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Abstract

This paper describes a novel approach to relational matching
problems in machine vision. Rather than matching static scene
descriptions, the approach adopts an active representation of
the data to be matched. This representation is iteratively recon-
figured to increase its degree of topological congruency with
the model relational structure in a reconstructive matching
process. The active reconfiguration of relational structures is
controlled by a MAP update process. The final restored graph
representation is optimal in the sense that it has maximum a
posteriori probability with respect to the available attributes
for the objects under match. The benefits of the technique
are demonstrated experimentally on the matching of cluttered
synthetic aperture radar data to a model in the form of a digital
map. The operational limits of the method are established in a
simulation study.

1 Introduction

Robust relational matching is a process of fundamental im-
portance at intermediate levels in computer vision. It is a
critical ingredient not only for effective stereopsis [5, 8, 15],
but also for multi-sensor fusion [29], pose determination [22]
and the matching of relational models [6, 7]. To be effective
under realistic imaging conditions, the matching process must
be robust to significant levels of noise, segmentation error and
scene-clutter [31, 32]. It should additionally have stable per-
formance when the available model is an over-representation of
the data. Viewed from the perspective of structural matching,
this means that scene elements may be missing or fragmented
and that there may be significant numbers of extraneous ele-
ments. Under particularly severe conditions, extraneous enti-
ties my permeate the bona-fide elements, severely hindering
the task of eliciting stable relational descriptions.

It is for these reasons that structural matching is invariably
approached by inexact means [26, 27]. The matching process
is frequently abstracted in terms of relational graphs [5, 15, 18,
21]; the critical ingredient being an efficient and robust way
of searching a large space of matching possibilities when the
data under study is corrupt or the model uncertain [5]. The
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available algorithms can be broadly divided into those that
address the matching process in terms of attribute relations
[5, 18] and those that attempt to operate with an effectively
symbolic representation of the matching process [26, 27, 20,
31, 32]. Algorithms falling into the former category include
the logarithmic conditional information of Boyer and Kak [5],
and, the probabilistic relaxation scheme of Kittler, Christmas
and Petrou [18]. Both algorithms draw on binary attribute
relations and effectively aim to optimise a quadratic cost of
inexact match. Higher-order attribute relations have recently
been exploited by Yang and Kittler in a mean-field approach
to matching [33]. Symbolic search-based approaches to the
inexact matching process include the classical graph-distance
metric of Shapiro and Haralick [27], and, the error-tolerant
graph-edit idea of Messmer and Bunke [20]. Optimisation
principals have found application in the simulated annealing
ideas of Herault et al [16] and the configurational relaxation
method of Wilson and Hancock [31, 32].

Underpinning these different approaches to the matching
problem are a number of contrasting models of relational inex-
actness. In the case of attribute relations, observational inex-
actness is captured by Gaussian distributions over the available
measurement space [5, 18]. Operating at a structural level,
Shapiro and Haralick’s [27] relational distance metric accom-
modates the effects of noise or segmentation error by inserting
dummy nodes. Both the simulated annealing method of Her-
ault [16] and the graph-edit approach of Messmer and Bunke
[20], associate a cost function with the consistency of match.
This idea of gauging the cost of symbolic consistency has re-
cently been taken one stage further by Wilson and Hancock
[31, 32]. Commencing from a model of the various types of
noise and segmentation error anticipated to be present, they
have developed a novel Bayesian criterion that can be used
to gauge both the consistency of match and the degree of re-
lational corruption. The criterion is compound exponential
in character and measures consistency by the Hamming dis-
tance between the structural units of the graphs under match.
Because the matching criterion is fine in its gauging of consis-
tency, optimal matches may be located using straightforward
gradient ascent methods.

Despite these contrasting views of relational inexactness, the
techniques described above all share the common feature of
exploiting a static representation of the structures under match.
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Under conditions of extreme clutter and noise this can prove
to be a severely limiting feature. If the genuine image entities
are submersed in significant clutter, then little of the relational
structure of the original model is likely to be preserved in the
data. Although small levels of contaminating clutter can be
accommodated by static means [5, 20, 27, 32], unless extreme
care is taken, then there is a danger of diluting genuine rela-
tional structure to such an extent as to render the final result
meaningless. Broadly speaking, there are two conventional

strategies for controlling clutter in the matching process. The

first of these attempts to associate a cost with clutter nodes and
to tag or label them in an optimisation process. Algorithms
falling into this category include the probabilistic relaxation
technique of Kittler, Christmas and Petrou [18], and, the loga-
rithmic conditional information of Boyer and Kak [5]. Accord-
ing to the second strategy, consistently matched subgraphs are
identified in a search procedure. Barrow and Burstall provide a
classical example in which the consistent matches are located
by searching for maximal cliques of an association graph [4].
The methodology has recently been extended by Messmer and
Bunke who use graph-edit [20] operations to locate consistent
subgraph isomorphisms.

Each of the principal strategies for controlling clutter has an
identifiable shortcoming. In the former case, unless the cost of
null labels is carefully regulated, there is a danger of locating
a globally null configuration. In the latter case, the persisting
subgraphs may be so fragmented by the maximal clique finding
process as to be of little practical value. Attempting to match
a relational structure whose intrinsic topology is significantly
corrupted by severe clutter can therefore only be anticipated
to meet with a limited degree of success. It is the need to
overcome the performance restrictions imposed by static re-
lational descriptions abstracted away from the original image
data that is central the work reported here. Our observation
is that attempting to match static abstractions of cluttered or
fragmented entities is only likely to meet with success if the
level of contamination is relatively limited. Instead, we adopt
the view that the matching task should be regarded as one of
relational restoration or reconstruction in which the relevant
abstraction is continually updated by reference to the available
data.

