Surface Interpolation with Tensor Product Patches
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Abstract. A method is presented for the construction of a piecewise biquartic polynomial tensor product
surface interpolating arbitrarily located data. given as a 3D mesh of points or cubic curves.
Macropatches composed of rectangular patches are used to fit each original face. Since only standard
tensor product patches are employed. the method can be directly integrated with most existing systems
and allows the use of widely available geometric processing and rendering libraries and algorithms.

1. Introduction

Parametric tensor-product surfaces have become a de

facto industrial standard for modeling free-form

surfaces. This type of surface is employed by the great
majority of systems now in use. and supported by
current graphics standards. libraries and workstations.

Despite this popularity, however. tensor-product
B-spline surfaces cannot model surfaces of arbitrary
topology. Methods that allow the construction of
smooth  (tangent plane continuous) surfaces
interpolating arbitrarily located data—a problem that
arises in numerous application areas such as geometric
modeling, scientific visualization. medical imaging and
geological modeling—generally employ triangular
patches, but their use in commercial systems is
troublesome. due to the burden of dealing with different
patch representations [Nie93].

Here we propose such a construction scheme.
which unlike other methods. makes use only of
polynomial tensor product patches. We assume that the
given data consists either of vertices (and possibly
normals at these vertices) of a polyhedron of arbitrary
topology. or of a G! curve network composed of cubic
polynomials.

Our goal is to employ strictly polynomial patches.
without singularities and of lowest possible degree. The
advantages of using this kind of standard representation
are:

e compatibility with existing systems. facilitating
integration and data exchange:

e consequences on development cost. extensibility
and maintainability. since duplicate procedures to
deal with different patch types are not necessary:

e wider availability of geometric processing
algorithms;

e immediate availability of advanced rendering
options with efficient implementations. as this is
the representation adopted by the graphics libraries
and standards now in use (GL. PHIGS. etc.):

The face splitting approach adopted, depicted in
Figure 1. has been used in several n-sided patch
schemes ([Chi83, Var87, Sar87, Hah89, Zha92]).
However. these schemes generally employ non-
polynomial representations with singularities, or high
degree patches and restricted mesh configurations.

Figure I: Face splitting in four-sided patches.

The first and basic problem to achieve Gl
continuity using this representation is that the mixed
partial derivatives ("twists") of the patches around a
vertex have to be compatible. as will be discussed later.
It is well-known that at "even" vertices (adjacent to an
even number of curves) this can only be accomplished
using single non-rational polyvnomial patches if the
boundary curves are restricted so that a compatibility
condition is met [Wij84. Sar87. Wat88].

If this is not the casc. however. we find that it can
still be advantageous to look for the "best possible"
solution (or approximate Gl continuity), which can be
adequate for many applications.

Another problem is to specify a scheme for
splitting the original faces (macropatches) in four-sided
subpatches. respecting the cross boundary derivative
field at the original edges. maintaining the degree of
the patches as low as possible. and preserving the
"quality” of the surface (that is. avoiding unwanted
undulations).

We usc the formulation of the Gl continuity
condition in [Var93a]. which allows a geometrically
intuitive analysis of the problem. Using this
formulation. we propose a construction scheme that
leads to biquartic patches.

Improving the quality of the obtained surface is
still a problem. since the construction scheme creates
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"extra" degrees of freedom whose adequate setting is
not trivial. This problem is common to similar
methods, as discussed in [Man92].

2. Previous Work

Several methods have been developed for the
generation of smooth surfaces composed of triangular
and n-sided patches

The basic steps followed by local interpolation
methods are:

1. Creation of a preliminary curve network. at least
Gl, connecting the data points.

2. Generation of cross-boundary  derivative
information along the boundary curves. Usual
approaches are to use Farin's G! condition [Far82]:
Chiyrokura and Kimura's construction [Chi83]: or
Nielson's construction (for normal vectors along
the boundary) [Nie87].

3. Generation of the final patches, filling in the holes
between boundary curves.

2.1. Triangular Methods

Triangular patches are general enough to model any
type of object. and triangulations are very common in
applications dealing with empirical data. This has led
to the development of several methods for parametric
interpolation using triangular interpolants. A survey
and comparison of some representative methods can be
found in [Man92] and also [Lou92). The methods are
classified into two groups. according to their solution to
the twist compatibility problem: split-domain and
convex combination methods.

2.2. N-sided Methods

Some problems lend themselves more naturally to the
use of n-sided patches. A review and classification of
several methods can be found in [Var87] (see also
[Gre86]).

2.3. "Compatible"” Methods

Also closely related to our problem are the methods of
Sarraga and Peters. Both construct single polvnomial
patches per face of a curve network. and therefore
cannot circumvent the compatibility problem using
splitting or convex combinations.

Sarraga's method [Sar87]. based on Bezier's work.
also constructs surfaces composed only of rectangular
Bezier patches. However. the network configuration is
restricted: only originally four sided faces are handled.
and only three. four (pairwise tangent) or five curves
are allowed to meet at a vertex. Moreover. an
asymmetric formulation of the compatibility condition
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is used. leading to patches of unequal and high degree
(6 x6and 3 x6).

In [Pet91] Peters proves that a sufficient condition
for the curves incident to an "even-vertex" to be
compatible is that they match second-order data there.
He also gives a construction leading to quartic curves
respecting this constraint.

Peters' scheme assumes that the network is
composed by three and four-sided faces. generating
triangular and rectangular patches (one per face). The
patches are quartic and biquartic in most cases. but
triangular faces are quintic (or need to be split) if
certain conditions occur.

2.4. Approximate Geometric Continuity

In some situations, analytical G! continuity might not
be necessary. This may be the case. for instance. in
some scientific visualization applications. when surface
quality is not a primary concern: and in other modeling
situations. if eventual tangent plane discontinuities are
imperceptible in the rendered objects. or below machine
precision in CAM applications.

Moreover. the relaxation of the continuity
requirements may even be desirable. In [DeR92]. the
authors show that avoiding the "vertex enclosure”
problem can lead to the use of fewer surface patches of
lower degree.

3. Continuity Between Patches

Assuming that the curves are already specified.
constructing the patches amounts to finding its interior
Bezier control points. A G! join requires constructing
appropriate  cross-boundary  derivatives for each
boundary curve. i.e.. determining the first interior row
of Bezier control points. If the patches are not cubic,
and more interior control points exist. they can be
chosen freely. since they will not affect the cross-
boundary derivatives. but only the interior shape of the
patches.

First we look at the condition to join two patches
with G! continuity. Given cubic boundary curves. there
is no problem in creating appropriate cubic cross-
boundary derivatives. and therefore cubic patches. Next
we consider the problem of connecting more patches
around a vertex. In this case cubic cross-boundaries
will not be enough to satisfv the constraints.

31. Gt Continuity Between Two Patches

Consider the two patches. R" (x#.v) and R (u.v)
that share a common boundary as in Figure 2. The
endpoints of the boundary. r(u). correspond to u=0
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and u=1. We call the derivatives at » on the boundary
r,(u), r”(u) and r® (u).

Figure 2. G1 continuity between two patches.

Following the approach in [Var93a. Var93b]. the
"common direction blend" method, the cross-boundary
derivatives for each patch are written as

r,‘“(u)=D(u)A“’(u)+r"(u)P""(u), i=1,2 (1)

A common direction vector, D(«). is introduced.
and independent pairs of scalar "blending functions"
A”(u), P”(u).and A® (1), P*(u). used at each side
of the boundary curve.

Proposition: If the cross-boundarv derivatives can be
written as in Equation 1, G! continuity is achieved.

Proof: Surface normals are obtained by the cross
products

r,(u) xr"(u) =[r,(u) x D(u)]4" (1). i=1.2

which differ only by scalar factors 4" (u).

(2)

a

For implementation purposes we pick D(u)
orthogonal to r,(x). If r(x) and D(x) werc unit
vectors. A”(u) and P" (1) would be the projections of
r."(u) on these directions.

The key issue for the construction of the cross-
boundary derivatives is the determination of
A" (1), P"(u) and D(u). chosen to satisfy the fixed
end conditions from Equation 1 for #=0 and v=1.

3.2. Twists

Now let r,(x), D(u), A" (x) and P"(u) be given and
assume the twist vectors at the endpoints are to be
found. From Equation 1:

r, () =D(u) A" (1) + D, (1) A" (u) +

+r,(W)P" (1) +r, (1) P"(n), i=1.2 (3)

At 4=0. eliminating D, («) from Equation 3 and
simplifying yields
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from which we see. multiplying both sides by — A" (0),
that

r2(0)+erl(0)=p

for constants c and p.

For two patches sharing one boundary curve, with
r,(u), D(u), A”(u) and P (u) previously defined,
this equation simply states a relation between the twist
vectors of the patches.

However. when more patches are arranged around
a vertex. as in Figure 3. a system of equations relating
the twists of each patch is formed. and D(u) can no

longer be independently set for each boundary curve.

)
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Figure 3. Gl continuity between patches around a
vertex.

3.3. Gt Continuity Between More Patches
Around a Vertex

Consider Figure 3 above. In order to satisfy Gl
continuity at a common vertex of a set of n patches —
such as any original vertex of the curve network with n
incoming curves. or at the middle point of a face — the
twists obtained for each patch from each of its two
boundary curves must be the same. In Bezier form. the
"tangent ribbons" of the two curves have to be
compatible. This is the "twist compatibility problem"
mentioned before.

A system of equations for the n twist vectors is
formed. Applying Equation 5 at each boundary curve:
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Notice that, from Equation 4, the expressions for
the vectors p at each boundary curve do not involve
D, (0). However, once the twists are determined. these
values can be obtained from Equation 3. and will
therefore be fixed. Consequently, D(«) must be at least
cubic to interpolate values and derivatives at the
endpoints, and the cross boundary-derivatives must be
at least quartic, according to Equation 1.

Solving the system for the twists as in [Var93a] results
in
r®=p,-cr

[&)] [£3]

i - m
rll' - p 2 cZ ruv

=pP,—¢p, tegar,

r.:) = pll - npn-l —cncn-lpn-z"'(_l)"cn"'clr:')

—P+Cr® (7)

and leads to the well-known conclusion:

Theorem: For odd n,C=-1, and a solution to twist
compatibility problem (Equation 7) alwavs exists. For
even n, C=1, and a solution exists only if P=0. In fact,
in this case infinitelv many exist.

A geometrical proof can be found in [Rei93]. and
equivalent proofs by calculating the determinants of
systems of equations similar to Equation 6 in matrix
form can be found in [Wij84. Sar87. Wat88).

Notice that from equation 4. the condition P=0 is
automatically achieved in the case of four pairwisc
tangent curves.

Back to the interpolation problem. the conclusion
is that in a mesh of general topology containing "odd"
and "even" vertices. a "compatible" curve network
would have P=0 at every even vertex.

Therefore. if non-compatible curves are given or
created. it is not possible to fit a G! piecewise
polynomial surface to them with the configuration
desired (that is. using only one patch between each
original pair of curves coming into a vertex).

In this situation the strategy adopted herein is to
obtain the "best possible" results. in a least squares
sense: we solve the system of equations using Singular
Value Decomposition [Pre88]. This gives the twists
which minimize the norm of the residual of the solution
of the system. The resulting surface is of course not
analytically Gl_. but the closest possible for the given
curves. The severity of the discontinuities will depend
on the curve network configuration. For the torus test
case. shown in Section 5. gaps in the isophotes.
indicative of G! discontinuity [Hag92]. were minor and
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appeared only in a few cases. in very few spots. In the
shaded surfaces discontinuities were imperceptible.

34.

From Equation 4, linear blending functions lead to
"coupling” between vertices. because the value of the
derivatives of the blending functions at a vertex will
depend on the function values at the opposite vertex.

This has an important consequence to the
scheme presented here: when defining the cross-
boundary derivatives for the subdividing curves of a
face. A(x) and P(u) cannot be linear: the twist at the
junction with the original curve is already fixed
according to the cross-boundary derivatives obtained
before.

One way to avoid this coupling is to make A"'(u)
and P"(u) quadratic. with A)"(1)=P"(1)=0. From
Equation 1. making P* () quadratic will not raise the
degree of the cross-boundary derivative. since. for cubic
curves. r, (1) is quadratic.

However. A" (1) quadratic would make the cross-
boundary derivative quintic. To avoid this. we will
instead make it constant. by adopting a special
constraint for the derivatives of the subdividing curves
at the midpoint (see [Rei93] for details). In the case of
triangular faces this can be easilv achieved by
positioning the middle point such that it is on the
barycenter of the triangle formed by the curve-
derivative vectors.

Face Subdivision

4. Construction Method

The surface construction method consists of the

following steps:

e If only points and normals are given. creation of
the curves.

e Solution (or approximate solution) of the twist
compatibility equations at the vertices.

e Generation of compatible (or "as compatible as
possible") cross-boundary derivatives along the
curves. using the twists obtained.

e Subdivision of the curves and cross-boundary
derivatives at u=0.5 .

e Generation of a point and normal vector at the
middle of each face.

