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Abstract. In this paper we introduce a new method for the piecewise representation of implicit
objects based on multiscale decomposition of the implicit function. We define a model that is
adapted to the variations of the implicit function at multiple scales. This model is described
in terms of B-spline functions which are suitable for geometric computations. We construct a
representation that is structured and hierarchical. This description combines the best features of
point skeletons and volume arrays. The multiscale decomposition model has several applications
in computer graphics, such as variable level of detail models, the conversion from volumetric to
implicit representations, rendering of implicit surfaces using ray tracing, and volume visualization.

1 Introduction

Implicit models have been used since the early
days of computer graphics (Goldstein and Malin,
1979). Until recently, they were employed mostly
as an auxiliary representation for classes of objects
that allowed both parametric and implicit descrip-
tions. Typical examples are the quadrics and su-
perquadrics. More powerful models are piecewise
descriptions developed as a generalization of implicit
algebraic models. The implicit function is a density
field constructed as a distance function from a skele-
ton.

Piecewise models are effective because they are
based on simple elements and powerful combination
rules. Complex objects can be described by their
components in a natural way. They can be simple
and yet retain descriptive power.

There are two types of piecewise models: con-
structive and decomposition. A constructive model
is generated by assembling primitive blocks. A de-
composition model is generated by subdividing com-
posite structures. Constructive techniques are most
appropriate for shape design while decomposition
techniques are better suited to shape computation.

Most of the existing piecewise implicit models
are constructive. Some examples are CSG models,
blobby models, metaballs and soft objects.

In this paper we investigate a new implicit model
based on functional decomposition. This type of
model decomposes the implicit function into simpler
functions, and has many advantages over previous

models. It is general, computationally efficient and
establishes a direct connection between implicit and
volume representations.

Functional decomposition models should reveal
relevant aspects of the implicit function, such as its
variations. It is also desirable that such a functional
decomposition result in a representation that ex-
hibits spatial locatity (an exception to this rule is the
case where certain operations are performed more ef-
ficiently using some special representation without
this property (Totsuka and Levoy, 1993)).

The Fourier transform describes the spectral be-
havior of a function, discriminating its frequency
content. The Fourier series of periodic functions
gives the best localization in terms of frequency, but
its basis functions have infinite support. Good local-
ization in both space and frequency is achieved by
the “short time Fourier transform” (Gabor, 1946),
which employs a Gaussian windowed sinusoidal func-
tion or by the wavelet transform that uses scaled
“small waves” (Daubechies, 1992). The Gabor and
wavelet representations are localized and very effec-
tive in describing the variations of a function. This
makes them attractive from the standpoint of image
analysis tasks, such as edge detection.

While these decompositions are suitable repre-
sentations for image processing, they are not so ade-
quate for computer graphics. From the point of view
of graphics applications a representation in terms of
the wavelet coefficients presents some problems. The
Gabor and wavelet functions must oscillate in order
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to capture frequency information and, for this rea-
son, can be complicated. Moreover, in higher dimen-
sions many wavelet basis functions are required.

For image synthesis, it is desirable to have a
multiscale representation that is constructive, com-
pact, and expressible in terms of a simple function.
Intuitively, we want a description of a function as a
summation of “blobs” of different sizes.

This paper introduces a functional decomposi-
tion based on the scaling function associated with
a dyadic wavelet. Such a description fulfills all the
above requirements and is adequate for modeling
with implicit surfaces.

2 Previous Work

Previous piecewise implicit descriptions include
point skeletons and wavelet based models. In this
section we review previous related work and compare
it with our results.

2.1 Point Skeletons

Primitive implicit objects can be defined by a dis-
tance function from lower dimensional geometric el-
ements, such as a point or a line. These elements are
called skeletons. The implicit function is expressed
as f(z,y,z) — ¢, where f is some pseudo-distance
function from the skeleton.

Blinn was the first to introduce skeleton based
implicit models in computer graphics (Blinn, 1982).
His model was inspired by electron density maps. It
uses a point skeleton and the distance function is
a Gaussian centered at each point of the skeleton.
Blinn’s idea was further developed by (Nishimura
et al., 1985) and (Wyvill, McPheeters and Wyvill,
1986). One important aspect of these latter mod-
els is that they use functions that drop to zero at a
certain distance from the skeleton.

