Tcﬁe - a Visual Environment for the Lua language

ANDRE FILIPE LESSA CARREGAL
ROBERTO IERUSALIMSCHY

Departamento de Informatica
PUC-Rio
Rua Marqués de Sao Vicente, 255
22453-900 Rio de Janeiro, RJ, Brasil
{carregal, roberto }@icad.puc-rio.br

Abstract: The Tche (Tiny Canvas-Hosted Environment) system is a visual environment that sup-
ports the direct manipulation of visual objects written in the Lua language. Tche was designed to
be simple, portable and flexible, being also highly user customizable. Tche uses a workspace
where the visual objects can be manipulated, modified and browsed. The system allows the use of
text Lua commands, offering real-time interactions not available in conventional systems. We in- .
troduce other visual environments such as Visual Basic, ACE, Smalltalk, Obéron, SELF and
Tcl/Tk, and briefly discuss the solutions and characteristics of each system in the direct manipula-

tion of visual objects, ease of use and portability.

Keywords: Visual Programming, User Interface, Abstract Data Views, Active Objects, Visual

Objects.

1. Introduction

The advent of new programming styles usually brings
up new software development tools. The need to com-
bine prototyping and rapid application development,
makes necessary the use of specific tools, to achieve
flexibility and ease of use. These tools normally use the
concept of direct manipulation of objects. Those can be
considered visual objects due to the existence of a
graphical representation corresponding to each object.

Software tools with such characteristics are called
visual development environments. Some of these tools
allow visual objects to have their attributes and behavior
modified in run time (dynamic modification). This fea-
ture enables the investigation of new possibilities and
combinations, stimulating an exploratory programming
style.

, This work describes the Tche (Tiny Canvas-Hosted

Environment) system. Tche is a visual development
environment that supports the direct manipulation of
visual objects described in Lua. Lua [FIC94] is a pro-
gramming language with structured language character-
istics and object orientation, based in a portable inter-
preted environment. Lua can be used as a configuration
language, using its data description capabilities, as
much as a programming language embedded in a devel-
opment system.

Tche is simple to use and requires few machine re-
sources and a little learning time. Nevertheless, the sys-
tem is also flexible enough to allow a high degree of
user configuration. The system also offers easy port-

ability, minimizing the utilization costs in heterogene-
ous environments.

In the next section we introduce some related vis-
ual environments. Then we describe the Lua program-
ming language and the Tche System. Following this, we
conclude with some suggestions for future works.

2. Related work

This section introduces’ other visual environments such
as Visual Basic, ACE, Smalltalk, Oberon, SELF and
Tcl/Tk, and briefly discuss the solutions and character-
istics of each system in the direct manipulation of visual
objects, ease of use and portability.

The Visual Basic system[MS92] offers a visual de-
velopment and programming environment allowing
simple prototyping and complete program creation us-
ing a Basic language variation. The program interface
creation is done with direct manipulation of interface
elements. Each element has a set of properties and a
programmed behavior. The system can use the built-in
elements and/or C created elements. The last ones allow
different functionalities and features to be added to the
system.

Visual Basic offers no run time object direct ma-
nipulation, unless the developer explicitly implements
this feature in Basic code. Although Visual Basic builds
stand-alone executable application, those are not port-
able running only in the Microsoft Windows plataform.

The ACE (Application Construction Environment)
system [JNZM93] uses the composition of high-level

Anais do VIII SIBGRAPI (1995) 227-232



228

semantic components to develop applications. The ACE
system uses a high-level component manipulation lan-
guage based on the spreadsheet formula definition. The
language is used to configure and modify the applica-
tion components. In traditional systems the programmer
uses low-level abstraction resources to specify what the
application does and how it interacts with the user. In
opposition to this, a spreadsheet offers functionalities
and interface elements that are configured by the user to
develop an application.

Smalltalk [Gold84a] consists in an object-oriented
programming language and a group of integrated tools
that manipulates the various components of the Small-
talk system. The system display is divided in rectangu-
lar frames containing text and/or pictures. Frames can
be moved, resized, collapsed or removed.

Smalltalk uses the concept of image to store and
recover its configuration. The user can at any time save
the system image so the modifications become part of
the system. Smalltalk offers tools such as text editors,
class browsers and an interactive debugger. The class
browser allows the visualization and modification of the
system methods and attribute definitions. New classes
and methods can also be added as needed.

Oberon [Wirt92] is derived from Modula-2 and
was created to develop operating systems. Oberon dif-
fers from Modula-2 mainly by offering type extension
support, essential to the system expansion. The Oberon
environment offers advanced resources for the editing
and formatting of text and pictures. The system is ex-
tremely economic under the perspective of resource
utilization. The display management is based in frames,
positioned by the system using specific space-saving al-
gorithms. The system uses frame tiling instead of the
more common overlapping method. The system is
available for many platforms and porting Oberon pro-
grams is very easy, involving only recompilation.

SELF [AB93] is an object oriented language, de-
veloped to facilitate the exploratory programming. The
language includes dynamic typing and garbage collec-
tion. SELF does not use the concept of classes or vari-
ables, adopting instead the prototyping of objects. The
object attributes (slots) are accessed sending messages
to self.

The SELF environment has a high-level abstraction
of the system objects, allowing the direct manipulation
of object properties. The environment uses sophisticated
interface methods, including cartoon animation tech-
niques. That sophistication, however, makes SELF a re-
source-demanding system. Another negative points are

Anais do VIII SIBGRAPI, outubro de 1995

A. F. L. CARREGAL, R. IERUSALIMSCHY

the lack of portability and the deep dependence to the
SUN platform.

Tcl (tool command language) [Oust94] is a script
language developed for application control and exten-
sion. Tcl uses a C library interpreter that can be embed-
ded in the application. The use of the same language
across a set of applications allows the exchange of
scripts by the applications. This communication
mechanism is more powerful and flexible than static li-
braries solutions like Microsoft OLE and SUN Tool-
Talk.

The Tk [Oust94] toolkit is a Tcl extension that of-
fers X11 user interface building commands. Tk allows
the creation of interfaces using Tcl scripts instead of C
code. The toolkit uses X11 to implement a widget set
based on the Motif look and feel. Each widget belongs
to a class that specifies the appearance and behavior of
the widget. The behavior is determined by a Tcl script
binded to the widget.

3. The Lua language

Lua [FIC94] is a dynamic typed extension language
with traditional structured and object-oriented character-
istics. Lua is implemented as a C library and does not
have the concept of a main program, being used always
within a host program. Lua reflexivity mechanisms al-
low the creation of new code chunks and the association
of this code to the system, facilitating the implementa-
tion of persistent objects.

Before executing a piece of code, Lua compiles its
commands and functions and then executes the com-
mands sequentially. Functions are values in Lua and can
be stored in variables, used as parameters and returned
from other functions. The table type implements asso-
ciative arrays that can be indexed by any value, being
used not only as conventional arrays but also as lists,
symbol tables, records, etc.

The table constructor mechanism allows the im-
plementation of very sophisticated data structures, pro-
moting the use of Lua as a powerful configuration lan-
guage. The table constructors can create empty tables or
tables with initialized values. Constructors can call a
Lua function, a feature that can be used to many pur-
poses, such as defining default values for the created
table.

Lua has a powerful semantic extension mechanism
called fallbacks. This mehanism allows a programmer to
define functions to be called when Lua does not know
how to handle an error situation. A common use for
fallbacks is the implementation of an inheritance



TCHE - A VISUAL ENVIRONMENT FOR THE LUA LANGUAGE

mechanism. More details about the language' and its
API, including code examples and the integration of
Lua and C can be found in the language reference man-
ual [IFC95].

4. The Tche System

The Tche (Tiny Canvas-Hosted Environment) system
[Carr95] is a visual environment that supports the direct
manipulation of visual objects written in the Lua lan-
guage. Tche was designed to be simple, portable and
flexible, being also highly user customizable, Tche uses
a workspace where the visual objects can be manlpu-
lated, modified and browsed. The system allows the use
of text Lua commands, offering real-time interactions
not available in conventional systems.

The acronym choice intends to convey the philoso-
phy of an economic system easily portable to most
graphic platforms. Tche uses some concepts of the sys-
tems presented before, including some ideas not present
in these systems.

Being an event-driven environment, Tche does not
have a main program. Instead, the system consists of
different objects that interacts with themselves and with
the user. Like some similar systems, Tche can use tim-
ers to generate events in regular time intervals. The
Tche event handling architecture permits the creation of
new event types and the association of these to the sys-
tem. As an example of this mechanism, events can be
added to the system using RPC (Remote Procedure
Calls), allowing the remote system manipulation.

As Smalltalk, Tche uses a system image concept to
store the visual objects state. However, Smalltalk uses a
complete system state recording. Instead of this, the
Tche system image consists of a Lua text file describing
the system objects. Using a configuration file like this
allows the transport of Tche applications within differ-
ent platforms, helping the interface and prototype de-
velopment.

Tche can be used in three levels: in the top level,
application users operate the system through its inter-
face; in a middle level, Lua developers modify the sys-
tem using Lua code; and in the lower level, C program-
mers add new capabilities, such as events, to the system.

From the application user perspective, the Tche
environment is composed by a command window and
one or more canvas, where visual objects are placed.
The command window allows the typing of any Lua
command to be executed. The user can also activate
browsers to navigate and modify the visual objects at-
tributes (Figure 1). The browsers let the user edit simple

229

attributes and activate new browsers to access table type

_fields. Simple attributes (numbers and strings) can be

modified right into the browser, while table and func-
tion attributes are just highlighted indications.

Tche uses some SELF concepts to show visual
objects. Objects are solid and move like filled blocks,
instead of border frames. The appearance of new objects
in the screen, including menus, uses animation tech-
niques to simulate the breeding of the object. The sim-
ple techniques used show that, the seemingly little ef-
forts in the interface interaction and visualization, make
vaigél"‘difference in the system user feedback.

Unlike most of the other systems, Tche does not
force an object to be positioned in front of the others
while moving. A moving object keeps its relative posi-
tion, passing over objects that are in lower positions and
under superior ones. To enhance the movement illusion
the system uses a double buffering technique like the Tk
toolkit [Oust94]. Notice that this moving metaphor
needs fast bit map operations (BitBlt) to run smoothly.

To a Lua developer the Tche system offers a hier-
archy of objects defined as Lua tables. Each object has
attributes that can be simple values, tables or functions.
The use of functions as table attributes can be inter-
preted as an association of methods to objects. The sys-
tem hierarchy offers objects corresponding to windows,
lists, timers and the visual object manipulation subsys-
tem.

Tche uses an inheritance mechanism to allow an
object to access attributes of hierarchically higher ob-
jects. If an object does not have a certain attribute, the
system use an attribute named parent or godparent'
continue recursively the search. This mechanism per-
mits the use of multiple inheritance in the hierarchy.

Tche uses prototyping to create new objects. A
prototype is a Lua object with attributes to be used by
its heirs. An heir is a Lua object which parent or god-
parent attributes are references to the prototype or to an
heir of the prototype. Methods and attributes defined for
a prototype can be redefined in its heirs, without
changing the prototype original values. This mechanism
is also used in SELF and parallels the traditional class-
based inheritance definition.

Each visual object has a set of associated methods
named callbacks. Each callback is triggered by the sys-
tem when events occur over the object. This works like
the binding of Tcl/Tk widgets, allowing the redefinition
of the object behavior through the modification of the

! the name godparent comes from the idea of “parent
substitute”.

*Anais do VIII SIBGRAPI, outubro de 1995



230

A. F. L. CARREGAL, R. [IERUSALIMSCHY

corresponding callback. Tche defines callbacks for  the canvas size and position.

mouse movements, keyboard events and for changes in

T ehain Canvas

e

Bmwsing; voZ.oldbbox

.

&
%
o
O
20 S

Browsing: vol
Eresmee >

Ez;\’, %5 %
.

Figure 1 - Visual objects, menus and browsers

The use of Lua allows the modification of the
system at any time. The user can redefine functions in
run time and assign these functions to an object at-
tribute or callback. The modification of Lua code can
be done in the command window or with the help of
an external editor.

The handling of the visual objects and their call-
backs is done through the UAI framework. UAI
[BCCI%94] is a C++ class framework that allows the
development of graphic-interactive programs with
visual objects support. UAI offers graphics opera-
tions and a group of classes responsible for the ma-
nipulation of visual objects (VO). The Tche system
uses a Lua implementation of the UAI framework.
However, instead of using a class hierarchy, Tche
implements UAI as a group of prototypes correspond-
ing to the original C++ classes. This does not differ
from the UAI defined concepts.

The VO concept in UAI corresponds to Abstract
Data Views [CILS93], modeling active objects. Ac-
tive objects have a behavior determined by their
classes, reacting to events triggered by user interac-
tion or by other objects. Besides handling events, ac-
tive objects can show themselves in the screen using
a drawing method.

Anais do VIII SIBGRAPI, outubro de 1995

To the UAI/Lua framework a pen is any object
that offers drawing methods. It is possible, thus, to
create a virtual pen, that draws directly in memory,
not in the screen. A virtual pen simplifies the use of
transparent double buffering techniques to draw the
VOs. A VO does not need to know where it is draw-
ing itself, only how it should draw itself. The system
handles every needed optimization and animation.

Tche allows the creation of visual objects that
heir to sophisticated prototypes. Some prototype ex-
amples are the draggable and rectangular filled ob-
jects. A draggable object can be moved through the
canvas with the use of drag and drop operations.
Rectangular filled objects can have its bitmap stored
in memory to ‘speed up the redrawing process when
moving across the screen. Although seemingly sim-
ple, this optimization benefits most of the traditional
interface elements.

To store a system image, Tche uses the Lua re-
flexivity to describe the data structures corresponding
to the system objects. In the rectangular VOs
(YRectangle), the object image is the direct descrip-
tion of the rectangle attributes. The Tche image file
consists in a series of object constructors. To restore
the system image, Tche uses Lua to open, compile



TCHE - A VISUAL ENVIRONMENT FOR THE LUA LANGUAGE 231

and execute this file. The constructor used for the im-
age file is the same one that the user can call to insert
anew VO in the system using the command window.

As an example of the image file format, to save
the image of a system as the one presented in Figure
2, Tche creates an image file with a format similar to
the show in Figure 3.

Tche Main Canvas

Figure 2 - Tche example

Finally, from a lower level perspective, instead
of making use of a traditional language (C or C++),
we decided to use Lua as the main language, and C as
the language for the system kernel. Lua is interpreted
and easily portable, conferring every flexibility
needed. The choice of C over C++ was due to the
higher portability achieved with C.

RectangleVO {
left = 58,
top = 29,
width = 80,
height = 40,

foreground = 'magenta’,
name = 'vol'

}

CrossVO {
left = 32,
top = 46,
width = 70,
height = 80,
foreground = 'cyan’,
name = 'vo2'

}

Figure 3 - Image file example

Like Oberon, Tche uses simple graphical primi-
tives to draw and show text. The straightforwardness
of this set of primitives simplifies its implementation
and, therefore, the system porting. The higher level
operations are coded in Lua, granting to any platform
that implements the primitives, the full system poten-
tial. Notice that Lua is interpreted but does not im-
pose any performance penalty on the Tche system.
The system performance is directly bound to the tar-
get machine graphics capabilities.

5. Conclusions

This work introduce the Tche system and some re-
lated visual environments such as Visual Basic, ACE,
Smalltalk, Oberon, SELF and Tcl/Tk. These envi-
ronments contributed in differents ways to the Tche
system.

Visual Basic showed up as a very sophisticated
development environment, but did not offer some
needed features as the dynamic code manipulation
and code portability. '

The ACE system contributed with the concept of
using a common language to define the behavior and

- attributes of objects. ACE presented, however, a in-

herent structural complexity.

Smalltalk was an excellent example of the utili-
zation of browsers, exhibiting, however, problems of
consistency and portability due to the different ver-
sions of the system.

Oberon showed us that a system could be based
in simple basic principles and graphic primitives and
still keep up with the performance needs.

SELF contributed with fundamental concepts to
the Tche system. Some examples are: the concept of
prototyping instead of class-based instantiation of
objects, the linked objects hierarchy and, last but not
least, the use of animation techniques and object so-
lidity to enhance the user interactive feedback. The
sophistication of the SELF system, although, revealed
too much for the intended purposes.

As the last system analyzed, Tcl/Tk demon-
strated an excellent integration of an embedded lan-
guage and a visual objects toolkit. The concept of
binding in Tcl/Tk is also very similar to the callback
mechanism used in Tche.

Besides offering the concepts shared with these
systems, Tche added some other notions and capa-
bilities. The event-driven architecture empowers the
creation and aggregation of new dispatchers to the
system. As an example, during the development of
the Tche system, a related project implemented ex-

*Anais do VIII SIBGRAPI, outubro de 1995



232

ternal events. These events are triggered and manipu-
lated using encapsulated RPCs (Remote Procedure
Calls), allowing the remote manipulation of the Tche
system.

Tche fulfilled its proposed purposes, demonstrat-
ing the Lua potential to implement complete systems.
From a performance perspective, Tche testified that
Lua is up to the task. The system performance is
much more tightly linked to the graphical processing
capabilities (mainly BitBit operations) of the target-
platform.

Following the development of the Tche system,
some possible additions become attainable. One of
them is the utilization of function persistence. Persis-
tent functions can be modified in run time and in-
cluded in the system image, being stored and recov-
ered with the objects. From a manipulation perspec-
tive, another addition is the possibility to group ob-
jects, allowing composition of simple objects in more
complex ones. The connector concept is also a very
important addition to the system. With connectors the
user would be able to bind semantic relationships to
links between objects, a concept similar to the used
by constraint programming systems.

Anais do VIII SIBGRAPI, outubro de 1995

A. F. L. CARREGAL, R. IERUSALIMSCHY

6. References

[AB93]
Agesen, O.; Bak, A. The SELF 3.0 Programmer’s
Reference Manual. Sun Microsystems, 1993.

[BCCI94]
Borges, R.; Cassino, C.; Cerqueira, R.; Ierusalim-
schy, R. UAI - Um framework para suporte a
Objetos Visuais. In VIII Simpésio Brasileiro de
Engenharia de Software, 1994.

[Carr95]
Carregal, A. Tche: Um ambiente visual Lua.
PUC-Rio, Departamento de informatica. 1995.
(Dissertacao de mestrado), 67 p.

[CILS93]
Cowan, D. D.; Ierusalimschy, R.; Lucena, C. J.
P.; Stepien, T. M. Abstract Data Views. Struc-
tured Programming 14(1), January 1993, p. 1-13.

[FIC94]
Figueiredo, L. H.; Ierusalimschy, R.; Celes F., W.
The Design and Implementation of a Language
for Extending Applications. In XXI Semish,
1994, p. 273-284.

[Gold84a]
Goldberg, A. Smalltalk - The Interactive Pro-
gramming Environment. Addison-Wesley, 1984.
516 p.

[IFC95]
Ierusalimschy, R.; Figueiredo, L. H.; Celes F., W.
Reference Manual of the Programming Language
Lua version 2.1. PUC-Rio, 1995. 24 p.

[INZM93]
Johnson, J. A.; Nardi, B. A.; Zarmer, C.; Miller, J.
R. ACE: Building Interactive Graphical Applica-
tions. Communications of the ACM 36(4), April
1993. p. 41-54.

[MS92]
Visual Basic Programmer’s Guide. Microsoft,
1992.

[Oust94]
Ousterhout, J. K. Tcl and the Tk Toolkit. Addison-
Wesley, 1994. 458 p.

[Wirt92]
Wirth, N.; Gutknecht, J. Project Oberon - The
Design of an Operating System and Compiler.
Addison-Wesley, 1992. 547 p.



