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Abstract. The microcanonical optimization algorithm (40) is an algorithm based on the micro-
canonical simulation techniques of statistical physics, which has been recently proposed as a suitable
alternative to the simulated annealing approaches. The uO algorithm retains all of the positive
features of the microcanonical annealing introduced by Barnard (which follows the pioneering work
by Creutz), but avoids the necessity of an annealing schedule, thus resulting in improved compu-
tational efficiency. Here we present applications of the pO algorithm to some prototypical visual
processing problems (binary-image smoothing, halftoning, and random-dot stereogram matching),
and show that it performs better than the traditional, or canonical, simulated annealing (SA) and

than Barnard’s microcanonical annealing (MA).

1 Introduction

Since the 1980’s, techniques originating in the sta-
tistical mechanics branch of physics have found their
way into image processing and image analysis appli-
cations [3,5]. Such techniques are usually based on,
or modifications of, the simulated annealing algori-
thm (3], which is a stochastic heuristic appropriate
for global optimization problems where a non-convex
functional has to be minimized. The simulated an-
nealing procedure is most commonly run on top of
a Metropolis-type Monte Carlo process [3], and is
therefore based on the so-called canonical ensem-
ble, a parallel being drawn between the image-related
problem at hand and the evolution of a physical sys-
tem in equilibrium at a given temperature. Lately,
there have also appeared simulated annealing appli-
cations based on the microcanonical ensemble, where
the system’s evolution is controlled not by its tem-
perature, but by its internal energy [2,7). Micro-
canonical annealing (MA) has some definite advan-
tages over the standard (canonical) annealing (SA),
since it does not require the generation of random
numbers, and can be implemented with low-precision
integer arithmetic, but it seems that the potentiality
of this approach hasn’t been fully exploited, so far.
Recently, we have presented some further con-
tributions to the use of microcanonical techniques for
image-related applications [8]. We have developed a
microcanonical optimization algorithm (uO) which
does not involve annealing, but which retains the
positive features of the MA algorithm. In [8], we have

shown that, for typical image processing and compu-
tational vision applications, 4O yields results compa-
rable to those obtained with the canonical annealing
approach, but in considerably shorter times. Here,
we continue our assessment of the potential of ;O for
visual processing applications, showing that it out-
performs the microcanonical annealing algorithm.
The efficiency of uO has been tested on some pro-
totypical image applications (binary-image restora-
tion, halftoning, random-dot stereogram matching)
and the quality of the obtained results has been re-
markable.

In the following section, we present a review
of the annealing procedure, both in its canonical
and microcanonical versions.- Next, we introduce
our microcanonical optimization algorithm and il-
lustrate its application to the three processes men-
tioned above, analysing its efficiency when compared
to SA and MA. The paper ends with our concluding
remarks and the bibliography.

2 Simulated Annealing

Simulated annealing is a technique developed in s-
tatistical physics, which can be applied to the reso-
lution of combinatorial optimization problems based
on the minimization of non-convex functionals (cost
functions or objective functions). In annealing, the
cost function associated with any such problem is i-
dentified as the energy of an imaginary physical sys-
tem with many degrees of freedom, whose ground
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state (lowest energy state) is sought. The anneal-
ing rationale is then to stochastically generate sam-
ples of the possible states of this system, following
a prescription which guarantees the approach to the
minimum energy states.

Canonical Annealing (SA)

Basically, there have been two prescriptions for
implementing simulated annealing. The traditional
one, which we treat now, is based on the so-called
canonical ensemble, where the system is assumed to
be in equilibrium with a large heat bath at a defi-
nite temperature, 7. The probability distribution of
its possible states is then known to be of Gibbs (or
Boltzmann) form, i.e.,

exp(—E;/T)

P(E;) = —Zm (1)
where P(E;) is the probability of finding the i-th s-
tate, whose energy is E;. The normalization quantity
in the denominator is called the partition function,
and is given by Z(T) = >; exp(—E;/T). (T is here
considered as a control parameter in the same units
as the energy E).

