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Abstract.

In this paper an approach for interpolating a given sequence of points by a fair plane

curve is presented. Since the fairness concept is subjective, a non-classical modeling tool - fuzzy
sets - 1s used. The fuzzyfication and defuzzyfication techniques are outlined. We show that the
user can be integrated into the defuzzyfication technique in order to obtain “the most fair” curve.

Some results of our implementation are included.

1 Introduction

One of the old geometrical problems that have chal-
lenged researchers is to find out a fair curve that
interpolates a given sequence of points. There is a
variety of interpolation methods, such as Lagrange’s,
Newton's or spline, but from the designer’s point
of view the resulting curve may still not be enough
fair. Therefore, additional conditions should be es-
tablished.

Although the definition of fairness is subjective
there are some attempts to give quantitative mea-
sure of fairness. According to Su and Liu [8] a plane
curve is called fair if the following three conditions
are satisfied:

. -
e the curve has GC=-continuity;

e there are no unwanted inflection-points on the
curve: and

e its curvature varies in an even manner.

In practice, the proposed solutions for construct-
ing a fair curve from a set of points only minimize
the number of curvature extrema. What the classical
methods consider as fairness means in fact smooth-
ness. The subjective concept of "unwanted” is un-

*This work was partially supported by CAPES and
FAPESP. .

derstood as no inflection point and "even” as curva-
ture varying almost linearly between two subsequent
points. However, we argue whether a fair shape im-
plies necessarily that the resulting curve must not
be undulant, since the notion of fairness is extremely
subjective and imprecise.
with a zigzag distribution is given and that the de-
signer desires to have a fair curve passing through
them. Tt would be odd to generate a curve with-
out this zigzag shape, which the existing techniques
would do, since they do not provide any mean for the
designer to adapt the pre-defined objective-function
regarding to his requirement. This leads us to look
for a new technique that can generate, from the de-
signer’s point of view, a fair shape passing through a
given set of points, no matter how odd and ambigu-
ous 1s his concept of fairness.

Formally our interpolation problem can be stated
as follows: "Given S=(( Py, sharper), (P, smoother),
..., (Pn, shaper)), a sequence of N points P;, 1 <1 <
N and the desired “relative grade of fairness™! of an
interpolatory plane curve, find this curve.”

A proposal to solve this problem is divided in
two sub-problems:

Suppose a set of points

o the first estimation of the curve shape as a func-
tion of .S; and

lexplained in Section 4.
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e the fine interactive adjustments of the curve shape construction to determine each of these pieces. Ini-

to conform to the designer’s intuitive fairness re-
quirement.

For the first estimation it is interesting to use
a curve representation that includes the curvature
as its parameter, since curvature reflects directly the
“smoothness behavior” of a curve at a point. One
way to implement the fine interactive adjustments of
the curve shape in an ambiguous fashion seems to be
to apply the techniques provided by fuzzy sets. To
ensure a perfect matching of these two sub-problems
the fair concept must be interpreted by fuzzy sets,
which relate the grade of membership of the curve
parameter values to this concept (fuzzyfied). From
the obtained fuzzy sets the parameter values are com-
puted (defuzzyfied) in order to generate a most likely
fair curve.

In [1] we proposed an interpolation method for
plane open curves. We showed that it generates
curve representations with parameters that can be
easily associated to the fair concept. In the present
paper we show how to fuzzyfy and defuzzyfy such pa-
rameters. The paper is orgenized as follows. Section
2 describes briefly our interpolation method. Sec-
tion 3 presents some basic concepts about fuzzy sets.
Section 4 discusses how we represent the concept of
fairness as fuzzy sets. Section 5 explains how we can
obtain reasonable parameter values from those fuzzy
sets. Section 6 shows some obtained results and Sec-
tion 7 draws some remarks and conclusions.

2 Interpolation method

Let S be the designer given point sequence together
with the specification of "how fair” the plane curve
that passes through them (grade of ”local fairness™)
should be. The desired (i.e., globally fair) curve '
to interpolate the N points in S is looked for.

Our approach is to construct the curve ' from
an estimated evolute, namely pseudo-evolute (PFE),
instead of the evolute itself. The estimation of PFE
is based on the designer given grade of local fairness.
From PFE the curve (' is obtained by determining
the so-called radii-vectors. The radii-vectors have
the same direction of the PF tangents as the radii
of curvature of a curve have the direction of its evo-
lute tangents. So, to obtain €' from PFE is geometri-
cally analogous to obtain any curve (evolvent) from
its evolute [7]. Notice that PFE supports the curve
global fairness concept, while the radius-vector ex-
presses the curve local fairness concept [1].

To take into account the grade of “local fair-
ness” and to support local manipulations of ', we
consider C' as a set of pieces (; and use the evolvent
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tially a radius-vector is estimated for each point in .S
With these radii-vectors and the points in S, PE is
estimated and (' is then determined from the inter-
polated radii-vectors. The directions of the interpo-
lated radii-vectors are given by the PE tangents and
their magnitudes are calculated from the linear inter-
polation of two subsequent estimated radii-vectors.
P E is represented by a set of cubic Bézier curves
BP; as (' is represented by a set of C;. Each Bézier
polygon BP; is associated to a piece C;. The estima-
tion of BP; should satisfy the following conditions:

o Its endpoint positions and ta‘ngen'ts should agree
with the radius-vector magnitudes and direc-
tions of the C; end-points.

e Let Py, P; be two consecutive points in S;
C';—1 be the piece of C' between points P;_1,P;;
R_;:, E be the radii-vectors associated, respec-
tively, to P;_1, P;; and By, Bo, B3 and By the
four control points of the Bézier polygon BP;_.
These control points must satisfy:

~ Bj=Pi+a;R;,a; #0,j=1,2; and

— J-:Pi_1+oszi_1,aj7é0,j:3,4.
The values of a; are chosen in such a way that
the convexity of the Bézier polygon BP;_ is
ensured.

r@ SUAVE

|

C2

C1

Figure 1: A fair curve passing through three points.

Figure 1 shows a fair curve passing through three
given points {P;, P», Ps}, its corresponding esti-
mated evolute PE (two cubic Bézier curves asso-
ciated to BP; and BPs) and the estimated radii-
vectors { Ry, R, R3}. The interpolated point coordi-
nates, the radius-vector angles (correspond to radius-
vector directions as explained in Section 4) and «;
are given in Table 1.
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Pi(x;,y;) R ay as | az | ag
angle (rad)

(100,440) 1.30 0.50 | 0.25 | 0.50 | 0.25

(200,150) 1.17 0.50 | 0.25 | 0.50 | 0.25

(550,450) 0.35 0.50 | 0.25 | 0.50 | 0.25

Table 1: Table containing the given points and pa-
rameters used in Figure 1

3 Fuzzy sets

Fuzzyness is a type of imprecision inherent to certain
classes which do not have defined boundaries. As it is
well known in the literature, these classes, the fuzzy
sets, that were introduced by Zadeh [9], arise when
we look for describing ambiguity, vagueness and am-
bivalence in mathematical models of empirical phe-
nomena. In particular, the computer simulations of
systems of high cardinality, so usual in real world,
may require some special non-classical mathematical
formulation to deal with the imprecise descriptions.
Fuzzy sets, which are classes that admits the possi-
bility of partial membership in them, seem to be an
adequate tool for dealing with such kind of problems
[5, 6, 9].

Let X denote a space of objects. A fuzzy set A
in X is a set of ordered pairs A = {(z, xa(z))|z € X
and ya(xz) € [0,1]}, with x a(z) being the "grade of
membership of z in A” In this work we assume, for
simplicity, as in [9], that y4(x) is a number in the
interval [0, 1], instead of considering its values vary-
ing through a more generic algebraic structure [3, 5].
Hence, questions like x € X may have answers dif-
ferent from yes (xya(z) = 1, that is, fullmembership
of #) or no (xa(z) = 0, that is, nonmembership of

The operations OR (V), AND (A) and NOT
(—) between fuzzy subsets A and B on X may be
defined in many ways. We adopt the following defi-
nitions for these operations [5]:

* OR: AUB = {(2, Maz(xa(z), x8(2)))|lx € X};

e AND: AN B = {(z, Min(ya(z), yp(z)))|z €
X}; and

e NOT: -A = {(z,1 — ya(z))|z € X}.

One is fuzzyfying a concept when a fuzzy set is
defined to express this concept. Conversely, one de-
fuzzyfies a concept when one representative (crisp)
value is chosen from the fuzzy set to denote this
concept. There are several techniques of fuzzyfica-
tion and defuzzyfication. The choice for a special
pair (fuzzyfication, defuzzyfication) of techniques de-
pends on the application we are looking for. How-
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Figure 2: Almost parallel lines concept represented
as a fuzzy set

ever, it is important to keep in mind that they are
interdependent. For an application, one technique
cannot be chosen without considering the strategy
of the other.

As an example, one could define the concept al-
most parallel lines as a fuzzy set A. Given two lines
L1 and Lo, the following classifications of x - the ab-
solute value, in degrees, of the difference between L,
slope and Ls slope (x = |slope(Ly) — slope(Ls)|) -
were assumed:

e r is null. The lines L; and Ls are parallel, so
having a unitary membership to almost parallel
lines concept (ya(xr)=1,2=0);

e r from 0 to 10. The lines L; and Lo are more
less parallel, so having a grade of membership to
almost parallel lines concept that varies linearly
from unit to null (ya(z) =10 — 2,0 <z < 10);
and

e r above 10. The lines L; and L» are not parallel,
so having a nullmembership to almost parallel
lines concept (ya(x) =0,z > 10).

This classification is a fuzzyfication strategy adopt-
ed by the designer to express his almost parallel lines
concept. Figure 2 shows a diagramatic representa-
tion of the fuzzy set that describes this concept.

We observe that the grade of membership y a(x)
of an object z in A4 can be interpreted as the degree of
compatibility of the predicate associated with A and
the object z. It is also possible to interpret x(z)
as the degree of possibility of z being the value of a
parameter fuzzyly restricted to A.

Now consider the fuzzy set in Figure 2. Which
crisp number could denote actually the fuzzy almost
parallel lines concept? Suppose that the defuzzyfica-
tion technique used by the designer has chosen z = 3.
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Figure 3: A fuzzy set for the fair concept according
to (;1 /(;'_; 5
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Figure 4: A fuzzy set for the fair concept according
to G34

So r = 3 represents unambiguosly his almost parallel
lines concept. Other examples can be seen in [5, 6. 9],
in special, the example we introduced in [1].

4 Fuzzyfication

Fairness is a very vague concept. Referring to a
curve, one may allude to a fairly undulant or a fairly
non-undulant curve or a curve with fairly concavity
change behavior. In our case, we reduced our prob-
lem stated in Section 1 to the construction of a fair
curve from a set of cubic Bézier curves PE. The
control points of these Bézier curves are determined
from:

e the points in S
¢ radii-vectors associated to these points; and
° aj.

The points in .S are given by the users, so we can
only manipulate the radii-vectors and a;j to obtain
the desired fair curve. Hence, we may fuzzyfy the fair
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Figure 5: Four fuzzy sets representing the (; and
(5 conditions.
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Figure 6: The fuzzy set representing the fairly undu-
lant concept for P;.

curve concept by assigning a grade of membership
to the values of these parameters. In this paper we
present results of our study on the radii-vectors.

The magnitude of each radius-vector is com-
puted from a designer given SMOOTHER/SHARPER
relationship related to the radius-vector of its preeced-
ing point is S. This means that only the relative
magnitude of radius-vector matter. Since the rela-
tionships between the magnitudes of the radii-vectors
are specified by the designer (to convey his expecta-
tion of relative fairness behavior) at the points of .S,
only their directions can vary freely.

In order to reduce the search-space for “good”
radius-vector directions, we fuzzyfy each fair behav-
ior (and so the fair concept) by assigning to these
directions a grade of membership. The radius-vector
direction is represented by an angle, ranged from 0
to 180 degrees, between the radius-vector and a ref-
erence line. Without loss of generality this reference
line is the x-axis of the adopted coordinate system.
The range [0,180] may be used, instead of [0,360], be-
cause only the direction of the radius-vector is neces-
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sary in the determination of Bézier polygon, for each
(';. The orientation of the radii-vectors is irrelevant
[2].

For assigning a grade of membership to the cho-
sen radius-vector angles we have established the so-
called "danger zones™ to avoid certain non-fairness
shapes. These danger zones allow us to formalize
and measure effectively the designer concept of fair-
ness to each fair behavior. From them it is possi-
ble to devise the range of "values™ that the radius-
vector angles must not or should assume. Express-
ing in terms of grade of membership, we say that the
values of the radius-vector angles within the dan-
ger zones have null or minimal grade of member-
ship to the fair concept. The danger zones. within
which a radius-vector angle should not be, are de-
termined from some geometrical properties that the
cubic Bézier curve should satisfy as [2]:

e (i1 (non-colinear condition): R; # 3j(P; — Pj)
3j #0, j=1i—1.i+ 1. If this condition fails,
the Bézier polygon (and so ;) will degenerate
to a straight line:

e (i (non-parallel condition): R; £ ~,j(7?;) A F
0, j =¢—1,74 1. If this condition fails, the
Bézier polygon will have |B; — Bs| < |B2 — Bas|
and/or |Bs — B4| < |B2 — Bs|, causing oscila-
tions in (5. If oscilations are desired, this con-
dition can be exploited to get desirable shapes:
and

e (73 (non-intersection condition): R; + 6 _1(P—
Pio1)+€ig1(Riz1) Ri # 6i41( P — Pip1) + €1

(Ri—1),6;.¢; >0.j =1i—1,i+1. This condition
controls concavity changes and oscilations.

Given a relationship GREATER/LOWER among
R;_1, R; and R;41, which corresponds to the SMOO-
THER /SHARPER relationship given by the designer,
two situations can occur in (3:

e (73;: the line connecting the intersection point
I;—1 between radii-vectors R;_; and R; and the
intersection point I; between radii-vectors R;
and R;4, crosses the convex hull of S an even
number of times. It is desired when inflection
points and changes in concavity should be avoided:
and

e (735: the line connecting the intersection point
I;—1 between radii-vectors R;,_; and R; and the
intersection point I; between radii-vectors R;
and Rj4q crosses the convex hull of S an odd
number of times. It is desired when looking for
inflection points and changes in concavity.
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Figure 7: A first estimation of an interpolatory
closed curve.

Establishing the conditions of “danger zones”
we can now define to each point in S fuzzy sets in
the domain of radius-vector angles, [0,180]:

e For (7;: the angle 6. that validates it has a
nullmembership and the angle 6. + Af a unitary
membership to the fair concept. A reasonable
value for Af is 90. The other angles have their
grades of membership varying linearly from unit
to null as shown in Figure 3.

e For (7-: the classification is similar to the con-
dition (v (Figure 3).

e For (+3: the set of angles belonging to the "dan-
ger zones™ has a nullmembership and the " fur-
thest”™ angle from the “danger zones™ a unitary
membership to the fair concept. The other an-
gles have their grades of membership varying lin-
early from unit to null as shown in Figure 4.

From these fuzzy sets we can describe some fair
behaviors:

e Fairly undulant behavior: for each point P; in .S
there are two neighboring points, P;_; and P;4,.
The pair (P;_y, P;) and (P;, P;+1) must satisfy
the non-colinear ((;) condition and their re-

spective radius-vector pairs (R;—1, R;) and (R;. R;+1)

the non-parallel (G2) condition. Therefore, four
fuzzy sets are defined (Figure 5). As the four
conditions must hold simultaneously, we used
an AND operation on these sets to obtain the
set Fy (Figure 6).

e Fairly concavity change behavior: for each con-
necting point between a pair of consecutive curve
pieces (C;_1 and () there is one non-intersection
condition ((+31 or G35). The fuzzy set Fs in Fig-
ure 4 represents this behavior.

Anais do VIII SIBGRAPI, outubro de 1995
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Figure 8: A variant of Figure 7 with R; = 4.

SUAVE

Figure 9: A variant of Figure 7 with Ry = 73.

5 Defuzzyfication

In order to draw a fair curve we need a crisp angle
value in our interpolation method. So, depending on
the kind of fair behavior, we should defuzzyfy the
corresponding fuzzy set. There is a lot of defuzzy-
fying techniques [5]. We look for the defuzzyfication
technique that support user interactions, so it should
satisfy the following conditions:

e to compute more than one crisp value, letting
the designer select interactively the most fair
curve;

e to compute crisp values not so close from each
other, making it easier for the designer to notice
the differences between the alternative curves.

