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Abstract. This paper reports on how the determination of comprehensive visual representations has been
allowed by a novel approach to digital orientation and curvature estimation. The reported approach is
strongly supported on solid concepts from differential geometry and can be effectively implemented by
using the Fourier transform and its inverse. The developed framework allows not only multiple important
representations of the image contours to be obtained, but also effectively supports multiscale operation,
that is allowed through selective low-pass Gaussian filtering. The overall computational effort is
proportional to O(N.Log(N)). Experimental examples are included that substantiate the potential of the

described approach respectively to a real image.
1 Introduction - Back to Nature

That vision is an activity much more complex than
typically acknowledged by us humans is promptly
verified by whoever starts working toward the
development and implementation of powerful and
versatile computer vision systems. However, there is
virtually no doubt that such systems are possible, as it
has been proved by so many biological visual systems,
and especially the primate visual system, that have
been presenting outstanding real-time performance
under the most demanding and difficult conditions. It
should thus be hardly surprising that insights from
nature provide one of the most promising subsidies for
the development of more versatile and powerful
artificial visual systems. Such an interplay between
natural and artificial vision has been the principal
underlying philosophy adopted by the Cybemetic
Vision Research Group at the IFSC-USP [Costa
(1993); Costa et al. (1994)]. One of the projects that
have been developed in this group consists of a
biologically-inspired versatile computer vision system,
called Cyvis-1 [Costa et al. (1994)]. Based on a series
of biological insights, Cyvis-1 includes a series of
processing streams dedicated to the analysis of some
specific image attribute such as color, texture and
edges. Each of these specialized streams possesses a
modular and hierarchical architecture, communicating
actively with the other streams in order to improve

visual analysis performance [Costa (1994)]. A
particular important aspect of Cyvis-1, as well as in
many other approaches to computer vision, concems
how the visual information is encoded and represented
at each of its hierarchical levels. By the way, one of
the most important lessons nature has to teach us with
respect to the design of more powerful vision systems
concerns the adoption of effective visual
representations of the visual scenes to be analyzed. By
reducing the redundancy that is typical in real images,
such representations allow a substantially more
compacted codification of the original visual stimulus,
thus allowing the recognition processes to proceed
faster and more effectively [Barlow (1994)]. It should
be however observed that compactness is only one of
the requirements that should .be conciliated by
adequate representational frameworks. Another
exceedingly  important issue  concerns  the
meaningfulness provided by the representation, for
such a feature greatly influences the design of better
and more effective recognition algorithms. Although
the choice of a suitable representation framework
should generally be made considering the
characteristics of the recognition algorithms and scenes
to be processed, nature again has an important lesson
to teach us. It is a well-known fact that the mammals'
retina implements some kind of edge-detection of the
boundaries of contrasting objects in the original scene,
thus contributing to a drastic reduction of the amount
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of visual data [Barlow (1994); Marr (1982)]. What is
more, such clear and conceptually meaningful
representations of the image objects in terms of their
contours has been acknowledged to encode great part,
if not the whole, of the original visual information
[Marr (1982)]. The next important representation
scheme adopted at the cortical level of the primate
visual system is characterized by the piecewise linear
representation of the contours. Such a representation
provides not only a further degree of compactness of
the visual information, which is achieved by
representing straight sections of the edge-detected
image in terms of the respective line parameters (e.g.
orientation and position), but also provides the basic
structure  from  which more  sophisticated
representations in terms of curvature can be derived. It
is important to note that (from the perspective of the
neurophysiological point of view) there are
controversies about the existence of ‘curvature
detectors’ in human vision system [Guez et al. (1994);
Haan (1995)] while the extraction of orientation
information is somewhat more accepted [Zucker
(1985); Blasdel & Salama (1986)]. Therefore, it would
be desirable to develop a model that could estimates the
curvature from the orientation information.  These
latter representational frameworks possess a solid
mathematical embasement and presents paramount
importance as a means of effective shape
characterization. The power of shape analysis through
curvature can be illustrated by the fact that circles and
straight lines can be identified by searching for contour
sections presenting constant curvature. Moreover,
curvature is rotation and translation invariant, and
orientation can successfully support scale invariance
with minimum additional effort by normalizing the
ordinate-axis. At a higher abstraction level we have
the complementary representations provided by the
first and second derivatives of the curvature parametric
function, as well as its power and phase spectra. Such
additional representations provide a wealth of useful
information that can be used for segmentation and
detection purposes. For instance, the first and second
derivatives can be used as a means to detect critical
contour segmentation points. The spectra can supply
subsidies for texture characterization.