In practice, this means that we dispense with static graph
representations and operate instead with a dynamic relational
model. By identifying and deleting extraneous entities in the
data-graph we aim to directly rectify the cause of relational
inexactness and restore the intrinsic topology of the graph
structures under match. In other words, by rejecting rela-
tional noise, reconstructive matching permits constraints to be
exploited more effectively. It must be stressed that there is a
critical difference between our proposed reconstructive match-
ing process and the maximal clique [13] or graph-edit ideas
[20] conventionally applied to the identification of subgraph
isomorphisms. Our proposed method is not simply concerned
with modifying a relational abstraction that is isolated or de-
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coupled from the data it represents. Instead a new relational
description is constantly recomputed by removing extraneous
entities from the raw data. It is this direct coupling between
data and relational abstraction that is novel to our approach.
Although the value of adaptive or dynamic representations has
been recognised in the domain of deform-able models [30],
they have hitherto not found widespread application in the
context of relational modelling.

Our framework for realising these objectives is provided by
maximum a posteriori probability estimation [8, 11]. Our
MAP criterion allows us to assess the impact of each image en-
tity on the relational structures representing both the data and
the model under match. We can gauge the éffect of adding or
deleting nodes from the relational graphs in terms of a global
consistency measure. This framework is sufficiently flexible
to allow not only modification of the relational structure rep-
resenting the data, but also to allow us to modify our relational
model to rectify over-representation.

Conceptually, the process of reconfiguring the graph can be
thought of as one of identifying relational outliers. As such,
it is reminiscent of the use of robust statistics to reject outliers
in data clustering [19, 24]. Instead of attempting to iden-
tify a set of inliers sharing a uniform co-ordinate transforma-
tion, our aim is to locate the entities that constitute a coherent
structural cluster [13, 15] which satisfy relational constraints.
Viewed from this perspective, our MAP criterion can be re-
garded as a relational clustering metric which can be used
to reject a contaminating population of arbitrarily distributed
outliers. Although the process of reconstructive matching has
many aims in common with the constrained clustering tech-
nique of Rose, Gurewitz and Fox [23], it differs in one critical
respect. Rather than employing a weighted Euclidean distance
measure to gauge constraint violations, we attempt to exploit
a more objective Bayesian framework in the modelling of re-
lational consistency at the symbolic level. Following Wilson
and Hancock (31, 32], we compute the probabilities of rela-
tional errors by compounding a series exponential functions of
Hamming distance over the space of consistent mappings.

Evaluation of our method is based on the matching of Delau-
nay graphs representing Voronoi regions in 2D scenes [1, 2].
Here we demonstrate that the graph reconstruction process
operates effectively provided that the fraction of clutter does
not exceed 50% of the nodes in the corresponding uncorrupted
data. It must be stressed that this high fidelity of reconstructive
matching is obtained without any additional form of prepro-
cessing. Construction of more elaborate relational descrip-
tions, based for instance on perceptual groupings [14, 25],
may be regarded as a form of structural pre-processing aimed
at filtering away relational clutter. Unfortunately, the percep-
tual groupings that would prove most powerful in this respect
are invariably extremely fragile and their robust identification
requires a high degree of ingenuity to prove effective [25]. It
must be stressed that our choice Delaunay graphs is dictated
by convenience rather than by any intrinsic representational
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limitation of our method. Nevertheless, it may be taken as
indicative of the effectiveness of our technique that we can
successfully match relying only on a very simple relational ab-
straction and without recourse to elaborate perceptual grouping
operations.

The outline of this paper is follows. Section 2 introduces
the formal ingredients of our method and describes our ab-
straction of scenes in terms of relational graphs. In Section
3 we describe our approach to modelling relational consis-
tency using the concept of a label error process. Section 4
describes how this measure may be incorporated into the MAP
estimation scheme as a model of the joint prior. The main
theoretical contributions of the paper are detailed in Section 5,
where we develop the formal criteria for node deletion and in-
sertion. We present an experimental evaluation of our method
in Section 6. This includes studies on both real and simulated
data. The real world application is provided by the matching
of hedge structures in SAR images against there cartographic
representation in the form of a digital map. This provides a
demanding test our of our methodology since the image data is
fragmented and cluttered and the map an unreliable represen-
tation of ground truth. The simulation study complements the
application, by allowing us to demonstrate the ability of our
method to reject extraneous nodes under conditions of con-
trolled clutter. Finally, Section 7 presents some conclusions
and suggests directions for further investigation,

2 Relational Graphs

We abstract the matching process in terms of attributed rela-
tional graphs [5, 7, 18, 21, 27, 29]. According to this rep-
resentation the nodes represent entities to be matched. The
arcs represent relations operating between the nodes. In the
experimental study reported in Section 6 we will be interested
in matching hedge structures segmented from SAR images
against their digital map representation. Here the nodes rep-
resent linear segments. Arcs denote the existence of a mean-
ingful adjacency relation between pairs of line-segments. We
establish the required relations on the basis of the adjacency of
Voronoi regions generated from linear image segments. Here
the relational structure used to abstract the image entities is a
Delaunay graph. We have adopted this representation purely
on the basis of convenience and it does not impose a limita-
tion on the utility of our matching method. The framework
presented in this paper is not only applicable to the plethora of
computer vision tasks that are amenable to a Delaunay repre-
sentation such as matching segmented regions or lines [5, 33],
dot patterns [1, 2] and meshes [30]. It is also potentially
amenable to a variety of alternative relational abstractions such
as aspect graphs [6, 7], perceptual groupings [13, 15, 25] and
feature relation graphs [29].

We use the triple G = (V, E, A) to denote the graphs under
match, where V is the set of nodes, E is the set of arcs and

A = {x,;,Vi € V'} is a set of unary measurements associated
with the nodes. Our aim in matching is to associate nodes in
a graph G; = (Vj, E1,.A;) representing data to be matched
against those in a graph G, = (1, E3, A;) representing an
available relational model. This matching process is facilitated
using constraints provided by suitable relational subunits of the
model graph GG,. Formally, the matching is represented by a
function f : Vi — V; from the nodes in the data graph G| to
those in the model graph G,. The function f consists of a set
of Cartesian pairs drawn from the space of possible matches
between the two graphs, i.e. f C V) x Va; it provides a
convenient device for indexing the nodes in the data graph G,
against their matched counterparts in the model graph G,. We
use the notation (u, v) € f to denote the match of node u € V)
against node v € V5.

In performing the matches of the nodes in the data graph
G we will be interested in exploiting structural constraints
provided by the model graph G,. There are two issues at play
in selecting structures appropriate to this task. If the structural
units are too small then the matching process is impoverished
in terms of the contextual information upon which it can draw
in locating a consistent match. This limits the effectiveness of
the matching scheme, rendering it susceptible to noise or error.
If, on the other hand, the structural units are too large, then the
matching process becomes excessively burdensome in terms
of its computational requirements; the limitation stems from
the need to explore the space of relational mappings between
representational subunits. We will strike a compromise by
using subgraphs that consist of neighbourhoods of nodes inter-
connected by arcs; for convenience we refer to these structural
subunits or N-ary relations as supercliques.

The superclique of the node indexed j in the graph G| with
arc-set £ is denoted by the set of nodes C; = j U {i|(7, j) €
E,}. We use the notation R; = (u1,uy,...., u|c;|) to denote
the N-ary symbolic relation represented by the nodes of the
superclique C; C Vi in the data graph GG;. The matched real-
isation of this superclique is therefore denoted by the relation
[; = (f(w), f(w2), ..., f(wc,)))- Our aim is to modify the
match to optimise a measure of global consistency with the
constraints provided by the model graph G,. The constraints
available to us are provided by the N-ary symbol relations on
the supercliques of the model graph G,. The critical ingredi-
ent in developing our matching scheme is therefore the set of
feasible mappings between each superclique of graph G; and
those of graph GG;. The set of feasible mappings, or dictio-
nary, for the superclique Cj; is denoted by ® = {S;} where
Si = iU {j|(¢,j) € E2}. Each element S; of O, is there-
fore a relation formed on the nodes of the model graph; we
denote such consistent relations by S; = (vy, vy, ...). The dic-
tionary of feasible mappings for the superclique C; therefore
consists of all the consistent relations that may be elicited from
the graph GG;. In practice these relations are formed by per-
forming cyclic permutation of the non-centre nodes for each
superclique of the requisite size (an example of this mapping
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Figure 1: Example superclique mapping

process is shown in Figure 1); this process effectively preserves
the adjacency structure of the model graph while leaving dic-
tionary invariant to potential scene translations, scalings or
rotations.

3 MAP Estimation

Our aim in performing active graph matching is to iteratively
delete or reinstate the nodes of the data graph so as to opti-
mise a global MAP criterion. At the computational level, this
involves maintaining two separate representations of the data
graph. The first of these represents the current relational de-
scription of the data, while the second is a recomputed graph
from which a single node has been deleted. The means by
which the graph is recomputed depends on the type of rela-
tional abstraction being employed. To provide a concrete ex-
ample, in our experimental investigations we will be interested
in matching Delaunay graphs representing Voronoi tessellation
of the image plane [2]. Nodes of the Delaunay graph represent
distinct Voronoi regions while the edges indicate region adja-
cency. Here the deletion of a node corresponds to removing
a Voronoi region from the image plane. The Delaunay graph
may be recomputed by growing those regions adjacent to the
deleted node to fill the vacated space. In this way new relations
are generated, i.e. new Delaunay edges are created between
the surviving nodes.

To be more formal suppose G| = (E1, V;, .A;) is the current
representation of the perceptual organisation of the data. Graph

1 = (E1,V{, A}), on the other hand, is the reconfigured
relational structure formed by excluding the single perceptual
entity represented by node u in G| and reassigning it to the null
or outlier set ®. The node-set V/ = V; — u and the attribute-
set A] = A; — x), are trivially recomputed by deleting the
entry associated with node u. Determination of the edge-set
EY] is more complex and must be undertaken by recomputing
the relational affinity of the nodes when the perceptual entity
associated with node u is excluded from the raw image data.
The match between the reconfigured graph G| and the model
graph G is represented by the function f’ : V/ — V5, where
f'=f—=(u f(w)).

Our basic viewpoint is that modification of the graph struc-
ture G is aimed at recovering a restored relational grouping

1» under an assumed model of the data corruption process and
a prior model of the structure to be recovered. From the stand-
point of information theory, we therefore seek the grouped
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and matched configuration of nodes that has maximum a pos-

teriori probability with respect to the available unary mea-
surement information. From the computational perspective,
the objective is to formulate iterative local decision schemes
that are capable of both grouping and matching nodes. More
formally, these iterative reassignment processes are aimed at
partitioning the set of entities into those that are grouped to
form a consistently matched graph f and those that are as-
signed to a set of relational outliers ®@. In other words, we seek
the matched configuration of nodes that optimise the quantity

p(-Ala-A2|f:(D)P(f)(D) (1)

(-Al ) -42) :
where P(f,®) is the joint prior for the current partition,
p(Ar, Azl f, @) and p(A;, A;) are respectively the conditional
measurement density and the probability density function for
the sets of unary measurements.

We commence our development by making a number of
conditional independence assumptions. Firstly we assume that
the relational outliers are a priori independent of the match f,
ie.

P(f, @A, Ay) =

P(f,®) = P(f).P(®) ()
This partitional model is extended to the corresponding con-
ditional measurement densities which are also assumed inde-
pendent of one-another

p(-Alv-AZva d)) = p()_(L,)_(g,V(u, v) € f,f)p()_(L,Vu € (DI((D))

3
Furthermore, we assume that the different pairs of unary mea-
surements associated by the matching f are conditionally in-
dependent of one another. Under these conditions, the joint
conditional density appearing on the left-hand side in equation
(1) may be factorised over the two subsets of nodes forming
the partition. We therefore turn our attention separately to the
set of Cartesian pairs that constitute the matching function and
the nodes identified as relational outliers, i.e.

p(AnLAlf,@) = [[ e, €2lu,v). [] p(llu)  (4)

(u,v)ef ued

Our basic assumption concerning the set of outliers is that
it contains neither meaningful relational structure nor salient
measurement information. As will become evident in Section
4, this is at complete odds with our model of P(f) which
is based on a relational consistency measure. This means
that the outliers are conditionally independent of one-another
and occur with a uniform probability P4. As a result of this
assumption and applying the Bayes theorem, the above ex-
pression can be recast in terms of the a posteriori matching
probabilities P(u, v|x), x2) and the matching priors P(u, v)

H P(u,v|x}, x2)==wZvs

(uv)ef

p(Alv-A2|f1 d’) =
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Turning our attention to the joint prior for the relational outliers
and exploiting our uniformity assumption

P(®) = P\ (6)

Graph reconstruction and matching proceed on the basis of
node-by-node reassignment with the objective of locating the
configuration of nodes that has the maximum a posteriori

probability. Since this prdcess involves modifying only a sin-
gle node at a time, we confine our attention to the MAP ratio
for the two realisations of the graph G; and G|. Moreover,
because the unconditional measurement densities p(A;,.4,)
and p(x, x2) are independent of the match labels and hence
a static property of the data under consideration, the ratio in
question depends only upon the a posteriori match probabil-
ities and the matching priors. Furthermore, by virtue of the
factorisation appearing in equation (4), the ratio involves only
evaluating the effect reassigning the matched node u to the set
of null entities or outliers

P(f, ®|A1, A2)  P(u,v|x},x?) P(f)

P(f,®|A1,A2) ~ P(u,v).Py P(f) (7)

Essentially, we are concerned with developing an iterative
reassignment process for locating an optimal partition between
a set of outliers and a set of inliers that satisfy certain con-
straints upon relational consistency. In order to apply: this
global optimisation strategy we require three additional in-
gredients. These are models of the a posteriori matching
probabilities and of the joint prior together with an effective
algorithm control strategy. The most critical of these is a
means of modelling the joint priors P(f) so as to gauge the
overall consistency of the surviving relational structure. It is
the modelling of relational consistency that is the focus of our
attention in the next section of this paper. The issues of control
are discussed in Section 5. Details of the modelling of a pos-
teriori matching probabilities are application dependent and
are hence deferred until we address the issue of experimental
validation of the technique in Section 6.

4 Global Consistency Criterion

In order to realise the graph reconfiguration process as one of
iterative node reassignment, we require a metric of relational
consistency. This model of the joint prior can be viewed as
providing a means of imposing constraints on the relational
cluster that constitutes the reconstructed graph. When viewed
in this way, our reconstructive matching process has several
conceptual similarities with the constrained clustering ideas
of Rose, Gurewitz and Fox [23]. However, rather than using
judiciously chosen Gibbs distributions to impose attribute con-
straints, we draw on an objective Bayesian model of relational
corruption which is posed at the symbolic level. This results in
a consistency metric which is a compound exponential func-
tion of relational distance (Hamming distance). Underlying

this metric is a purely symbolic model of relational consis-
tency, namely the dictionary of structure preserving mappings
o.

Our strategy in modelling the joint prior is to construct an
average consistency criterion [17] using the probabilities for
the relational matches between subunits of the graphs G and
G>. We effectively average the relational matching probabili-
ties over the supercliques in graph G using the supercliques
in G as a model. Fundamental to this approach, is an effec-
tive means of computing the probability relational matching
between the supercliques the two graphs as specified by the
function f. In other words, we must focus our attention on
computing the probability of the matched relation I'; assigned
to the superclique C; of graph G}.

As we noted in Section 2, the consistent labellings available
for gauging the quality of match are represented by the set of
relational mappings from C; onto G5, i.e. ©. As demanded by
the Bayes rule, we compute the probability of the required su-
perclique matching by expanding over the basis configurations
belonging to the dictionary @

P(Tj) = > P(T;1S:).P(Si)
S;€0

(8)

The development of a useful graph-mapping measure from
this expression requires models of the processes at play in
matching and of their roles in producing errors. These models
are represented in terms of the conditional matching probabil-
ities P(T';|.S;) and of the joint priors P(S;) for the consistent
relations in the dictionary. In developing the required models
we will limit our assumptions to the case of matching errors
which are memoryless and occur with uniform probability dis-
tribution.

To commence our modelling of the conditional probabilities,
we assume that the various types of matching error for nodes
belonging to the same superclique are memoryless. In direct
consequence of this assumption, we may factorise the required
probability distribution over the symbolic constituents of the
relational mapping under consideration. As a result the con-
ditional probabilities may be expressed in terms of a product
over label confusion probabilities

ISil

P(T18:) = [ P(f(we)lvx) (9)
k=1

Our next step is to propose a model of the processes which
give rise to erroneous matches. Since our matching process is
structurally based, graphs with a relatively uniform composi-
tion give rise to a constant probability of error. We therefore
assume that matching errors occur with a uniform probabil-
ity distribution. If the probability of matching error is P,,
then the confusion probabilities appearing under the product
of equation (9) may be assigned according to the following
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distribution rule

1- P,

P(f(us)|vx) = { L if F(ug) = v

if f(ue) # v

As a natural consequence of this distribution rule the joint
conditional probability is a function of a single physically
meaningful variable. This variable is the Hamming distance
H(T;,S;) between the assigned matching and the feasible
relational mapping S;. This quantity counts the number of
conflicts between the current matching assignment I'; residing
on the superclique C; and those assignments demanded be the
relational mapping S;. With these ingredients, the resulting
expression for the joint conditional probability acquires an
exponential character

(10)

P(FjIS,') = Iﬁ’cj exp[—lceH(l“j,Si)] (ll)
where K¢, = (1 — P,)I%!. The exponential constant ap-
pearing in the above expression is related to the matching-
error probability, i.e. k. = In Ll The expression may
be regarded as providing a natural way of softening the hard
relational constraints operating in the model graph. Having
developed an exponential expression for the joint conditional
matching probabilities, it only remains to specify the distri-
bution of the prior probabilities for consistent relations in the
dictionary. Here we adopt a uniform distribution of the avail-
able unit probabi]ity mass over the set of possibilities ©, i.e.