The prescription for generating the possible s-
tates of the system, in this case, is thus to ob-
tain samples of the Gibbs distribution in (1). The
Metropolis algorithm [3], which is a Monte Carlo pro-
cess known to the physicists since the early 1950’s,
can be employed for this purpose. The Metropolis al-
gorithm is implemented by starting with the system
In an arbitrary state, and proposing random state
transitions, which are accepted with probability e-
qual to one, if the system energy decreases, and with
probabilty given by exp(—AE/T), if the energy in-
creases by AE. It has been proven that the sequence
of states generated in this fashion converges to a sam-
ple of the distribution in (1).

In the Metropolis-based, or canonical, anneal-
ing, the convergence to the lowest-energy states of
the system is guaranteed by the introduction of an
appropriate schedule for decreasing the heat-bath
temperature, in the sampling process above, while
still maintaining thermal equilibrium. The idea is to
allow the system to undergo many energy-increasing
transitions in the beginning of the process (high T),
so that it will be able to avoid getting trapped at
local-minima states, and then to progressively re-
strict the positive energy jumps, as T decreases, to
guarantee that it will settle in a global minimum con-
figuration.

Microcanonical Annealing (MA)

An alternative method for the simulation of
large statistical systems has been introduced by
Creutz in [4]. Instead of considering the system’s
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evolution at a fixed temperature, as with Metropo-
lis, Creutz has proposed a procedure based on the
microcanonical ensemble, which assumes the system
to be in isolation — in contrast with the heat bath
assumption of the canonical ensemble —, and thus
to have constant total energy, Es (in practice, the
system will be found in a narrow range of energies,
E5—5E<E<E5+6E).

Creutz’s algorithm postulates an extra degree of
freedom, called a demon, which travels around the
system carrying a variable amount of (always pos-
itive) energy, Ep, in its bag (Ep << Es). The
purpose of the demon is to exchange energy with
the system, in such a way that the total energy,
Erotat = Es + Ep, is preserved. As with the
Metropolis algorithm, in Creutz’s procedure the sys-
tem is considered initially in an arbitrary state, and
random state transitions are proposed. All transi-
tions to lower energy states are accepted, and the
difference —AEs > 0 is added to the demon’s bag,
where AEs is the decrease in the system’s energy.
On the other hand, those transitions which bring
about an increase in the system’s energy are accept-
ed only if the energy difference AEs > 0 satisfies
AEs < Ep, so that it can be provided by the demon
(recall that Ep is constrained to be always positive).
In this way, the total energy Es + Ep is guaranteed
to remain constant.

Since the demon is assumed to be very small,
it acts as a thermometer for the system, which now
functions as a heat bath. In equilibrium, we have

P(Ep = E) « exp(—E/T). (2)

Thus, in Creutz’s microcanonical Monte Carlo sim-
ulation, the system’s energy becomes the control pa-
rameter, while the temperature emerges as a statis-
tical feature from the equilibrium distribution of the
demon’s states. From standard physics arguments,

we obtain
T =< Ep >, (3)

where the brackets denote an average taken over all
possible demon states.

An implementation of annealing based on the
microcanonical ensemble is straightforward, as sug-
gested by Barnard in [2] (see also the work by Hérault
and Horaud in [7]). The approach to the low ener-
gy states, in this case, is guaranteed by a gradual
decrease in the initial value of the demon energy,
Ep. While presenting the advantages of not requir-
ing the generation of random numbers or the evalua-
tion of the transcendental function exp(z), Barnard’s
algorithm 1is still computationally expensive, since
the simulation of the system’s evolution must be re-
peated for the sequence of decreasing values of the
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demon’s energy, according to an (energy-based) an-
nealing schedule. Trying to preserve the advantages
of the microcanonical approach, but also aiming at
further reductions of the computational burden, we
have proposed a different algorithm for non-convex
optimization, which is still based on Creutz’s ideas,
but which avoids the simulation of annealing. Let us
refer to it here as the microcanonical optimization
(pO) algorithm.