This paper presents a framework that matches
all these requirements. The major representation
elements such as orientation and curvature are
implemented based on the solid background of
Differential Geometry. The digital implementation of
these concepts is done by signal processing techniques.
One particular problem in extending Differential
Geometry concepts to digital implementations
conserns the spatially sample nature of the latter. This
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problem has been circumvented through the use of the
Derivative Theorem of the Fourier Transform (FT) and
the Gaussian low-pass filtering scheme.

The hierarchy and interdependency between
the various representational structures discussed above
is summarized in Figure 1. Provided a computer
vision system is capable of effectively deriving all such
representations according to a multiscale fashion,
shape analysis and recognition can be substantially
eased and made more effective. The principal problem
that has constrained such a comprehensive approach
consists in the fact that accurate curvature estimation
has been an exceedingly difficult endeavor [Cesar &
Lotufo (1993); Worring and Smeulders (1993)], which
has been characterized by errors ranging from 1% to
1000%. By developing a sound technique for curvature
estimation, which is based on signal processing
techniques [Cesar & Costa (1995)], we have been able
to implement an accurate and effective framework for
estimating orientation and curvature, as well as their
derivatives and spectra of these. Another important
issue concerning visual representations consists in the
fact that it is desirable to have reversible
representations in order to reduce the complexity and
storage requirements respectively to the many
databases that have to be implemented at the various
hierarchical levels of a computer vision system such as
the Cyvis-1 [Costa et al. (1994)].

This paper starts by describing our approach
to estimate the derivatives of digital curves (outlined in
[Cesar & Costa (1995)]) as well as its extension in
order to provide a direct link between orientation and
curvature. The application potential of the thus
obtained framework is then exemplified respectively to
a real contour.

2 Tangent Orientation and the Fourier Transform

The approach adopted in this work uses the basic
concepts of differential geometry applied to planar
curves. The tangent orientation of a curve is defined as
follows. Let C(t)=(x(t),)(t)), te [a,b], be a planar curve
represented in the parametric form. The curve C(¢) is
said to be differentiable if x(r) and y(z) are
differentiable with respect to the parameter ¢ [Stoker
(1969)]. The derivative of the curve C(t), denoted by
C(t) is defined as:

dC(t)=

C'(t)=
(t) o

(x",y’) (1)
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proposed framework.

where

dx dy
x'=x"(t)=— '=y'(t)=— (2
(t) &t y'=y'(t) It 2

The vector C'(t) applied to the point t€ [a,b]
i.e. C1to) is located at the origin and has its direction
parallel to the tangent line of C(%,). The tangent vector
function ¢(t) of the curve C(t) is obtained by locating
the vectors C'(t) at the respective points on the curve
C(t) (in other words, by a parallel translation of vector
C'(t)). The function ¢(¢) defines a field vector over the
curve C(t), which can be used for research involving
orientation [Zucker (1985)]. Because of computational

reasons, the calculus of the derivatives of x(¢) and y(t)
is unfortunately no easy endeavor, for the analytic
expressions of these signals are rarely known.
Furthermore the noise present in contours obtained
from real images can seriously corrupt the results,
since the differential operation can enhance the signal
high frequency components. The solution proposed in
this work for the calculation of x'(¢) and y’(¢) consists in
using a differentiation scheme based on the derivative
property of the Fourier Transform [Cesar & Costa
(1995)]. To avoid the noise enhancement that would
otherwise be introduced, the differentiation is carried
out jointly with smoothing, which is accomplished
through Gaussian low-pass filter. Let X(s) and Y(s) be
the Fourier Transform of the signals x(#) and y(t¢)
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respectively. Denoting the FT of x'(z) and y'(t) by X(t)

and Y(¢), it can be shown that [Castleman (1979)]:
x'(t)=F {X'(s)}=F {i2r sX(s)} (3)
Y(t)=F '{Y'(s)}=F '{i2n s¥(s)} ()

where F'{} stands for the Inverse Fourier Transform

(IFT). The smoothing is done by defining the Transfer
Function Gfs) of the low-pass filter as:

2

1 -
G(s)= Py exp( 202) (5)

As mentioned, the earlier filter is defined by a
Gaussian of standard deviation . The filtered spectra
X{(s) and Y((s) can be calculated as:

X, (s)=G(s)X(s) ©6)
Yi(5)=G(s)Y(s) @)

and the smoothed derivatives of x(z) and y(t) can be
obtained by substituting X(s) and ¥(s) in Equations 3
and 4 by X{s) and Y{s) (Equations 6 and 7). The
resulting expressions can be used to calculate function
¢(t). Once the function ¢(¢) is specified in terms of the
FT, the tangent orientation of a curve can be defined as
follows [Stoker (1969)].

