Faster Methods for Computing Slant Haar Transforms of Digital Images

M. M. ANcun!
&
R. R. MARTIN 2

1Department of Electrical Engineering,
Centro Tecnolégia, Bacanga
Federal University of Maranhao
CEP: 65085-580, Sao Luis, MA. Brazil
mma@fapema.br

2Dept. of Computing Mathematics, UWCC,
P.O. Box 916, Cardiff, CF2 4YN, UK.
ralph@cm.cf.ac.uk

Abstract. A phenomenon characteristic of digital images is the presence of approximately con-
stant or uniformly changing gray levels over a considerable distance or area. A novel method, the
Truncation Slant Haar Transform (TSHT) method for computing the Slant Haar Transform (SHT)
of digital images is presented which exploits this phenomenon to advantage. The TSHT method
utilises a hierarchical tree to segment and aggregate uniform image data and a matrix factorisation
to eliminate transform matrix redundancies. This simultaneous exploitation of inter-pixel rela-
tionships and the elimination of transform matrix redundancies produces an efficient method for
computing the SHT of digital images. In one dimension with an array of N = 2™ data values, the
TSHT method takes time between O(N) and O(N logy N), thus degenerating to the performance
of the standard Fast Slant Haar Transform (FSHT) method. In two dimensions with an array of
size N x N, the performance of the TSHT method is between O(N?) and O(N2log, N), again
degenerating to that of the FSHT method in its worst case. Since coherence is a fundamental
characteristic of digital images, the TSHT method is therefore superior to the FSHT method when

used to compute the SHT of coherent digital images. Experimental results are presented to justify

this assertion.

1 Introduction

Digital images are characterised by the presence of
constant or uniformly changing gray levels over a
considerable distance or area. The Slant Haar Trans-
form (SHT) [4, 5, 10, 11] is defined with a discrete
sawtooth basis vector which changes uniformly with
distance for representing gradual increase in bright-

ness.
The discrete SHT matrix S of order N = 2" is

defined such that

1 -1
FSNSN' = In (1)

where S;,‘ is the inverse of Sy and Iy is the N x N
identity matrix. The Slant Haar Transform F of an
input array f both of size N is defined as

F= % fSn @)

A brute force computation of F by multiplying f
and Sy requires O(N2) operations. The Fast Slant

Haar Transform (FSHT) method [4, 5] for comput-
ing F is based on the factorisation of Sy into a set
of n largely sparse matrices, each expressing a stage
of the computation. This requires O(N log, N) ele-
mentary operations.

Our earlier work (1, 2, 3, 8] established relation-
ships between Walsh-Hadamard, Slant Transforms
and Hierarchical encodings, particularly noting that
both methods of encoding use the same basis to rep-
resent information present in the data. Furthermore,
computing orthogonal transforms of digital images
directly in terms of pixel values as done by fast trans-
form methods [6] is somewhat inefficient because inter-
pixel relationships (coherence) are not used to ad-
vantage. An efficient method for computing orthog-
onal transforms of digital images should therefore
use data coherence to an advantage. Truncation
methods [1, 2, 3, 8] for computing Walsh-Hadamard
and Slant Transforms of images have been developed
which utilise both the factorisation of the transform

Anais do VII SIBGRAPI (1994) 125-132

126

matrix and the exploitation of data coherence using
hierarchical data structures.

This paper presents an analogous idea for com-
puting the SHT of coherent data such as that repre-
senting digital images. This method is faster than
the corresponding FSHT method as it simultane-
ously factorises Sy into sparse matrices and the data
f into sparse sub-regions using a hierarchical struc-
ture. In particular, we prove that if the correspond-
ing binary tree representation of f has maximum
depth d, then the SHT coefficients

0 for u#i2n-4d
0<ig2d¢-1)
0 for u# (2i+ 1)2n-4-1
(0<i<2¥1-1) (0<d<n)

Flu] =

3)
These two results readily generalise to two and higher
dimensions as will been seen.

The TSHT method utilises a hierarchical data
structure to identify and avoid the computation of
the zeros in Equation (3) which are normally com-
puted by the FSHT method. This makes the TSHT
method superior to the FSHT method for computing
the SHT of coherent digital images.