P(S; € ©) (1) The final expression for the superclique
matchmg probab 1ty is therefore
_ I\C

S.€0

Before proceeding, it is important to comment on the structure
of the above expression. The most striking and critical fea-
ture is that the consistency of match is gauged by a series of
exponentials that are compounded over the dictionary of con-
sistently mapped relations. It is this feature that distinguishes
it from alternatives reported in the literature [5, 16, 18, 21].
Each relational mapping contributes a single exponential to
the probability of match. In consequence, our method is able
to operate in a robust manner when the space of relational
mappings is large. Recent theoretical studies suggest that
compound exponentials of the type defined above offer tangi-
ble benefits over linear or quadratic measures in terms of the
number of relational mappings accommodated and the label-
error probability of the resulting match [31]. Moreover, the
importance of the different constraints is graded by a natu-
ral symbolic measure of relational affinity, namely Hamming
distance; relational mappings of large Hamming distance con-
tribute insignificantly while those of small Hamming distance
dominate.

By gradually reducing P., the exponentials appearing in
equation (12) approach their delta-function limits. This effec-
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tively corresponds to subjecting the softened relational con-
straints operating in the matching problem to a graded hard-
ening. In the limit of vanishingly small error-probability the
matching probabilities become binary in nature; their role is to
effectively count the number of consistently matched relational
units. Under these conditions our matching criterion becomes
similar in function to the relational distance measure of Shapiro
and Haralick [27]. It is also worth noting that had we adopted
a confusion probability model based on multivariate Gaussian
attribute relations rather than the purely symbolic specifica-
tion of equation (10), then our criterion would be equivalent to
that of Boyer and Kak [5] under conditions of small attribute
deviations between the two graphs. ‘

With the joint matching probabilities to hand, we can model
the joint-prior for the global match by averaging over the com-
plete set of mappings between the two graphs. In doing this we
remain very close in spirit to the average consistency measure
widely employed in relaxation schemes [11, 17, 18]. We there-
fore gauge the consistency for the global match f : V; — V;
by the quantity

P(f) = ,;—l 3 P(Ty)

C;cVi

(13)

This model of the joint-prior forms our basic measure of
global relational consistency for the match between the graphs
G and G,. As we indicated in the introduction to this paper
our aim is to develop a dynamic matching process for recon-
figuring and. restoring corrupted graphs. This aim is realised
by locating reconstructed graphs that are optimal in the MAP
sense using constraints provided by a model graph. The role
of the global consistency measure is to model the joint prior
in such a scheme. Node reassignments between the graph and
the outlier partition may then be sought to optimise the MAP
ratio given in equation (7). Reconstructive matching places
dual demands on the update process. In the first instance,
nodes must be deleted or reinstated so as to bring the overall
data-graph topology in line with that of the model. The second
requirement is that the match residing on the surviving nodes
of the data graph should be maintained in a state of optimal
relational consistency.

In meeting these dual objectives it is important to stress that
the model of the joint prior appearing in equation (13) can
be effectively regarded as a relational clustering metric. Its
role is to assess the impact of node insertions or deletions on
the overall consistency between the data and model graphs at
two different conceptual levels. In the next Section we will
demonstrate that the metric not only fullfills the role of opti-
mally partitioning the outlier nodes, but that it simultaneously
imposes relational constraints on the nodes of the surviving
graph. Moreover, we will demonstrate that the incremental
change in the joint prior due to single node deletion is propor-
tional to the Kullback-Leibler entropy.
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5 Controlling the Matching Process

We now have all the formal ingredients necessary to realise the
iterative graph reconstruction process. Our aim is to delete and
reinstate nodes so as to monotonically increase the MAP ratio.
The resulting partition between graph nodes and relational out-
liers is one that optimises our structural consistency measure.
We also wish to maintain overall relational consistency among
the remaining nodes of the reconfigured graph which have not
been consigned to the set of outliers. Our requirements of the
MARP criterion are twofold. In the first instance it must allow
us to make decisions as to the admissibility of nodes as bona
fide graph structure or relational clutter. Its second role is to
allow us to reassign matches to the reconfigured graph so as to
maintain consistency with the model graph.

5.1 Rejecting relational outliers

Since our model of structural consistency is averaged over
the supercliques in the data-graph, in order to gauge the net
effect of deleting a node we must examine those contributions
that arise from modification of the supercliques containing the
node in question. This set is constructed by identifying those
nodes that form a superclique with node u in graph Gy, i.e.
— {u}, and determining the new superclique set for these
nodes in the reconfigured graph G|. We let x} denote the
superclique set of object u in graph GG and x, denote the
corresponding superclique set in the reconfigured graph G.
With this notation the change in the denominator of the MAP
criterion caused by the deletion of the node u is proportional
to
A7 =Py ) P(Ty) (14)
JEXY

By contrast, when considering the change in the numerator
of the MAP criterion it is the superclique set x} to which
we turn our attention. The corresponding change to the MAP

criterion is proportional to

P(u, f(u)lxy, X -f(u)
P(u, f(u))

With these two measures to hand, we can both delete and
reinstate nodes in such a way as to monotonically increase the
MAP ratio. We therefore delete node u provided A} < A7
and reinstate the node if AY > A .

