has low con-
trast (fig. 2-a). Note also how in the over-segmented
result (the output of the plain watershed transfor-
mation) the-desired calcification contour is bogged
down by irrelevant crest lines of the gradient (fig. 2-
b). The markers for this example are very simple, a
circle (the internal marker) and a circle’s border (the
external marker), which were placed manually on the
image (fig. 2-c). After the homotopy change of the
gradient by those simple markers, the watershed line
gives the wanted calcification contour (fig. 2-d).

3 Classification of the Calcifications

The classification step is based on the shape of the
calcifications, which is known to be one of the most
significant criteria for differentiating between benign
and malignant calcifications. While benign calcifica-
tions tend to be roundish and in a small number, ma-
lignant calcifications are more irregularly shaped and
have angular contours, appearing in a larger number
and often in clusters [13].

3.1 Shape Factors

In this work we have utilized two simple, well-known
shape factors. The compactness is a dimensionless
descriptor defined as the ratio between the squared
perimeter p and the area S of an object A:

2

=
C=73 (1)

The compactness is invariant with respect to s-

cale, translation and, except for digital round-off er-

rors, also to rotation [8]. This descriptor gives a
measure of the roughness of an object shape, so it
is very appropriate for characterizing calcifications.
It is easy to verify that the compactness is minimal
for a circle, and that the more complex is the contour
of an object, the larger is its compactness.
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(c)

(d)

Figure 1: Flooding interpretation of the watershed method: (a) original image (b) relief associated with it
(c) watershed line superimposed to original image (d) the watershed line as dams built on the relief

The second shape factor we have used is the first
mvartant moment:

b2 4 9
Moo + Moz Mg~ + Moy~ -
M = - (2)

¥ ]
Moo~ 777003

where the moments of order pgq are defined for a dig-
ital object A as:

Mg = ZZ Pyl V(e y) €A (3)
roy

Notice that mgg is simply the area S of A, whereas
mip and mg; are equal respectively to S.T and S.y,
where T and 7 denote the centroid coordinates of A.

It can be shown that the first invariant mo-
ment is insensitive to scale, translation and rotation
changes [9]. As we show in section 4, the first invari-
ant moment proved to be very effective in discrimi-
nating the shapes of benign and malignant calcifica-
tions.

3.2 The Nearest-Neighbour Classifier

The computation of the shape factors yields a feature
vector x; for each of the N calcification samples in
the tramning set. Now, in order to get better classifi-
cation results, it 1s convenient to apply a normaliza-
tion to the feature vectors, so that each shape factor
lies in the interval [0,1]. The resulting normalized
feature vectors x; are given by:

=M izl N ()
with
o = ' (5)
2i=1Cj
Ty = (6)
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The nearest-neighbour classifier is a simple non-
parametric technique which assigns to a unknown
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(c)

(d)

Figure 2: Example of segmentation by the watershed method: (a) Original image (b) Over-segmentation
produced by the plain watershed transformation (c) Internal and external markers (d) Desired segmentation
produced by the geodesic watershed transformation superimposed to the original image

calcification sample the class (in our case, benign or
malignant) of the nearest sample in the training set,
according to the euclidean metric. Despite the sim-
plicity of the nearest-neighbour classifier, it can be
shown that its error rate is nevertheless never greater
than twice the minimal Bayes’ rate [7].

Hence, the classification procedure is simply to
compute the squared (to avoid the square root nu-
merical complexity) euclidean distance

9

d(x;,y" )= (25— ;) (7)

=1

between each normalized feature vector in the train-
ing set and the unknown normalized feature vector
y* and assign to the latter the class ¢ of the training
sample x} for which d(x},y™) is smallest.
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4 Experimental Results

In this section we present the results obtained with
the application of the techniques described in the
previous sections for the automatic detection and
classification of mammographic calcifications.

We have based our implementation on the Kho-
ros image processing system, running in a Sun SPAR-
C10 workstation under Unix and X11R5. Khoros is a
very popular open platform developed at New Mex-
ico University and freely available through anony-
mous ftp. Khoros provides a large number of basic
operators for image processing and analysis, and also
allows C programmers to contribute their own oper-
ators, offering automatic code generators that sim-
plify the task of integration to the system. We have
utilized a set of such contributed operators for Math-
ematical Morphology image processing, the MMach
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Khoros toolbox [1]. MMach provides all the basic
morphological operators, as well as directly imple-
mented operators for the plain watershed transfor-
mation and the modification of homotopy. MMach is
freely available through anonymous ftp, at Sao Paulo
University. For the classification step, we used the
vshape Khoros program for the computation of the
shape factors, and implemented a new Khoros oper-
ator for the nearest neighbour classifier.

We have utilized mammographic sections of bi-
opsy-proven cases, chosen from the Radiology Teach-
ing Library of the Foothills Hospital, Calgary, Cana-
da. A total of seventy-four calcifications were select-
ed for this study, divided in twenty-one benign calci-
fications from two sections and fifty-three malignant
calcifications from one section. In figs. 3-a and 4-a
we show respectively one of the benign sections and
the malignant section used in this study.