Analysis of time complexity in one and two di-
mensions shows that the TSHT method takes time
between O(N') and O(N log, N) in one dimension,
and time between O(N?2) and O(N2log, N) in two
dimensions, in particular degenerating to the perfor-
mance of the FSHT method in the worst case. A
set of experiments conducted on digital images us-
ing the FSHT and TSHT methods is presented to
demonstrate overall actual time savings.

2 Hierarchical structures

Hierarchical data structures are compression tools
which exploit inter-pixel relationships to aggregate
data into sparse sub-regions.. The basic idea is to
divide an array of data until uniform regions are ob-
tained. The process commences with the entire array
set to be the region of interest. If the region of inter-
est is not uniform, it is subdivided and the process is
repeated in turn on each of its sub-regions until an
atomic region (pixel) or a uniform region is encoun-
tered. The manner in which the region of interest
is subdivided at each stage determines the result-
ing structure. When an array f is recursively subdi-
vided into left and right halves, the resulting struc-
ture is a binary tree. The binary tree construction
requires O(N) logical operations. Other hierarchical
structures include the quadtree and bintree used to
represent two dimensional arrays. Hierarchical data
structures have been used for compression [12], image

Anais do VII SIBGRAPI, novembro de 1994

M. M. ANGUH, R. R. MARTIN

segmentation (7] amongst many others (9, 13, 14].

3 The Slant Haar Transform (SHT)

The Slant Haar Transform matrix [4, 5] Sy of order
N = 2" is computed from the SHT matrix Sq_ of

order N = 2"~1 by first computing
S2 d szn-—l (4)

(® denotes the Kronecker product) followed by a ro-
tation of rows 1 and 2™~! by

sinf, cosé,
[cosf, —sinéb,,] ()
where
22n— 1

0<0<I

cosly, = ——, (6)
22n._ 2
/ a 1

which introduces the slant properties of linearly de-
creasing components. Factorisation of the SHT ma-
trix Sg gives the FSHT framework in Figure 1. The

stage 3

Figure 1: The FSHT framework

Fast Slant Haar Transform (FSHT) method requires
4N — 6 additions, N/4 — 1 multiplications, N — 2
shifts and 3N /4 normalisations at the last stage of
the computation. A partial step by step normali-
sation is performed at each stage k > 1 by post-
multiplying rows (1 + 4i)2%¥-2 and (1 4 2i)2*-! for

i=0,...,n—k by
1 ge—1
k-1 22%-2_, (7)
2 3

as shown in Figure 1. This requires 2 shifts, 2 addi-
tions and 1 multiplication for each pair of rows.

FASTER METHODS FOR COMPUTING SLANT HAAR TRANSFORMS OF DIGITAL IMAGES

4 The TSHT method

This section presents the mathematical foundation of
the Truncation Slant Haar Transform (TSHT) method.
The theory is used to develop the TSHT algorithm.
The algorithm is developed in one dimension and
generalised to higher dimensions. The complexity of
the TSHT method is analysed in comparison with
that of the FSHT method. Finally, experimental re-
sults are presented to demonstrate the superiority of
the TSHT method over the FSHT method.

4.1 Theory of the TSHT method

The mathematical formulation of the TSHT method
is based on the FSHT framework shown in Figure 1,
but takes advantage of coherence to provide a faster
algorithm. Consider the binary tree representation
of the data in Figure 2(a) as shown in Figure 2(b),
where terminal nodes store data values and non ter-
minal nodes store the sum of their children’s node
values. Furthermore, let terminal nodes which are
not at the lowest level have a value P2? if they rep-
resent 2¢ pixels all having colour P. Let us denote
the nodes starting with the root node at depthd = 0
as T'[0, 0], then at depth d = 1 starting with the left-
most node as T'[1,0] as shown in Figure 2(b) and
in general, let a node at depth d = ~ which is at
position w from the leftmost node at that level be
denoted by T'[v,w].

Using the data in Figure 2(b) at depth d = 2

T2P)] TI2,1] T22] TI23)
Binary tree

(b)

Figure 2: An array and its binary tree

and the FSHT framework, the SHT of a data array
with 4 elements is computed as below (ignoring nor-

127

malisation and reordering to sequency order). First
we compute

FiAll]=A+B+C+D=T[2,00+T[2,1] (8)
+T[2,2] + T[2, 3]
Fill=A-B+C-D=T[2,00-T[2,1] (9)
+T[2,2] - T[2, 3]
"Fil2l=A4+B-C-D=T[,00+T[2,1] (10)
-T[2,2] - T[2, 3]
FABl=A-B-C+D=T[2,0/—-T[2,1 (11)

+T(2,2] - T[2, 3]

Finally, rotation gives the SHT F|[0] = F,[0], F[1] =
Fi1] + 2F1[2], F2] = 2F1[1] — 2F1[2] and F[3] =
F1[3]. We note that the SHT is computed from the
linear combinations of the data at depth d = 2.

Suppose A = B and C = D. In this case, the
binary tree has depth d = 1 and the two terminal
nodes have values 24 and 2C. Again using the data
in Figure 2(b) at depth d = 1 and the FSHT frame-
work, we have

Fi0] = 24+42C=T[1,0]+T[1,1]
Al = 0
P2l = 24-20=T[1,00-T|1,1]
Pl = o

and rotation gives the SHT F[0] = F[0], F[1] =
2F,[2], F[2) = —F,[2] and F[3] = 0. Note in this case
that the SHT can be computed solely from the data
stored at depth d = 1 in the tree. Similarly, if A =
B = C = D, the SHT is F[0] = 44 = T[0,0] and
Fli] = 0 for i = 1,2,3. This approach using binary
trees and the FSHT framework can be generalised to
a theorem for any array of N = 2™ data values.

Theorem 1 If the corresponding binary tree repre-
sentation of an array fN has mazimum depth d, then
the SHT coefficients Fla] = 0 for a = j2n~ 9 4
2,...,(F+1)2"% -1,

Proof of Theorem 1:

Firstly, we note that stage k = 1,...,n of the FSHT
method can be expressed in terms of stage k — 1 as
follows:

Fili+ 7]

I

F)c_I[i +j6] +

Fieali+ G+ 3)8) (12)
R+ G+3)8 = Feali+il— (1)
Frai+(G+ %)6]

Anais do VII SIBGRAPI, novembro de 1994

128

and the rotation for k > 1 as
® = Fill+ ;6]
o1
Fell +3j6] = @+aFl(G+3)e] (14)

Fil(G + %)6] = ¢19— d2Fi[(G + %)6] (15)

for i = 0 when k = 1, and i = 0,1 when k& > 1,
j=0...,2"k_ 1,6 =2% ¢, = 2! and ¢y =
(222 - 1)/3.

We proceed with this proof by induction on n — d.

(i) For n —d = 0, the FSHT method gives F;[2j] =
f123) + f125 + 1), F1l25 + 1] = f[2] - f[25 + 1]
for j =0...,2""1 — 1. Since f[2j] # f[2j + 1],
F, is an array of non-zeros which completes the
proof for n —d = 0.

(ii) For n —d = 1, adjacent array elements have
f12j] = fI2j +1]. Stage k = 1 of the FSHT
method gives F1[25] = f[2j] + f[25 + 1] and
F2i+1 =0forj=0,...,2"! - 1. No ro-
tation is required at stage 1. Stage k = 2 gives
Fa2[45] = F1l4j) + F1[45 + 2], Fal4j + 1] = 0,
F5[4j42) = F,[4j] —F1[45+2] and F,[4j+3] =0
for j=0,...,2"2 — 1. Rotation gives Fa[4j +
1] = 2F3[45 + 2] and F»[4j + 2] = —F2[4j + 2].
Thus F3[45 + 3] = 0 which is consistent with the
theorem for n —d = 1.

(iii) By repeated use of (ii) we establish the induc-

tive hypothesis for all r <n —d. Forp> n—d

we observe from Equations (12) to (15) that the

coefficients Fix_1la] for a = j2¥"1+2,...,(+

1)2%¥-1 — 1 are not involved in the computation

at stage k in the FSHT method. Therefore the
zeros at step n —d are not changed by the com-
putations at steps p > n—d. This concludes that

Flaj=0for a=j2""*+2,...,(j +1)2" %k -1

which proves the theorem O

A special case of this theorem occurs when the whole
array is uniform, and the SHT coefficients F[0] =
2"f[0] and Fla] =0 for a = 1,...,N — 1. Note that
Theorem 1 can be restated as follows:

Theorem 2 If the corresponding binary tree repre-
sentation of an array of N = 2" elements has marz:-
mum depth d, then the SHT coefficients depend solely
on the data at depth d. In particular, the zero coef-
ficients F[u] are