It should be noted that in assessing the change to the global
MAP ratio we have confined our attention to the component of
the average consistency criterion that is modified by node dele-
tion. This effectively corresponds to ignoring the effect of the
unmodified component which can be regarded as representing
a constant pedestal consistency value. In order to justify this
iterative reassignment approach, we will now illustrate that the
modified consistency component is in fact proportional to the

ZP

jex¥

AL = (15)

-~

change in Kullback-Leibler entropy caused by node deletion.
Consequently, the decision criteria specified in equations (14)
and (15) not only locate the global MAP, they also ensure
that the reconstructed graph is the structure that maximises the
Kullback-Leibler entropy.

To proceed, we note that the canonical way of assessing the
impact of the change in a probability distribution evaluated
over a set of discrete entities is to compute the Kullback—
Leibler divergence [3]. Our strategy for assessing the relevance
of nodes in the data graph is therefore to compute the change
in Kullback-Leibler entropy associated with reconfiguration of
the graph and the consignment of nodes to the set of outliers
@ . In our application, we require a means of gauging the
improvements associated with the deletion of nodes, which
may be facilitated by comparing the matched relations from the
original graph T, € G with those in the modified graph I"; €
G. Adhering to our underlying philosophy of exploiting a
relational model, we wish to gauge these differences in the light
of the structure preserving relations residing in the dictionary,
i.e. S; € ©. The Kullback-Leibler entropy which meets our
requirements is

P(T;15:)

!
w(G1,GY) P(T15:)

(16)

SO DD BRAWIEDILE

]EX+S €0

Substituting for P(T;|S;) fromequation (11), and exploiting
the exponential nature of the probability distribution

keKc,

!
L(G1, 1) o]

=2 X

jext Si€0

X (H(Fj, Si) — H(T; ) exp[—k.H (Tj, Si)X17)

The change in entropy associated with the iterative reas-
signment of the single node u is therefore proportional to the
weighted change in Hamming distance over the set of modified
supercliques. This is a result which has a pleasing physical
intuition. Our maximum entropy criterian for deleting a node
is that it minimises the average Hamming distance between the
relations in G and G»,.

Moreover, since the average effect of deleting a single
node is to change one unit in a superclique, the improve-
ment on deletion is at most one unit of Hamming distance,
ie. H(T;,S,)— H(T,S,) ~ 1. In consequence, the change
in Kullback-Leibler entropy is proportional to the modified
component of the average consistency criterion, i.e.

ke ), P

jexy

L.(G,G (18)

Configurations of optimum average consistency are therefore
not only those of minimum average Hamming distance, they
are also those that maximise the entropy of the relational model.
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Viewed as a relational clustering process, the final partition
between inliers, i.e. nodes belong to the set V;, and outliers,
i.e. nodes belonging to @, is one of maximum entropy.

5.2 Establishing and maintaining consistency

The goal of graph reconfiguration is to restore the topology
of relational structure so that a more consistent match may be
recovered and relational outliers rejected. In commencing the
matching process, we have assumed that a maximally consis-
tent match has already been established via the mapping f.
In keeping with our MAP estimation philosophy, the optimal
configuration is the one that maximises the quantity
max P(f| A1, A2) (19)
The assignment of nodes to optimise the global MAP may
again be realised on a node-by-node basis. The match f(u) is
assigned as follows
P(u, v]x,, x})

f(u) = L ST

Y. P(T)

iexd

(20)

Consistency is maintained in the MAP sense provided that
we update the matches for all nodes in the supercliques modi-
fied by the deletion or insertion processes.

Before proceeding, it is however pertinent to discus how we
should exert control over the joint-prior in order to ensure con-
sistency of the final match. This is most easily effected through
the single parameter of the global criterion, namely the prob-
ability of matching errors. Since we expect an improvement
in the accuracy of the labelling, one control strategy is to re-
duce the matching-error probability to a small terminal value
according to some deterministic iteration dependent schedule.
In our previously published [11, 31, 32] experimental investi-
gations we have found the most effective strategy is to decay
the value of P, exponentially with iteration number. The error
probability P, may therefore be regarded as a control variable,
much in the spirit of the temperature in an annealing schedule
(8, 9].

6 Experiments

There are two main aspects to our experimental evaluation
of the reconstructive graph matching process. The first of
these may be regarded as an application vehicle and is con-
cerned with matching hedge structures segmented from syn-
thetic aperture radar (SAR) images against their cartographic
representation in a digital Ordnance Survey map. This applica-
tion study aims to demonstrate the effectiveness of the method
when applied to highly cluttered imagery. To give some illus-
tration of the difficulty of the task, the model consists of 23
linear segments while the data to be matched contains some 93
segments; the disparity between the size of the two data sets
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Figure 2: Raw SAR Image

is not attributable solely to partial overlap, the scene data is in
fact permeated by SAR clutter and unmapped segments.

Since the quantity of available SAR data is limited, the appli-
cation is augmented by a simulation study aimed at evaluating
some of the systematic limitations of the graph reconstruction
method under conditions of controlled clutter and contami-
nation. This simulation study compares the performance of
the dynamic graph reconstruction technique with the use of
static graph representations. Here we demonstrate that the dy-
namic approach consistently improves over the performance
of a static method when the fraction of added clutter accounts
for as much as 50% of the image entities. Even under these
extreme conditions, it is capable of removing the vast major-
ity of clutter while maintaining the overall consistency of the
match.

6.1 Extracting line-segments from SAR data

For the application study we are interested in matching hedge
structures detected in SAR images of rural scenes against their
representation in the form of digital map data. An example
image is shown in Figure 2 and the corresponding map data is
shown in Figure 6. As we mentioned in the introduction, this
is a complex matching task due to the segmentation problems
posed by the raw data and the unreliable nature of the ground-
truth map information. Hedge structures present themselves as
intensity ridges of variable width in the SAR image. The raw
intensity data is both noisy and exhibits anisotropies associated
with the directionality of the radar used to sense the scene; the
anticipated fidelity of feature detection may be expected to
be subject to orientation dependent systematics. For instance,
inspection of Figure 2 reveals shadowing associated with the
directionality of the radar. At the cartographic level there are
discrepancies between map and data. Many of the linear hedge
structures recorded in the map data are absent from the SAR
image while some genuine hedges are not mapped.