In order to reach these conditions, we designed
a defuzzyfication technique that chooses the ordered
pairs whose grades of membership are local maxima,
M;,1 <1<k, in the fuzzy set Fy. The designer will
then choose one of these pairs based on his subjective
fairness concept.

As an example let us apply this defuzzyfication
technique over the fuzzy set Fy shown in Figure 6.
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Figure 10: A variant of Figure 7 with R; = 146.

Figure 11: A variant of Figure 7 with R; = 166.

This fuzzy set expresses the local fairly undulant be-
havior concept to the point P; shown in Figure 7.
The local maxima, M; = (4;0.10), M> = (73;0.67),
M3 = (146;0.13) and My = (166;0.09), were deliv-
ered and the corresponding curves are given in Fig-
ures 8, 9, 10and 11, respectively.

6 Results

In this section we present some fairly undulant in-
terpolatory curves. Figure 7 shows a first estimation
for the closed curve obtained from four points. The
Figures 12, 13 and 14 are examples of curves result-
ing from the successive applications of defuzzyfica-
tion technique on these points. These applications
are controlled by the designer according to his fair
concept. Observe that different fair concepts lead to
different ”the best” fair curves.

7 Conclusions

The curves generated by the proposed interpolation
algorithm were pretty good. We could in the most
of the cases adjust easily the shape of the curve until
obtaining a fair curve. Just in a few situation, we
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Figure 12: A fair curve with the fair concept that
undulations are undesirable.

Figure 13: A fair curve with the fair concept that
allows undulations.

had difficulties to reach the desired curve. We believe
that this difficulty results from the fact that «; is not
adjustable. We expect to overcome this problem by
also assigning to the values of this parameter grades
of membership to the fair concept.

We could improve the proposed defuzzyfication
technique by a threshold value, denominated as a-
cut R,, for the local maxima of grades of member-
ship. In this way we can discard angles in the set
of local maxima that are improbable to yield fair ef-
fect. How to obtain a reasonable R, is still an open
problem. These questions are part of our research
problem.
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Figure 14: A fair curve with the fair concept that
allows cusps.
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A Basic geometrical concepts

This appendix briefly presents some fundamentals
about intrinsic geometrical properties of a curve [4].

e Curvature: expresses how much the curve ”bends”.
Formally, let o : I — R? be a curve parametrized

by the arc length s € I. The number d*a(s)| _

ds? -

k(s) is called the curvature of « at s.

Anais do VIII SIBGRAPI, outubro de 1995



94 BERNARDES, M.C'.: WU, SHIN-TING AND D'OTTavVIANO. .M. L.

Evolute

Evolvent - A <.
. / Osculating circle
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Figure 15: Intrinsic geometrical caracteristics of a
curve

e Radius of curvature: is the inverse R = Ai of the
curvature (Figure 15).

e Osculating circle: is a second degree approxima-
tion of a curve. as the tangent is a first degree
approximation. Formally, let a : [ — R? he
a curve parametrized by the arc length s, with
curvature k(s) # 0. s € I. The limit position
of the circle passing through a(s). a(s + hi).
a(s—+ ha) when hy, ha — 0 is the osculating cir-
cle at s. the center of which is on the line that

- supports the normal vector n(s) and the radius
of which is the radius of curvature k(ls) (Figure
15).

e Evolute: is the geometrical loci of the oscu-
lating circles centers. Formally. let a : [ —
R? be a regular parametrized plane curve (ar-
bitrary parameter t). and define normal vector
n = n(t) and curvature & = k(t). Assume that
k(t) # 0.t € I. In this situation, the curve
3(t) = a(t) + ﬁn(f).l‘ € 1, is called the evo-
lute of a. The curve a is called the evolvent of 3
(Figure 15). Pogorelov [7] states that it is pos-
sible to obtain the evolvent a from its evolute
J along with one point of the evolvent (evolvent
construction). This may be done as stated (Fig-
ure 15):

L. the evolute tangents are evolvent normals.
So, given an evolute, a family of evolvents
is determined; and

2. given a point of the evolvent, we determine
within a family which is the desired evol-
vent.
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