0 for u #i2n9
(0<i<2d-1)
0 for u# (2i +1)2n9-1!
(0<i<?2?!'-1) 0<d<n)
(16)

Flu] =

Anais do VII SIBGRAPI, novembro de 1994

M. M. ANGUH, R. R. MARTIN

4.2 Implementation

The TSHT method uses a binary tree to segment and
aggregate the data fy when computing the SHT of
an array. The fundamental idea is to unify Theo-
rem 2 with the FSHT framework. This enables the
identification of zero coefficients at each stage of the
computation using only logical operations. Thus, the
TSHT method avoids performing shifts, additions,
multiplications and subtractions involving zero coef-
ficients. Such computations involving zeros are nor-
mally done by the FSHT method, and hence the
TSHT method is therefore superior to the FSHT
method.

Define the sparseness degree of a sub-array to
be the maximum distance between any two non-zero
elements in the array. When computing the SHT
coefficients of a sub-array of size 2* from its child
sub-arrays of sizes 251 there are three cases to con-
sider depending on the sparseness degrees £; and £
of its left and right child sub-arrays.

(I) & = &. If & > 1, Equations (12) to (15)
are applied only to non-zero coéfficients identified
by the hierarchical tree. Computational savings are
achieved when £; > 1 as redundant computations in-
volving shifts, additions, subtractions and multipli-
cations of zeros are avoided. Fewer additions, sub-
tractions, shifts and multiplications are performed by
the TSHT algorithm in this case. After the compu-
tation, the sparseness degree of the resulting region
is £;. If &, = 1, the TSHT algorithm collapses to the
FSHT algorithm.

(I1) &, > &. Corresponding non-zero coeffi-
cients in the right and left sub-arrays are computed
using Equations (12) to (15). The remaining non-
zeros in the right sub-array have zeros as correspond-
ing elements in the left sub-array; therefore these
non-zeros are simply copied to the corresponding po-
sitions in the left sub-array and themselves negated.
Again computational savings are achieved as fewer
additions and subtractions are performed. Secondly,
some additions and subtractions are replaced by nega-
tion and copy operations which are faster to per-
form. The sparseness degree of the resulting region
becomes £3.

(IIT) &1 < €. Equations (12) to (15) are applied
with £; replaced by £5. The remaining non-zero el-
ements in the left sub-array are copied to their cor-
responding positions in the right sub-array. Compu-
tational savings are achieved as explained in (I) and
(I1). In addition, some additions are replaced by copy
operations which are faster to perform. The sparse-
ness degree of the resulting region becomes &;.

Note that in (I) to (III), if a sub-array of size 2*
is uniform with value), the first Slant transform co-

FASTER METHODS FOR COMPUTING SLANT HAAR TRANSFORMS OF DIGITAL IMAGES

efficient is 2*) and the other coefficients are zeros. In
the implementation, the first coefficient is obtained
by simply shifting the binary representation of A by
k places to the left and zeros are implicitly stored in
the remaining locations. This is to avoid setting co-
efficients to zero which may be over-written by other
coefficients in later stages. Therefore, the method
only computes coefficients when the sub-arrays are
non-uniform.

Algorithm 1 is the TSHT algorithm for comput-
ing the SHT of an array f of N data values. The first
and second stages of this algorithm are treated sepa-
rately for extra efficiency to avoid shifts by zero and
multiplications by 1 and —1, so computation com-
mences with sub-arrays of size 4 as shown below.
The array SP of size N/4 stores the sparsity values

flIg] = (113 << 1) = 1l13);
SPli|=1;
} else

{
t=flI]; flI)=t+ fln];
fin)=t-rln;
t= f[I2); flI2) = t + f[I3];
flIs) =t — f[I3];

129

t=f1); flI)=t+ f[D); (12 = t — (19

t=flh); flh]=t+ fI);
S8 =t = flI3); t = f[1);
fih=t+ (flI7 << 1);

}flIz] = (t << 1) = f|I3]; SPli| = 1;

}

i=i+1

" of each sub-array. For a uniform sub-array 0 is stored }

and 1 for a non-uniform sub-array.