Generation of the face-splitting curves.

Creation of cross-boundary derivatives along the

face-splitting curves.

e Generation of interior control points for the
patches .

One very important feature in an efficient
implementation of the scheme proposed is the use of a
boundary representation (B-rep) data structure. for easy
access to the adjacency information and also as an
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auxiliary data-structure where the obtained information
is stored with the associated topological entities.

4.1. Curve Construction

If the curves are not given, only points and normals as
in the examples presented here, then they are
independently constructed for each edge. using the two
points and associated normals: V|, V,, N 1- No.

The construction method adopted is the one
presented in [Nie87]: at each vertex the vector-product
of the normal with the vector (V3-V)) is obtained.
Then the vector-product of the result with the normal is
taken and normalized. giving the unit-vector in the
tangent direction. The length of the tangent vector is
heuristically set to be equal to the distance between \S)
and V). A cubic curve is constructed interpolating the
points and tangent vectors, and stored in the data
structure as an edge attribute.

One important observation: in discrete
interpolation methods. this step has a fundamental
influence on the quality of the final interpolant. Better
schemes for setting adequate values for the tangent
magnitudes would improve the quality of any surface
fitting scheme. It is easy to see that settings based on
heuristics and strictly local information can be
arbitrarily good or bad. depending on the situation.

4.2. Cross-Boundary Derivatives for the
Original Curves

The cross-boundary derivatives at both sides of each
edge are obtained by direct application of Equation 1
after D(u) is determined. The scalar blending
functions A”(x«) and P“(u) are linear functions
interpolating the values at the vertices 4*'(0). 4 (1).
and P“(0). P"(1). which can be calculated by
decomposing r,"(0) and r"(1). the derivatives of the
winged-edge curves at each vertex. in the directions
D(0). r,(0). and D(1). r,(1). respectively.

The derivative r, (v) can be directly obtained
from the edge curve.

The "common direction blend" D(u) is a cubic
vector-valued function interpolating D(0). D(1).
D, (0) and D,(1). We picked the first two values to be
unit vectors orthogonal to r,(0) and r.(1).
respectively. on the tangent plane. D,(0) and D (1)
are obtained from Equation 3 after the twists for the
patches around a vertex are computed.

The twists are calculated: all vertices are traversed
and the system of equations in Equation 6 solved at
each one. The assembly of the system requires that all
values involved are collected or calculated. at the vertex
itself (#=0) and at the opposite vertex (v=1). for each
incident edge.
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From the calculated twists we obtain D (0) for
each edge. and store all values that will be used later in
the topological data structure, as attributes of the edge.

Finally. all edges are traversed. and the cross-
boundary derivatives are "assembled” for each one,
according to Equation 1.

All polynomials are manipulated and stored in
Bezier form for several reasons: intuitive geometrical
meaning. numerical stability. easy operations,
especially derivation. subdivision and degree elevation,;
and because this is the representation used for the final
patches.

4.3. Face-Splitting Curve Construction

The subdivision of the faces introduces several degrees
of freedom in the construction scheme. A middle-point
and an associated tangent plane have to be determined
for each face. and then the subdividing curves have to
be constructed (Figure 1).

For each curve, its derivative at the joint with the
original edge is already determined by the cross-
boundary derivative field computed in Section 4.2. We
also have to obey. for the triangular case. the constraint
that the middle point has to be placed such that it is the
barycenter of the triangle formed by the curve-
derivatives emanating from it.

As for biquartic patches the curves can be cubic
(from Equation 1. with P(u«) quadratic). there is total
flexibility for positioning the face middle point.We
specify the middle point as the average of the points
obtained by passing cubic curves from each vertex to
the opposite edge as in Nielson's method. The middle
normal is obtained as an average of the three normals
given by taking the cross product between each two
derivatives of these cubic curves at the face middle
point (« = 2/3 for the curves. coming from the vertex).

The derivative at the edge middle point is directly
obtained from the cross-boundary derivative field
previously constructed. At the vertex. the derivative
direction is taken as the bisecting direction of the
derivatives of the two incoming curves. and its
magnitude as the average of their magnitudes.

At the face middle point. the derivatives are
determined as follows: three default values are
determined in the same fashion as described in Section
4.1 for the construction of the original curves. Then
they are adjusted to satisfv the introduced constraint.
which for triangles implies that they sum up to zero.