3 The Microcanonical Optimization Algori-
thm

The technique which we have proposed as an alter-
native to the annealing approach is based on the mi-
crocanonical simulation algorithms which have been
employed in statistical physics for the study of Ising
systems (see [4] and [6], for examples of such ap-
plications). It consists of two procedures which are
alternately applied, starting from an arbitrary ini-
tial configuration, until the system has stabilized in
a low-energy state: an initialization procedure and a
sampling procedure.

In the initialization phase, our goal is to place
the system in a state with a lower energy than its
starting configuration. This is accomplished via an
iterative improvement process by which we propose
changes in the system’s dynamical variables, accept-
ing only those that lead to lower energies. The ini-
tialization procedure stops when a given amount of
energy (established in advance) has been drawn from
the system.

From the state obtained in the initialization,
the sampling phase proceeds, as in Creutz’s algori-
thm, to generate microcanonical samples of the sys-
tem’s states at fixed energy (see preceding section).
In contrast to Creutz’s (and Barnard’s) approach,
in the pO algorithm, we impose an upper bound
on the energy that the demon can hold. Thus, as-
suming that the demon’s initial energy is E;, and
that it carries a bag of capacity Er, the sampling
phase in our algorithm corresponds to a microcanon-
ical simulation of the system in the energy range
Es — Er+ Er < E < Es + E;, where Es is the
final energy obtained in the initialization step.

The sampling phase is made to stop when ther-
modynamical equilibrium has been reached, which
is relatively simple to establish for a microcanonical
simulation (see [2] or [7]). The final state resulting
from this step will then be used as the initial config-
uration for another initialization run, and thus con-
secutively, until no further reduction in the system’s
energy can be obtained.

When compared to the annealing-based ap-
proaches, we see that the pO algorithm, besides pre-

223

serving the advantages of the microcanical simula-
tions, brings the extra benefit of not requiring a time-
consuming annealing schedule, with the associated
trial-and-error process of determination of free pa-
rameters, such as initial temperature, cooling rate,
and number of steps at each temperature. In our al-
gorithm, only the values for E; and Er, respectively
the demon’s initial energy and capacity, have to be
chosen a priori, and the prescriptions for halting the
two procedures of the algorithm are unequivocal.

4 Experiments

Here we show examples of the application of the pO
algorithm to some image-based processes, and com-
pare its performance to those of the canonical and
the microcanonical annealing algorithms.

The application problems which we discuss are
all easily solved by stochastic optimization metho-
ds. The first two are image processing applications
(binary-image smoothing and halftoning), and were
first tackled via simulated annealing by Carnevali et
al., in [3]. The third one is a random-dot stereogram
matching, formulated as a stochastic optimization
problem and solved through annealing in (1], by
Barnard. In our experiments, we have followed the
formulations in the above references, which involve
constructing the appropriate energy functions, and
looking for the configurations which give minimum
energy. We have arrived at solutions via SA, MA,
and the pO algorithm, which we compare.

(Remark: In the figures, we only show results
obtained via 4O and MA. The results obtained via
SA have been reported in [8])

Binary-Image Smoothing

The problem, here, is to obtain a smoothed ver-
sion of a given binary image, which has been cor-
rupted by random (also binary) noise. The solution
1s obtained as the image 8 = {;;} which minimizes
the energy function (cost function)

EB) = Y (Bij—Bu)+ A (as = )%, (4)

<ij,kl> ij

where o = {a;;j} is the degraded image (ci; and B;;
can assume the values 0 or 1), and where the nota-
tion < 7, kl > indicates that the summation is over
nearest-neighbor pixels, only. The first term in (4)
encodes a smoothness condition for the reconstructed
image, (3, while the second term enforces its fidelity
to the given image, a. A is a factor which controls
the balance between the two terms.

Figure 1a shows the original image from which
the degraded version a, in Figure 1b, was obtained.
Figures 1c and 1d show the smooth image, 3, ob-
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tained from the minimization of (4) via the pO algo-
rithm and microcanonical annealing, respectively.