(Do remaining stages)
P=4; P=8; SS=5;
For(r=3ir<nir=r+1)

Algorithm 1

(Do first and second stages) {
=1 i=lii=1;ip=2
{°'U=°»1<N”=’+4) For (I=0;1< N;I=1+Py)

h=14+1;,In=1+42;13=1+3;
{f (s = f(n))

{f (fI2) = 1l13])
{f (] = flI3]) { SPli| = 0; } else

t=fUl; flll = (¢+ flIg)) << 1;
flh] = (t-flI]) << 2;
fll2) = (flIg —t) << 1;
flI3] =0; SP[i] = 1;
}}else

t= flI2); flIa = t+ f[I3);
flE)=t=flI3); t= f[I) << 1;
fUl=t+ fl1a); flIa =t - f|I3);
flh] = s + (FlIg) << 1);

flI2) = (flI3) << 1) = f1a);
{[13] = _f[13]1 SP[i] =1

} else
{
ff (flI2) = fl13])

t=f1]; fl]=t+ s,
fIhl=t—fln;t= flI) << 1;
fll2) = flIl -¢;

Sl = flIl +¢t; flia]l = flNL];
flL) = flL) + (flI2) << 1);

{
P;=P+1; P3= P, + P;
If (SP[i,] =0

I (sPal =0
y (1) = 7[Pal) SP(ij=0; etse

t=flI]; flI] = (t+ f[P3]) << r;
[P = (t- f[P)) << r;
flI+1] = f[P] << r;
fIP2) = —8Sx f[Pa); SPli] = 1;
Jor j=1+2;j< Pyj=j+1)
Ilil=0;
for =P+ 155 < P3;j=j+1)
flil=0;
}
} else
{
ky=Py+1;ko=1+1;
t=flI] << r; flI] =t + f|Py);
[P =t~ f[Py);
flka] = flka] + (f[Po) << 7);
IIPa) = (flk1) << r) = 85 * fPy);
Jor(=1+42;5< Py;j=35+1)
flil=0; SPli] =1;

} else

{

Anais do VII SIBGRAPI, novembro de 1994

130

k]=P2+l,'k2=l+l,'
If (SPlig] = 0)
{

t=f|P] << r; [P = 11| - ¢;
T = sUL+t; flka] = flkol;
Tlkal = flki] + (f|P2] << r);
f[P2) = (flk1] << 1) =SS % f|Pa];
Jor j=Py+2;5< P3;5=j+1)
flil=0; SPli|=1;
} else
{
t=fl1; fll]=t+ f|P2l;
[P =t — f|Pa|; t = flka];
Slkal =t + flkal; flkal =t = flka);
t= flkol; flk2l =t + (f|P2) << 7);
[P =(t<<r)— SSx f|Po); SPli|=1;
}

}

i=i+ 14 =i +2;ipg=ip+2;

}

P=P<<l; Py=P << 1;88§=1+

(SS << 2);
}

4.2.1 Computational Complexity

Data preprocessing using a binary tree requires O (N)
logical operations. If the data is uniform, F[0] =
2" f|0] and Fli] is set to zero for i = 1,...,N — 1.
In this case, the TSHT method requires one shift,
N — 1 zero operations and the tree preprocessing,
and therefore the performance is O(N).

In the worst case when there is no coherence
in the data, the TSHT algorithm degenerates to the
FSHT algorithm which takes time O(N log, N), with
an additional O(N) logical operations required to
preprocess the data. Since coherence is a phenomenon
characteristic of digital images, the TSHT algorithm
is expected to be superior to the FSHT algorithm
for such data. The superiority of the method arises
because we avoid computing elements which can be
deduced to be zero by simply using logical opera-
tions.

Standard transform theory [4] tells us that two
dimensional transforms can be computed by apply-
ing a one dimensional FSHT method on each row
of the N x N array, then on each column of the
semi-transformed array. This approach can be used
to compute transforms of higher dimensions. Using
an analogous approach, the one dimensional TSHT
algorithm can be extended to compute the SHT of
N x N data. Following a similar analysis for the case
of two dimensional data, the row and column TSHT
method takes time between O(N?) and O(N2log, N),

Anais do VII SIBGRAPI, novembro de 1994

M. M. ANGUH, R. R. MARTIN

at worst degenerating to the performance of the row
and column FSHT method apart from the prepro-
cessing step which is now O(N 2) logical operations.