4.3.1 Comments

There is plenty of room for improvements. since many
degrees of freedom for fixing the middle point and
constructing the subdividing curves are available.
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Like the setting of degrees of freedom during the
construction of the original curves, this problem is a
candidate for numerical minimization of some (global)
"fairncss” functional, following the ideas discussed in
[Cel91. Mor92]. The drawbacks would be the high
exccution times and robustness concerns.

4.4. Cross-Boundary Derivatives for the Face-
Splitting Curves

The cross-boundary derivatives along the subdividing
curves are "assembled” using a procedure similar to the
onc described in Section 4.2, once the twists around the
middle point are computed and D(x) determined.

As mentioned before. the scalar blending functions
A“”(u) are now made constant by imposing. by
construction. a constraint to the tangent vectors at the
centcr point. and appropriately specifying D(u).
P*(u) will be quadratic, interpolating the values
P*(0). P"(1)=0 and P"(1)=0 (with u=0 at the
middle point).

As before, D(u) is cubic, interpolating D(0),
D(1). D,(0) and D,(1). The direction of D(0) is
again made orthogonal to r,(0). but it is scaled such
that 4"(0)=A*(0)=1. D, (0) is_obtained from
Equation 3. somewhat simplified now. after the twists
around the middle point are computed. D, (1) is also
obtained from Equation 3 using the twist read from the
previously dctermined cross-boundary derivative of the
original boundary curve at the junction point. Actually.
after the simplifications it turns out to be equal to that
twist.

L. P. DOS REIS, A. ROCKWOOD

4.5. Interior Control Point

After the boundaries and cross-boundary derivatives are
computed. a biquartic patch still has one control point
remaining to be determined. which will affect only the
interior shape of the patch.

Several ways could be devised for setting this
point. The objective here is to look for the less
objectionable one. as "compatible" as possible with the
information already generated.

For comparison, we tried two different methods.
However. the difference in the final shaded surface was
imperceptible in the examples used.

The first was the simplest one imaginable:
averaging the surrounding control points.

As a second method. we obtained this control
point by degree elevating the bicubic patch with the
same boundary curves (already cubic) and with the
same twists at the corners.

5. Results

The following figures show the results of the
application of the method to the test data sets shown in
Figure 4. an octahedron and a torus (similar to the ones
in [Man92]. for comparison).

Figure 5 shows the structure of the resulting tensor
product patches.

Figure 6 shows the results obtained by the tensor
product interpolant with isophotes superimposed. The
surface quality is similar to that obtained by other
methods. with noticeble ridges and undulations.

Figure 4. Test data sets.

Testing increasing and decreasing tangent values
in the curves construction. the isophotes kept basically
continuous. with minor gaps at very few spots
appearing for high tangent values. beyond which the
surface started to present cusps and loops.

As an example of the convenience of dealing
exclusively with tensor-product surfaces. the surfaces
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presented were rendered by directly using the NURBS
primitive of the graphics librarv (SGI's GL). As a
result, the patches did not need to be tcssellated. and
other features offered by the library. such as trimming
and texture mapping, could have been automatically
used.
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Figure 5. Structure of the patches.

Figure 6. Tensor product interpolant with isophotes.

6. Concluding Remarks

We propose a piecewise surface construction scheme
which fits biquartic polynomial tensor-product surfaces
to a general network of cubic curves joining a 3D mesh
of points. The resulting surface is not analytically Gl if
the network contains vertices adjacent to an even
number of curves and is not "compatible”, but the
method leads to cross-boundary derivatives which
minimize the twist discontinuities at the vertices. As
noticed in the results from the implementation. this can
lead to a final surface quality equivalent to that

obtained by other local methods. even for test cases
composed exclusively of "even" vertices.

6.1.

The quality of the surfaces obtained by local parametric
interpolants is still not as good as one might desire. due
to the fact that the amount of given data is not enough
to match the number of degrees of freedom necessary to
satisfy the problem requirements. For the method
proposed. more research concerning the setting of these
remaining degrees of freedom needs to be done. One

Future Work
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possibility to consider is the use of numerical
optimization techniques.

Since in general only approximate geometric
continuity is achieved. one issue to be investigated is
the use of lower degree (bicubic) patches. by degree
reducing the quartic cross boundary derivatives.
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Figure 5

Figuras a cores do artigo Surface interpolation with tensor product patches..
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