DEFINITION 1 (Tangent Orientation of a curve): Let
C(t)=(x(t),y(t)) be a parametrized curve of the
parameter t€ [a,b], and let ¢(¢) be the tangent vector
function of the curve C. The tangent orientation 6(¢) of
the curve C(t) at a point #,€ [a,b] is defined to be the
angle between the vector ¢(7,) and the X-axis.

The tangent orientation of a curve has already
been used in shape representation and recognition
[Marshall (1989); Gonzalez & Wintz (1987)] and is a
useful tool in many Computer Vision tasks. The next
section shows how the tangent orientation can be used
as a subsidy for curvature evaluation.

3 Digital Curvature Evaluation

The curvature of a contour is one of the most important
concepts in shape analysis, both from the human and
machine vision perspectives [Attneave (1954); Pavlidis

(1977)]. From the literature in Differential Geometry
it is known that the curvature can be calculated from
the tangent orientation of a curve, as expressed by the
following definition.
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DEFINITION 2 (Curvature of a curve): Let
C(t)=(x(t),y(t)) be a parametrized curve of the
parameter € [a,b], and let 6(z) be the tangent
orientation of C(t), as was defined in definition 1.
Then, the curvature k(t) of the curve C(z) can be
defined as the first derivative of the tangent orientation
0(1), ie.:

k(t)=0'(t) ®)

Although the above definition of curvature
depends on the arc length parametrization of the curve,
it has led to good practical results, as illustrated in
Section 4. Equation 8 provides an analytical tool for
curvature evaluation using the tangent orientation of a
curve. However, this expression also depends on the
differentiation of a function whose analytical form is
unknown. Further, as it was explained in Section 2, the
differentiation process can enhance the noise added by
the discrete nature of the input. The procedure to solve
these problems is analogous to that explained in

Figure 2: Original image
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Figure 4: Signals x (solid) and y (dash) (a) , their respective Fourier Magnitude (b) and derivatives (c).

Section 2, i.e. by using the derivative property of the
FT jointly with Gaussian low-pass filtering. Let ©(2)
be the FT of the tangent orientation 6(¢). By using the
Derivative Theorem (Section 2) the derivative 0°(¢) can
be evaluated as given by expression 9:

0'(1)=F7{0(s)] ©)
Equation 9 can be substituted in equation 8 to yield the
final curvature expression given below.
k(t)=F~'{@(s)} (10)
It should be finally observed that the overall
described framework presents a computational demand
of O(NLog(N)), which is determined by the Fast
Fourier Transform and its inverse. The next section
illustrate the performance of these  tools in
experimental situations.

4 Experimental Results

This section illustrates the representations developed in
Sections 2 and 3 with respect to a contour of a tool
(pliers). Figure 2 shows the original image as acquired
by a conventional camera. The image was captured

under non-uniform illumination, which led to a noisy
contour after the pre-processing steps (i.e. thresholding
and median filtering). Figure 3 shows the contour
extracted from the original picture. This contour,
which has been poorly sampled (231 points), has led to
good results as shown in the rest of this section. Figure
4(a) presents the signals x and y linearized from

the contour of Figure 3. These signals were obtained by
following the contour in a clockwise manner from the
starting point located at the discontinuity of the
contour. The magnitude /X/ and /Y/ of the FT of
signals x and y are presented in figure 4(b). The latter
presents only the first 20 harmonics, since the
remaining components vanish rapidly. The derivatives
of signals x and y are obtained by using the
differentiation method presented in Section 2 are
presented in Figure 4(c). Note that although the
differentiation enhances the high frequencies of the
signals, the resulted x’ and y’ are smoothed due to the
Gaussian low-pass filtering.

The tangent orientation of the pliers contour is
obtained using Def. 1 and showed in figure 5(a). The
abrupt change of the tangent orientation corresponds to
the extremity of the pliers. Figure 5(b) shows the
curvature signal (absolute value) of the pliers which
was calculated by using Def. 2. The largest peak of
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Figure 5: Tangent orientation (a) of the contour (Fig.3),

this signal corresponds to the steep change in the
tangent orientation function.