5 Experimental results

Experimental results are given for the three digital
images of size 512 x 512 shown in Figures 3, 4 and 5.
Results are given for the TSHTand FSHT algo-

Figure 3: Anguh

Figure 4: Martin

rithms (for comparison) in Table 1. The entries in

FASTER METHODS FOR COMPUTING SLANT HAAR TRANSFORMS OF DIGITAL IMAGES

Figure 5: At work

the tables are as follows: %C is the percentage of co-
herence exploited by the TSHT algorithm. S, A, N,
Z, AS and M are the number of shifts, assignments
(copy), negations, zeros, additions/subtractions and

| Anguh | Martin | At work

TSHT FSHT

% | 5.855751 | 6.642914 | 45.110512 0
S 300727 307233 495699 260096
A 6262 7638 85582 0
N 12932 14937 85178 0
Z 5260 6186 113572 0
AS | 2202034 | 2181602 1203634 | 2352152
M 129497 129566 123120 65024
T 2656712 | 2647162 2106785 | 2678272
t/s 6s 5s ds 8s

Table 1: Experimental results

multiplications required by each method. The overall
running time of the TSHT method includes the time
required for performing logical operations and per-
forming the transform. Note that the performance
of the TSHT method is better than that of the FSI

6 Conclusions
The ‘Truncation Slant Haar Transform ('TSHT)
method for computing the Slant Haar transform is

presented. The method incorporates a hierarchical
data structures with the Fast Slant Haar Transform

131

(FSHT) method to accelerate the computation of the
Slant Haar transform of digital images. The TSHT
method takes time between O(N) and O(N log, N)
in one dimension and time between O(N2) and
O(N?log, N) in two dimensions, degenerating to the
performance of the FSHT method in the absence of
image coherence. In conclusion, the TSHT method
is shown to be superior to the FSHT method on dig-
ital images both in theory and practice due to the
presence of coherence.

7 Acknowledgement

We wish to thank FAPEMA for supporting this re-
search.

References

(1] M. M. Anguh & R. R. Martin, An In-place
Truncation Walsh Transform for Image Pro-
cessing, Actes du ler Colloque Africaine sur la
Recherche en Informatique, Volume I, 457-468,
Cameroon, October 1992.

(2] M. M. Anguh & R.R. Martin, A Truncation
Method For Computing Walsh Transforms With
Applications To lmage Processing, Computer
Vision, Graphics & Image Processing (CVGIP):
Graphical Models & Image Processing, 55(6),
482-493, 1993.

[3] M. M. Anguh & R. R. Martin, A Trunca-
tion method for Computing Slant Transforms
with Applications in linage Processing, In print,
IEEE Trans. on Communications, 1994.

[4] D. F. Elliot & K. R. Roa, Fast Transforms Al-
gorithms, Analysis and Applications, Academic
Press, 1982.

[5] B. J. Fino & V. R. Algazi, Slant Haar Trans-
forms, IEEE Proceedings, 653-654, 1974.

[6] B.J. Fino & V. R. Algazi, A unified Treatment,
of Discrete Fast Unitary Transforms, Siam .J.
Comput., 6(4), 700-717, 1977.

[7] R. C. Gonzalez.& R. E. Woods, Digital Image
Processing, Addison-Weslsy, 1991.

[8] R. R. Martin & M. M. Anguh, Transforms and
Image Coding, Computer Graphics Forum, 10,
91-96, 1991.

[9] M. A. Oliver & N. E. Wiseman, Operations on
Quadtree Encoded Images, The Computer Jour-
nal, 26(1), 83-91,1983.

Anais do VII SIBGRAPI, novembro de 1994

132

(10]

(11]

(12]

(13]

(14]

W. K. Pratt, W. H. Chang & L. R. Welch,
Slant Transforms for Image Coding, Proc. 1972
Symp. on Applications of Walsh Functions, AD-
744650, 229-234, 1972.

W. K. Pratt, W. H. Cheng & L. R. Welch,
Slant Transform Image Coding, IEEE Trans. on
Comm, COM-22(8), 1075-1093, 1974.

H. Samet, Data Structures for Quadtree Ap-
proximation and Compression Communication
of the ACM, 28(9) 973-993, 1975.

H. Samet, Applications of Spatial Data Struc-
tures, Addison Wesley, 1990.

H. Samet, The Design and Analysis of Spatial
Data Structures, Addison Wesley, 1990.

Anais do VII SIBGRAPI, novembro de 1994

M. M. ANGUH, R. R. MARTIN