We commence the processing of the SAR data by applying
arelaxation operator to the raw image data to extract intensity
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Figure 3: Result of line detection

ridges of good connectivity. The ridge extraction process re-
lies on refining the output of a pair of directional line detection
filters using a dictionary-based relaxation scheme [10]. There
are two features of this process which enhance the perfor-
mance of ridge detection and which merit special mention. In
the first instance, the relaxation operator draws on an accurate
noise model for the SAR data. For the data under study the
noise process is multiplicative with the underlying intensity
distribution. Rather than being modelled by a pure Rayleigh
distribution, which is the case with additive Gaussian noise,
when multiplicative noise is present the line-gradient distribu-
tion is specified by a product of Rayleigh and Bessel function
components. The second noteworthy feature of the relaxation
operator is its use of a dictionary model of contour structure
to enhance the connectivity of the detected ridges. Example
ridge contours are shown in Figure 3.

Although clean and noise free the detected line contours
still exhibit gaps and are not in good agreement with their
map representation. These gaps are due to constrictions and
breaks in the SAR intensity profiles caused by genuine non-
uniformities in the hedge structures. In order to overcome this
limitation in the data, we have applied the contour grouping
operator of Shashua and Ullman [28] to the ridge contours;
results are shown in Figure 4. The contour grouping operator
considerably enhances the coherence of the contours, enabling
the extraction of meaningful linear features. Finally, Figure 5
shows the linear segments extracted from the linked contours;
itis these entities that we will match against their cartographic
counterparts.

6.2 Relational Modelling

The Ordnance survey map data which represents the model
to be matched against the extracted linear segments is shown
in Figure 6. As we mentioned in Section 2, we establish a
graph representation by seeding a Voronoi tessellation of the
image plane from the linear segments. Our relational abstrac-
tion of the scene is a Delaunay graph that represents spatial

Figure 4: Contour grouping

Figure 5: Linear segments

Figure 6: Digital map data
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Figure 8: Data graph

adjacency of the Voronoi regions. Figures 7 and 8 show ex-
ample graph structures generated by the Voronoi tessellations
for the map model and SAR data respectively. Superimposed
on the graphs are the relevant sets of line-segments. There are
several features of these graphs that merit special mention. In
the first instance, there is considerable variation in the sizes of
the supercliques for the different nodes. The smallest contains
only 4 nodes while the largest contains 9 nodes; this means that
the lowest order of symbolic relation is 4 while the largest is 9.
It is also clear that the data graph suffers from both relational
drop-out and relational contamination; there are both spuri-
ous arcs and missing arcs. There are significant differences in
topology between the two graphs to be matched.

The initial matches between the linear segments extracted
from the SAR data and their map representation are established
on the basis of the affinity between the vectors-of unary node
attributes in the two graphs. The matching probabilities are
computed from exponential distributions of the Mahalanobis
distance between attribute-vector pairs computed using an es-
timate of the variance-covariance matrix X, i.e.

P(u, f(u)%y, X} (u)) = (1 — Py)
L SPLa - X)) T2 (6 — X))

1 .
> expl—5(xy — )72 (x), — x2)]
vEV,

@21

For the SAR application, we have used a single unary attribute,
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namely the orientation of the lines. Although there is clearly a
considerable body of information remaining untapped by our
matching affinity model, it must be stressed that this aspect of
the matching process is not our prime concern in this paper.
Rather, our aim is to demonstrate the benefits of the graph
reconstruction method. In any case, since linear segments are
invariably subject to fragmentation, the ability to recover an
acceptable match based purely upon orientation information
may provide certain operational advantages in terms of ease of
control.

6.3 Matching experiments

The experimental matching study is based on 95 linear seg-
ments in the SAR data and 30 segments contained in the
map. However only 23 of the SAR segments have feasible
matches within the map representation. Figure 8 shows the
initial Delaunay graph for the SAR data while Figure 7 shows
the corresponding graph for the linear segments in the digital
map.

Figure 9 shows the initial configuration of matches which
has been used to seed the reconstructive matching algorithm;
the black lines are correct matches while the grey lines are
matching errors. It is important to stress that these initial
matches have been optimised with respect to MAP process
described in Section 5.2. In fact, they represent the best results
obtainable by static means.

After application of the reconstructive matching technique,
the results shown in Figure 10 are obtained. On comparison
with Figure 9, itis clear that the main effect has been to consign
the plethora of initially incorrect clutter fragments to the set
of outliers. Some of these clutter elements form significant
groupings of unmapped line structure that dominate whole
sectors of the SAR scene. Moreover, some of the restorative
benefits are clear if it is noted that the matching of certain
relational groupings has improved as aresult of clutter deletion;
itis these clutter elements that significantly hindered the initial
static match by disrupting key structure.

As a result of the reconstructive matching process, the ma-
jority of the clutter segments have been deleted from the SAR
data graph. To give some idea of relative performance merit,
in the case of the initial matching configuration 20 of the 23
matchable segments are correctly identified with 75 incorrect
matches, while after application of the active matching method
the final graph contains 19 correct matches and only 17 residual
clutter; 59 nodes are consigned to the outlier set ®.

6.4 Performance Evaluation

Although our SAR matching application has furnished a de-
manding test when noise and clutter are important factors,
because of the limited quantities of available data it does not
provide an ideal vehicle for demonstrating the performance
characteristics of the graph reconstruction method. For this
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Figure 10: Reconstructive Match

reason, we conclude our experimental study by providing some
results on synthetic data. Our aim here is to evaluate the ability
of our method to operate under conditions of controlled clut-
ter and to offer quantitative comparisons with conventional
matching processes based on static graph representations.