Halftoning

The problem of halftoning is to construct a bi-
nary image whose average intensities emulate a given
continuous-tone image. Calling u = {u;;} the bina-
ry image (intensities +1 or —1) and v = {v;;} the
gray-level image (intensities between +1 and —1),
and defining the average intensities of u through the
introduction of a filter (blurring function) V, as

pij = Z Vij kitter, (5)
ki

we can formulate the problem of halftoning as that
of minimizing the cost function

E(w) = (% —pij)* (6)
i

The images u obtained through the minimization of
(6), via the pO algorithm and via MA, are presented
in Figures 2b and 2c, respectively, with the input
image v being shown in Figure 2a.

Random-Dot Stereogram Matching

The matching problem in stereoscopy refers
to the establishment of a correspondence between
points in a pair of images obtained from different
viewing positions, in order to determine a disparity
field from which depth estimates can be obtained.
There have been different methods proposed for the
extraction of the disparity fields from stereo images.
The stochastic optimization approach introduced in
[1] involves the minimization of the cost function

E(D) = Y |IL(i,5)= I (i, 5+ Dij) 1+ Y IV Dy,
i

ij

(7)
where D = {D;;} is the disparity field, I; and I, are
the left and right input images, respectively, and V
is a gradient operator. The first term in (7) embod-
les a photometric constraint, by which one tries to
guarantee that points in the two images are matched
which have approximately the same intensities (the
match is along horizontal lines); the second one is a
smoothness term, favouring disparity fields which do
not vary much in a small neighborhood of sites.

We have compared the minimization of (7)
through the pO and MA algorithms for the random-
dot stereogram shown in Figures 3a and 3b. The
results are presented in Figures 3¢ and 3d.

5 Relative Efficiency of uO, SA, and MA

Table 1 summarizes the performance of the pO, SA
and MA algorithms, for the three experiments dis-
cussed above (The results obtained with SA have
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been reported in [8]). The CPU times were obtained
with a Sun Sparc-II station. The algorithms were
run sequentially, with SA (respectively, MA) follow-
ing a linear schedule for the decrease of temperature
(respectively, energy), and both MA and pO being
implemented with a single demon per lattice, in con-
trast with the multiple-demon implementations of 2]
and [7). When scanning the image lattices for up-
dating the system’s states, a maximum of 100 swee-
ps were performed at each temperature (respective-
ly, energy) for the SA (respectively, MA) algorithm,
and at each sampling step of the uO. The result-
s presented confirm the higher efficiency of the pO
approach.

Exp 1 Exp 2 Exp 3
#O | Energy | 13255.91 | 1.74 | 23440.00
Time (s) 73.8 217.16 | 1176.48
MA | Energy | 13446.50 | 2.04 | 23410.00
Time (s) | 455.88 | 434.10 [ 4600.00
SA | Energy | 13558.70 | 2.07 | 23467.00
Time (s) | 1917.06 | 729.26 | 9634.79
Table 1

6 Concluding Remarks

The microcanonical optimization algorithm (£O) has
been proposed by us, in [8], as an alternative to
the simulated annealing approaches to non-convex
optimization problems. Such algorithm follows the
ideas introduced by Creutz [4], and first exploited
by Barnard [2] in the context of stochastic optimiza-
tion but, unlike the latter, it avoids the recourse to
annealing. Here we have made an assessment of the
performance of pO when compared to the standard
(canonical), and to the microcanonical annealing al-
gorithms, and we have shown the higher computa-
tional efficiency of our approach.
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Figure la

Figure 1c Figure 1d

Figure 2a

Anais do VII SIBGRAPI, novembro de 1994



MICROCANONICAL OPTIMIZATION APPLIED TO VISUAL PROCESSING 227

Anais do VII SIBGRAPI, novembro de 1994



228 J.R. A. TORREAO, E. ROE

Figure 3a Figure 3b

Figure 3c Figure 3d
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