We have applied the watershed method describ-
ed in section 2 for the segmentation of the selected
calcifications. The markers required by the geodesic
watershed transformation were obtained in a semi-
automatic fashion. The internal markers were single
pixels placed manually inside each calcification with
the mouse. From the internal markers we got the
external marker, as the result of the geodesic water-
shed transformation of the inverse of the input mam-
mographic section using the internal markers as the
marker set. Considering the relief model of images
(see section 2), the external marker correspond to the
valleys in the background which separate the internal
markers. The external marker thus obtained isolates
each of the internal markers in disjoint regions, as
can be seen in figs. 3-b and 4-b. Note that to each
internal marker exactly one region is assigned.

The input mammographic sections were lowpass
filtered and then their morphological gradient was
computed (the low-pass pre-filtering has the prop-
erty of enhancing the gradient). The geodesic wa-
tershed transformation, using the markers described
above, was applied to the gradient, yielding the de-
sired calcification contours, which can be seen super-
imposed to the original images in figs. 3-¢c and 4-c.
For the computation of the shape factors defined in
section 3.2, it is necessary to fill up the contours in
order to obtain the binary regions correspondent to
the calcifications. This last step in the segmentation
procedure in accomplished by using the close-holes
morphological operator [1]. The final result of the
calcification segmentation process is seen in figs. 3-d
and 4-d (the labels identify some of the calcifications
for a posterior discussion of the method).

The shape factors defined in section 3.1, name-
ly the compactness and the first invariant moment,

[N)
-~
-~

were then computed for each of the segmented re-
glons representing the calcifications. For estimating
the probability of error of the nearest-neighbour clas-
sifier (section 3.2) we used the “leave-one-out” pro-
cedure. It consists of taking as test sample each one
of the available samples in turn, the training samples
being the remaining ones in the original set. In our
case, this means that a total of seventy-four classi-
fication experiments were performed, in which each
one of the calcifications were classified against the
other seventy-three. This allowed us to compute
a correct-classification rate for each of the classes
(benign and malignant) and the global classification
rate, which turned out to be the following:

90.48%
98.11%

95.95%

Benign classification rate =
Malignant classification rate =

Global classification rate =

Only one of the malignant and two of the benign
calcifications were misclassified, that is, three failures
in a total of seventy-four experiments, a near-optimal
result. If the malignant calcification labelled 3 in
fig. 4-d is removed from the original set of seventy-
four calcifications, the classification rates obtained
become 100%.

The above classification result is an implicit
function of the shape factors used and specially of
the accuracy of the segmentation method employed.
By comparison, a previous work on mammographic
calcification detection and classification (which uses
a similar nearest-neighbour classifier) [12], describes
that using as segmentation method the classic region
growing algorithm, and as shape factors the com-
pactness, fourier descriptors, and a combination of
boundary moments specially designed for this appli-
cation, it was possible to get a 100% classification
rate on a set of 143 calcifications. In our approach, by
using as segmentation tool the watershed method, we
were able to replace their two latter involved shape
factors by the simple textbook first invariant mo-
ment and still get a very close result. We remark
also that, unlike the previous work mentioned, our
technique does not rely on any heuristically selected
factors.

By having access to more mammographic sec-
tions, which would enable us to have an approxi-
mately equal number of benign and malignant calci-
fications, and by counting on the assistance of a ex-
perienced radiologist to select the internal markers
in the segmentation step, we believe that our results
can be even better.

A sensitive point in the application of the water-
shed method to the segmentation of mammographic
calcifications is the very low constrast of the images.
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This may lead in some cases to bad segmentation re-
sults, like the incomplete benign calcification labelled
2 in fig. 3-d, which “looks like™ malignant, and prob-
ably also to the troublesome malignant calcification
labelled 3 in fig. 4-d, mentioned above, which “looks
like™ benign.

The calcification labelled 1 in fig. 3-d poses a
different kind of problem (see also the original calci-
fication in fig. 3-a). It is probably a combination of
overlapping calcifications. This is not surprising, be-
cause mammography is a projective screening tech-
nique, losing information on the axis paralell to view.
Whether one considers these kind of objects as a sin-
gle or multiple calcifications, any segmentation tech-
nique, including the watershed method, will produce
undesirable contours which may lead to misclassifi-
cation as malignant due to the angularities present.

5 Conclusion

We have demonstrated in this work that the water-
shed method, a powerful Mathematical Morphology
tool for segmentation, is very effective for the auto-
matic detection and classification of mammograph-
1c calcifications. Using a nearest-neighbour classifier
and two simple textbook shape factors, the compact-
ness and the first invariant moment, we were able to
get classification rates, as given by the “leave-one-
out” procedure, of nearly 100%, despite the poor con-
trast of mammographic images and the presence of
overlapping calcifications. By having access to more
mammographic sections and by counting on the as-
sistance of a experienced radiologist we believe that
it 1s possible to get even better results.
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Figure 3: Segmentation of calcifications in one of the benign mammographic sections: (a) Original image (b)
Internal markers (represented as little crosses) and external markers superimposed to the original image (c)
Contours produced by the geodesic watershed transformation superimposed to the original image (d) Filled

up regions correspondent to the selected calcifications
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(c) (d)

Figure 4: Segmentation of calcifications in the malignant mammographic section: (a) Original image (b)
Internal markers (represented as little crosses) and external markers superimposed to the original image (c)
Contours produced by the geodesic watershed transformation superimposed to the original image (d) Filled
up regions correspondent to the selected calcifications
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