The basic skeleton models consist of points with
simple blending functions, making them attractive
computationally. In an attempt to develop better
mechanisms for shape design, the complexity of the
skeleton models was increased, rendering them less
efficient computationally.

The multiscale decomposition model developed
in this paper can be considered a point skeleton
model that is structured and hierarchical. These
two characteristics make it computationally efficient.
The decomposition mechanism makes it expressive.

2.2 Wavelet Based Models

The wavelet transform has been used mainly in im-
age processing applications, such as coding and com-
pression (DeVore, Jawerth and Lucier, 1992). We
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employ a multiscale representation which is essen-
tially equivalent to the Laplacian pyramid (Burt,
1983), but we apply it in a very different context. In
image processing, this type of description is used pri-
marily for analysis, while in computer graphics this
description is used for synthesis. Consequently, the
problems which need to be solved are of a different
nature.

Wavelet models of implicit surfaces and solids
were proposed in (Muraki, 1993) and (Perlin and
Zhu, 1990). Muraki’s model uses a 3D orthogonal
wavelet. Because it is based on a tensor product,
the representation is given in terms of 7 different
wavelets, which complicates the computations with
the model. Perlin’s model uses only one directional
spline wavelet, avoiding this problem. His method
employs an empirical procedure to construct the rep-
resentation, and the model is restricted to a partic-
ular level surface.

Our multiscale implicit model is based on the
scaling function associated with a wavelet decompo-
sition. It gives a description of the implicit function
as a whole in terms of a B-spline function. For this
reason, it is more adequate for image synthesis com-
putations than the wavelet models. Furthermore,
this representation can be computed with a fast and
exact algorithm developed from a solid theoretical
foundation.

3 Multiscale Decompositions

The decomposition of a function in terms of elements
at multiple scales provides a representation that re-
flects the function behavior over neighborhoods of
variable size. It is a hierarchical structure which is
adapted to the function variations.

3.1 Definition

A multiscale decomposition is a description based on
a set of functions localized both in space and scale.
Under this representation a function f is expressed
as a linear expansion over this set.

A suitable family of functions for this purpose
can be defined by scaling and translating a single
function ¢(z) € L%(R). A member of this family is
denoted by ¢., where the index v = (s,t) specifies
the scaling parameter s and the translation parame-
ter t. Here, we assume that ¢ is a scaling function,
l.e. it is a function whose shifts and dilations gen-
erate a nested sequence of approximating spaces V;,
such that their union is dense in L?(R) and their
intersection is the null space.

The parameters s,t are restricted to dyadic
scales s = 277, j € Z and integer translations
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t =277k, k € Z. Thus, the family ¢, is

1 z
¢y(z) = \/—27¢(§ — k).

The multiscale decomposition of a function f is
a linear expansion into a countable subset of elements
(#:(z))ien, with % = (j,k), from the family 4.,,
such that

f(z) = Z aid"h‘(z))

where v; is an element of the index set I' = Z+ x Z.

The family of functions ¢, plays the role of a
dictionary D = (¢, )yer, from which a subset of ele-
ments ¢.,, is selected for a multiscale representation
(Mallat and Zhang, 1993).

The coefficients a; are computed by orthogonal
projection on the duals of the selected vectors ¢, of
the dictionary D.

a; =< f1¢‘7. >

Intuitively, this decomposition indicates the features
of f that “belong” to each scale 27.

A multiscale representation is given by the list
of coefficients a;, together with the corresponding in-
dices v; = (ji, k;) in the dictionary D.

In practice, we use only a finite number of el-
ements from D. For this reason, it is important to
obtain a sequence of decompositions with increasing
number of elements which converges to the function

f; ie.,
1 =" aidoll < €llfl

1=0
This provides a mechanism to approximate f with
the desired precision e.

The definition of a multiscale decomposition for
n-dimensional functions f : R — R in L%(R") is a
direct extension of the scheme above.

The scaling function ