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Abstract. In this paper we analyze some problems concerned with connectivity on binary images.
More precisely, by means of Mathematical Morphology we describe an algorithm which detects and
classifies contours of connected sets as inner or outer contours. The method discussed here is quite
parallel and can be directly implemented in a SIMD massively parallel computer.

1 Introduction

Mathematical Morphology [Banon 94], [Coster 89],
[Dougherty 93], [Haralick 87], [Serra 92], has been
developed to meet the requirements in modern dig-
ital image processing, and can be applied to a large
number of both practical and theoretical applica-
tions.

The interpretation of an image consists mainly
of two steps: 1) the segmentation of the significant
objects presented in the image; 2) the quantization
of these objects by means of iconic or symbolic values
for their classification. As opposed to linear methods
[Rosenfeld 82] which treat an image as unity, Mathe-
matical Morphology considers an image as grouping
of objects and in this sense it constitutes a new and
efficient basis for its analysis.

Informally, the Mathematical Morphology oper-
ations consist in comparing an unknown image with
some shapes named structuring elements. We are
supposed to control the characteristics of these struc-
turing elements by means of boolean relations such as
unions or intersections, where both image and struc-
turing elements can be seen as sets. Hence, a binary
image can be represented by the 1 valued points of
the set, and a gray level image can be described by
a two variable function f(x,y) associated to its um-
bra. The umbra represents the points in the (z, y,
z) space, where z < f(x,y) [Serra 92],[Haralick 87].

Due to the discrete nature of the different im-
age sensors (scanners, satellite, radars etc), the im-
ages are generally represented in the Z?-space or in
a subset of it (a sequence of images is naturally rep-
resented in a Z3-space).

This work is concerned with Mathematical Mor-
phology and connectivity problems in binary images.

*The work reported in this paper was partially financed by
a grant from the GEOTEC-PROTEM project of CNPq-Brazil.

A binary images can be obtained by thresholding a
gray level image and be represented, in the computer,
by a MxN array, where each pixel located at position
(x,y) has value 1 or 0 depending on whether it is
black or white. "The interest in studying binary im-
age is motivated by the large amount of applications
in areas such as document analysis, optical charac-
ter recognition, fingerprint analysis, traffic control,
robotics, and so on.

In order to understand the binary images fea-
tures one should investigate the problems concerned
with geometrical and topological properties closely
related to connectivity [Qian 92]. In this work we an-
alyze some of such aspects, more precisely, by means
of Mathematical Morphology we detect the contours
of connected components and classify them as inner
or outer contours. As we will see elsewhere, this
classification can be used to extract topological in-
formations such as the Euler-Poincaré or genus of a
binary image, the number of connected components.
detect the holes of multiply connected components,
and so on.

If an image component has only outer contour,
then obviously it is a simple connected component;
if it has inner and outer contours then it is a mul-
tiply connected component [Qian 92]. Further, an
image with more than one outer contour has more
than one component, and as the inner contours are
associated to the holes of a component, we can use
them to detect all the holes of an image. Our algo-
rithm provides such informations and can be directly
executed in parallel architectures well-suited for im-
age processing applications, such as CLIP, DAP and
MPP [Fountain 87].

Some previous works concerned with binary con-
nectivity have been presented in the literature. In
[Rosenfeld 82] some algorithms describe how to de-
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termine and track borders in an image. In [Duff 86]
global propagation has been introduced to count the
number of connected components in a CLIP-like mas-
sively parallel computer. In [Rosenfeld 90] connect-
edness of a set S with its complement S¢ and their
boundaries have been investigated.

The problems we will deal with are close related
to a recent work presented in [Qian 92]. The method
in [Qian 92] is eminently sequential, where tracking
border operations are executed in predefined raster
scans, and the contours are detected and classified
one by one according to the order in which they ap-
pear. This method needs the assumption that the
distance between any two connected components is
at least three pixels wide, and special configurations,
which lead to some ambiguities in the classification
process, must be taken into account.

Our method is quite parallel and can be eas-
ily implemented in a SIMD machine. It is based on
Mathematical Morphology and no assumption about
the distance between connected components and spe-
cial configurations needs to be made.

This paper is organized as follows. Section 2 in-
troduces some notions of Digital Topology and Math-
ematical Morphology. Section 3 describes the algo-
rithm and illustrates the method. Conclusions are
drawn in section 4.

2 Preliminaries

We introduce now some basic concepts related to this

work. For more details see, for example, [Rosenfeld 82],

[Kong 89], [Serra 92]).

2.1 Digital Topology

Let ¥ be a binary picture and S a subset of ¥. A
point p = (z,y) of this digital picture has four hori-
zontal and vertical neighbors, namely

(l‘—— 1,9), (:L'vy_ 1)1 (l‘,y+ 1)» (it-l-l,y)

These points are the 4-neighbors of p and to-
gether with its four diagonal neighbors, namely

(l'_lay_l)a (z_lay+1)$ (.Z'+1,y—1),
(x+1y+1),

constitute the 8-neighbors of p.

A 4-path (8-path) of length n from a point p to
a point ¢ in X is a sequence of points p = pg, p1,..,Pn
= ¢ such that p; is a 4-neighbor (8-neighbor) of p;_1,
1 <i<n. AsetSof3 issaid to be 4-connected
(8-connected) if, for any two considered points of S,
there is a 4-path (8-path) joining them.

Let S¢ denote the complement of S relative to 2.
The connected component of S¢ which contains the
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border of ¥ (namely, its top and bottom rows, and
its left and right columns), is called the background
of S. All other components of S¢, if any, are called
holes in S. If S is connected and has no holes, it is
called simply connected; if it is connected but has
holes, it is called multiply connected.

It is important to note that to avoid the con-
nectivity paradox in dealing with connectedness, it
turns out to be desirable to use opposite type of con-
nectedness for S and S¢. For example, if we use 4-
for S, then we should use 8- for S°, and vice versa
[Rosenfeld 82]. This will allow us to treat borders as
closed curves.

If S and T are subsets of ¥, then S surrounds T
if any path from a point of T to the border of X must
meet S. Evidently, the background of T surrounds
itself, and T surrounds any hole in T.

If a component S has only outer contour (points
of S closer to its background or to the holes of an-
other component surrounding it), then obviously it is
simply connected; if it has outer and ¢nner contours
(points of S closer to its hole), then S is multiply
connected. Furthermore, if a binary image has more
than one outer contour then it has more than one
connected component. Fig. 3 shows such an image
in which an outer contour is completely surrounded
by an inner contour.

2.2 Mathematical Morphology

We introduce briefly, in this section, some basic no-
tions of discrete and binary Mathematical Morphol-
ogy.
Let f(z) be our discrete and binary image X,
ie, {f(zx) € 0,1: z € Z2}, where Z denotes the set
of integers. This image can be denoted by a set X
given by X = {z € Z%:f(z) = 1}. The complement
X¢ of a set X is given by X¢ = {z € Z2:f(z) = 0}.
The symmetric X of a set X is denoted by X = {-z:
r € X}. The translation X, of a set X by vector
u is given by X, = {z: z=z+u, * € X}. The set
difference X\Y of sets X and Y is given by X\Y =
XNnye.

Let the structuring element B be a finite set,
i.e, its cardinality is finite. The first relation we can
define between sets X and B is dilation

XeB={u:XnNB,#0}=JXs (1)
beB

The erosion of a set X by a structuring element
B is denoted by

XeB={u:B,CX}=()X; (2)

beB
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Morphologically, the interior contours, I., of a
set X is a subset of X denoted by

I = X\(X & B), (3)

and the exterior contour, E., of a set X is a subset
of X¢ given by

E. = (X & B)\X, (4)

where for a square grid the structuring element B can
be the elementary 4- or 8-connected set as in Fig. 1.
Note that if B is the 4-connected (8-connected) set
then it defines a 8-connected (4-connected) contour
(see Fig. 3 for 8-connected contours).

o] olole
lo|o|0] ool
o (I
(a) (b)

Figure 1: (a) 4-connected, and (b) 8-connected struc-
turing elements.

2.2.1

Let z, y be two arbitrary points of X. We define
a geodesic arc of extremity xy as the lower bound
of the lengths of the arcs in X ending at points x
and y. Let us define the number dx(z,y) as this
lower bound, if such arcs exist, and +oc, if not. The
function dx is a distance function called geodesic
distance [Lantuejoul 84], [Lantuejoul 80].

As stated in [Lantuejoul 84], all classical mor-
phological transformations (dilation, erosion, skele-
tonizations etc) can be defined in the metric space
(X, dx). For example, if Y C X, points x of X such
that Bx(z, A) hits Y constitute the A-dilated set
from Y in X denoted by

Geodesic operations

Dx(Y)={z € X:Bx(z,\)NY #0} (5)

where Bx (2, A) = {z € X: dx(z, y) < A}

Practically, the digital geodesic dilation of size
n, in the Z?-space, can be obtained from n iterations
of a geodesic dilation of size 1, denoted by

Dx(Y)=(Y&B)nX, (6)
and hence
D%(Y) = Dx(Dx(...Dx(Y))) (7)
n times
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The structuring element of size 1 can be the 4-
or 8-connected set of Fig. 1.

In the same way we can define the A-eroded set
from Y in X as the points z of X such that Bx(z,
A) is totally included within Y.

EX(Y)={z €X:B,(z,)) C Y} (8)

As a simple example, let us consider the problem
of eliminating the components which are partially in-
cluded in an image to be analyzed [Coster 89] (Fig.
2). Henceforth we will suppose that black compo-
nents have value 1 and white components have value
0.

If 63 represents the subset of points belonging
to the edge of the image, then the new set X’ rep-
resenting the components which are totally included
in X can be defined by

X' = X\D3 (5%) (9)

Informally, D*°(-) means execution of operation
D until stabilization or idempotence.

3 Classifying contours in binary images

Since the geodesic operations are closely related to
the notion of connectivity, we will consider them for
detecting and classifying the contours of the simply
or multiply connected components as inner or outer
contours. These operations are based only on local
properties of the pixels neighborhood, and can be
directly executed in a SIMD massively parallel com-
puter.

3.1 The algorithm

The method defines iteratively the subspaces of the
image where the geodesic operations are defined. The
contours of these subspaces are detected and classi-
fied by successive alternations of the outer and inner
classes until a stopping criterion is met, as explained
in this section.
Let, as before, éX be a marker set correspond-
ing to the edge points of a binary image ¥ (Fig. 3).
We can detect the outermost contours O of the com-
ponents X, in X, from the geodesic dilation of 6X
in X°. These outermost contours can be defined by
(see Fig. 4.b).
Y = DX (6%)

0 =(Y&B)\Y

(10)
(11)

The set Y* denotes the points which are interior
to the current outer or inner detected contour, and
defines the upper bound space for the computation
of the next contours (Fig. 4.b).
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(a) Image ¥ containing
partially included compo-
nents (black pixels).

(b) Geodesic dilation of
the set 6% in X.

EREMEEE NN EMEREEESEAE L
(¢) Set X’ of the compo-
nents totally included in
.

Figure 2: Eliminating partially included components of an image.

B = inner contours @
BE O n

= outer contours
=set X

Figure 3: Set X and its inner and outer contours.

As in a SIMD programming model, where all
pixels are transformed in parallel, sets such as Y and
O can be seen as memory planes, as the same size
as the original image, in which we store the points of
the transformed set.

The set representing the holes of X can be ob-
tained by the difference X°\Y as-illustrated in Fig.
4.c. The outer contours of this set correspond to the
inner contours of the components considered previ-
ously. It means that to classify the contours of X we
need only execute the above operations iteratively,
and alternate the outer inner classes at each step
(see Fig. 4). Here, the outer contours are stored in
memory plane O and the inner contours in memory
plane I.

It is easy to see that the set 3 will be empty after
the detection of the last contours of the image, i.e.,
when there will be no more connected component X
in ¥ (see Figs. 4k and 4.1). This state will be used
to denote the transitive closure of the algorithm.

Morphologically, the algorithm can be described

as follows.
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step = 0 ;
0,I1=190

/* initialize variables */

while not ZERO(X) do
step = step + 1
Y = DX.(6%)

/* consider inner or outer class */
if((step MOD 2) # 0) then

/* step odd: detect interior outer contours */
0 = [(Y&B)\Y] U O
else

/* step even: detect interior inner contours */
I=(Y\(YsB)UI

end_if

/* define the next computation space */
X =X\Y
end_while

Fig. 4 illustrates the algorithm for the set X
in Fig. 3. The detected contours are 8-connected
and they belong to the 1 valued components of the
image (interior contours). Exterior and 4-connected
contours can be defined in a similar way.

The function ZERO(X) verifies if all the pixels
of ¥ are equal to 0, namely,

ZERO(Z) := if £ = 0 then 1 else 0 end_if

This function can be executed within time
O(logN), for a NxN image [Klette 80]. All the above
operations are easily implemented in a parallel ar-
chitecture such as CLIP, MPP and DAP. These pro-
cessor arrays have some hardware flexibilities which
allow the execution of local operations in a simple
and fast way [Fountain 87].
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We can speedup the execution of the algorithm
by detecting the contours, in time ¢, from the con-
tours detected in time t — 1, i.e., not always from the
geodesic dilation of 6X. This consideration leads to
the following procedure.

step = 0
O, I 6Z=0 /* initialize variables */
Y = DL (6%)

while not ZERO(Y) do
step = step + 1
Y = D§.(6%)

/* consider inner or outer class */
if((step MOD 2) # 0) then

/* define the current interior outer contour */
0’ = [(Y&B)\Y\I’

/* define the corresponding exterior outer contour */

87 = Y\(YSB)\6Z
Y = D§(60)

/* actualize the outer contour set */
0O=0"UO0

else

/* define the current interior inner contour */
I' = [(Y\(YsB)\O’

/* define the corresponding exterior inner contour */
6Z = [(Y®B)\Y]\6Z

/* which is the new set to be geodesically dilated */
Y = DS.(6Z)

/* actualize the inner contour set */
r=rul

end_f
end_while

The sets O” and I are temporary memory planes
containing the current outer and inner contours, re-
spectively. The set 6Z denotes the new marker used
in the geodesic dilation for the computation of the
next contour. This set corresponds to a hole of ¥
connecting an inner to an outer contour. Again, all
the contours defined here are interior contours, i.e.,
they belong to the 1 valued sets of the image X.

ot
<t

Since the memory plane Y will be empty when
the set difference O” or I’ will also be empty (the
geodesic. dilation of an empty set is an empty set),
which means that the last outer or inner contour was
found, we can use the state of this memory plane to
denote the end of the algorithm.

The above procedure detects and classifies in
parallel the contours of a binary image. Based on
this classification we can easily extract some infor-
mations of binary sets. For instance, all the multiply
connected components of an image, Xy, if any, are
defined by

Xy = DE(D) (12)

where I is the set of the inner contours, as defined
before. Given a known inner contour I’, the corre-
sponding outer contour O’ of this set is simply

O’ = DY (I')\O* (13)
where O is the set of the outer contours. In the same
way, the set Ip of inner contours which surround
outer contours, if any, is

Io = D3.(0 & B)\I° (14)

The Euler number or Euler-Poincaré character-
istic [Rosenfeld 82], E, can be defined by

E = N(O) — N(I) (15)

where N(*) denotes the number of the components
in the set (memory plane) *. An example of com-

puting N(*) in a parallel machine can be found in
[Levialdi 72].

4 Conclusion

Mathematical Morphology provides simple and ef-
ficient tools for solving problems in image process-
ing and analysis. We have considered some geodesic
operations, closely related to the notion of connec-
tivity, to detect and classify contours of connected
components as inner or outer contours. Since the
morphological operations presented in this work are
eminently parallel, and based on local properties of
the pixels neighborhood, the method discussed here
can be directly implemented in a SIMD massively
parallel architecture, such as the processor arrays,
well-suited for low level image processing.
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(a) Complement X¢ of the

set X in Fig. 3.

i
| |
H
i
B
i
T

(d) Complement X°¢ of X.

(g) Complement X° of X.

(j) Complement X¢ of X.

(b) Set Y=D%.(6%) and
definition of 0.,
0,=(Y®B)\

) New set Y=DF.(6X%)
and definition of 1,
L=Y\(Y&B).

1

(h) New set Y=DF.(6%)
and definition of
=(Y4B)\Y.

) New set Y=D5.(
definition of
I;=Y\(Y<B).

and

ot

(l) The set X= XC\Y @
denotes the end of the al-
gorithm.

Figure 4: Classifying inner and outer contours.
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