In order to embark on this study, we have generated graphs
consisting of a number of lines with random positions and ori-
entations. The patterns have been given a relational abstraction
by seeding a Voronoi tessellation from the line centre-points
and computing the associated Delaunay graph. The nodes
of the graph are therefore the random dots, while the arcs
indicate that the associated Voronoi regions are adjacent to
one-another. In order to simulate the effects of clutter and
segmental dropout, we have both added lines at random loca-
tions and deleted random lines from the patterns used to seed
the Voronoi tessellation. This has the effect of corrupting the
topology of the associated Delaunay graph.

In order to demonstrate the disruptive effects of clutter upon
the relational structures used in matching, Figure 11 shows the
average error-probability as a function of the fractional degree
of clutter. The most striking feature of this plot is that when
measured in terms of fractional change in Hamming distance,
the effect of clutter is amplified. For instance when the fraction
of clutter nodes is 10%, approximately 20% of the nodes in
any relation are corrupt. When a quarter of the nodes are
clutter, then about one-half the edges in each relational unit
are spurious.

11
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“clutter.pit” re—

Fraction of relational corruption
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0.4 0.5
Fraction of nodes corrupt

Figure 11: Effect of adding relational clutter

6.4.1 Iterative Reconstruction

We illustrate some of the dynamic qualities of our active match-
ing process. The sequence of images in Figure 12 represents
the iterative evolution and eventual reconstruction of the cor-
rupted graph under the action of our active matching scheme.
As nodes are assigned to the outlier partition, they become dis-
joint from the remaining graph. The level of both dropout and
clutter in this scene is 50%. As the sequence evolves to sta-
ble convergence, the fraction of noise contamination falls from
60% to 20%. Additionally, there has been a 15% improvement
in the consistency of match for the nodes retained in the re-
configured graph. In other words, there has been a significant
increase in the consistency of match that is attributable to re-
lational restoration. Moreover, very few consistently matched
nodes are consigned in error to the outlier partition. After the
process has reached stable convergence, 90% of the recover-
able graph is restored and only 15% of the surviving nodes
represent residual clutter. None of the genuine nodes in the
reconstructed graph is matched in error.

6.4.2 Operational Limits

Finally, we have performed a series of simulation experiments
with the aim of establishing the effective operating limits of our
active matching technique and comparing these with the per-
formance with some alternative methods. The two alternative
strategies both employ static relational models. However, in
order to provide meaningful comparison, all three algorithms
draw on the consistency measure defined in equation (13).
Constraint filtering applies the maximal clique algorithm [14]
to remove residual inconsistencies from an association graph
[4]. The association graph required as input to this algorithm
is constructed from the set of candidate matches that optimise
the relational consistency measure in equation (13). Thisis a
hybrid algorithm which employs the classical maximal clique
algorithm as a postprocessing step once optimisation ceases
to find further iterative improvements [32]. Null-labelling, on
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Figure 12: Reconfiguration sequence

the other hand, involves identifying and tagging clutter nodes
during the optimisation process. From the modelling perspec-
tive, this means that the probability distribution specified in
equation (10) must be modified to include a probability mass
P4 associated with the null-category. This has the effect of
modifying the configurational probability in equation (12) to
take account of the number of null matched nodes ¥(T';) on
the superclique Cj in the following way [31]

K¢,
P(T;) = o Y expl—(keH(T}, S;) + kg ¥(Ty)] (22)
Si€®
where ks, = ln@g_—}@ and K¢, = [(1 = P)(1 —

Pyl

Figure 13 shows the fraction of the original graph correctly
matched as a function of the fraction of added clutter. The solid
line represents the result of active matching. The dot-dashed
line is the result of applying maximal clique finding to the as-
sociation graph of the optimal matches. Finally, the dotted line
is the result of null-labelling. It is clear that the active match-
ing method consistently outperforms the two static methods.
Errors do not appear until the fractional corruption exceeds
20%. Even when the clutter fraction is as high as 50%, then
80% matching accuracy is achievable. By contrast, the two
static methods, are 10%-20% more susceptible to error. How-
ever, it is interesting to note that the maximal clique finding
technique has a tangible performance edge over null-labelling.
This is largely attributable to the difficulties encountered in
controlling the parameter of the null match.

Although these simulation studies are far from exhaustive,
they indicate that the matching method is robust to significant
levels of graph corruption.
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Figure 13: Effect of controlled levels of clutter

7 Conclusions

We have described a novel approach to relational matching.
Rather than matching static representations of a scene, it dy-
namically reconfigures the graph so as to restore overall re-
lational consistency. The scheme is formulated as maximum
a posteriori probability restoration of the reconstructed scene
graph. Commencing from a highly cluttered or over segmented
representation of ascene, the data graph is incrementally recon-
figured to optimise both its relational and topological similarity
with a model graph. This process allows nodes of the graph to
be iteratively deleted and reinserted subject to recomputation
of the edge-set in the graph.

Our motivation in developing this new approach to matching
has stemmed from a comparison of the different techniques
available for controlling the matching of extraneous elements.
This is conventionally approached by either explicitly labelling
elements as null-matched or by filtering them from the final
match using arc consistency tests. Under conditions of severe
relational corruption both strategies fail. In the former case null
matches may swamp the matching process, diluting the effect
of relational constraints. In the latter method, the surviving
relational structure may be so fragmented to be of little use
as a meaningful image interpretation tool. By contrast, our
proposed method, not only identifies extraneous nodes but by
deleting them from the graph it also incrementally restores the
consistency of the underlying relational structure by removing
spurious edges. The tangible benefit of this new philosophy, is
a graph matching technique that can operate effectively under
very severe levels of clutter. This offers manifold potential
benefits in the matching of very noisy or over-segmented image
data against a parsimonious model.
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