In order to obtain the points of maxima
curvature  (absolute value), this signal was
differentiated twice to obtain &’ (figure 5(c)) and &’
(figure 5(d)). The feature points are identified by the
application of the three following criteria: the point
must be a zero-crossing of k’; it must have k'’ <0; and
finally it must have k > T, i.e. the curvature at that
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curvature (b) and its first (c) and second (d) derivatives.

point must exceeda given threshold T. This last
condition is necessary for the elimination of the false
maxima curvature points created by unwanted
oscillation near the x-axis baseline. The points of
maxima curvature are marked as bars and showed in
Figure 6. The calculated feature points (piecewise
linear representation) are presented in Figure 7. These
points were marked over the smoothed reconstructed
version of the original contour, by using the IFT of the
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low-pass filtered spectra X; and Y; (Equations 6 and
7). In this example it was assumed that the standard
deviation ¢ = &8 and that 7=0.03. Figure 8 shows the
feature points for 6 = /6 and T= 0.015. These points
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Figure 6: Curvature maxima
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Figure 7: Feature points (6=8, T=0.03).

were marked over the smoothed reconstructed version
of the original contour, by using the IFT of the low-
pass filtered spectra X; and Y; (Equations 6 and 7). In
this example it was assumed that the standard
deviation 6 = 8 and the T=0.03. Figure 8 shows the
feature points for 6 = 16 and T=0.015. The central
point (marked with an ‘x‘ shows the center of mass of
the contour).

5-Concluding Remarks and Future Work

A framework capable of effectively providing a

comprehensive set of visual representations has been
described and exemplified with respect to a real ‘image.
Although presenting potential for applications on its
own, the described framework has been conceived as a
major part of Cyvis-1, a biologically-inspired versatile
computer vision system that is under development at
the Cybemetic Vision Research Group, IFSC-USP. By
using effective and fast algorithms from digital signal
processing, the reported framework is  capable of
producing a wealth of visual representations from the
digital contours of the objects in the image, including
the linearized contours (x and y), the respective Fourier
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descriptors, the first and second derivatives of x and y,
the contour orientation and curvature, as well as the
first and second derivatives and spectra of the latter.
Such diverse representations provide a rich background
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Figure 8: Feature points (6=16, T=0.015).

upon which effective and versatile image analysis
systems can be built upon. When considered jointly
with the its first and second derivatives, the contour
curvature provides an important subsidy for piecewise
linear contour segmentation. ~What is more, by
adopting as its major building block the Fourier
transform and its inverse, the proposed framework has
proven to be especially suitable for multiscale
processing, as allowed by selective low-pass filtering
through Gaussian blurring. Further efforts are being
currently conducted towards investigating the effects of
the adopted parametric representation as well as
applying the reported tools in order to conduct more
comprehensive and accurate psychophysical
experiments in humans.

Acknowledgments

Luciano da F. Costa is grateful to FAPESP (proc.
94/3536-6) and CNPq (proc. 301422/92-13) for
financial support.

Bibliography

L. da F. Costa, V. O. Roda and R. Koberle, A
biologically-inspired system for visual pattern
recognition.  Proceedings IEEE International Sym-
posium on Industrial Electronics , 25-30 Santiago,
Chile, May 1994 (invited paper).

L. da F. Costa. Towards a versatile computer vision
system. Proceedings SIBGRAPI 1993 (communica-

Anais do VIII SIBGRAPI, outubro de 1995



212

tions), 75-78. Recife, PE, October 1993.

H. B. Barlow, What is the computational goal of the
neocortex? In Large-Scale Neuronal Theories of the
Brain, 1-22. The MIT Press, 1994.

D. Marr, Vision. W.H. Freeman and Company, 1982.

J.-E. Guez, P. Marchal, J.-F. Le Gargasson, Y. Grall
and J. K. O’Regan, Eye fixations near corners:
evidence for a centre of gravity calculation based on
contrast, rather than luminance or curvature, Vision
Research, 34, 1625-1635 (1994).

E.Haan, Edge-curvature discriminability argues against
explicit curvature detectors, J. Optical Society Am. A,
12(2), Feb. 1995.

S.W. Zucker, Early orientation selection: tangent fields
and the dimensionality of their support, Computer
Vision, Graphics and Image Processing, 32:74-103,
1985.

Anais do VIII SIBGRAPI, outubro de 1995

R. M. CEsAR JR, L. F. CosTa

G.Blasdel and G.Salama, Voltage-sensitive dyes reveal
a modular organization in monkey striate cortex,
Nature, 321:579-585, Jun. 1986.

RM. Cesar Jr. and R.A. Lotufo, Segmentagdo e
descrigdo de contornos por B-splines e sua aplicagdo no
casamento de contornos, Proceedings SIBGRAPI 1993,
55-64. Recife, PE, October 1993 (in Portuguese).

M.Worring and A.W.M.Smeulders, Digital curvature
estimation, Computer Vision, Graphics and Image
Processing, 58:366-382, 1993.

R.M. Cesar Jr. and L.da F. Costa, Towards effective
planar shape representation with multiscale digital
curvature analysis based on signal processing
techniques, submitted to Pattern Recognition, 1995.

1.J. Stoker Differential Geometry, Wiley-Interscience-
John Wiley & Sons, NY, 1969.

K. R. Castleman. Digital Image Processing, Prentice-
Hall , 1979.



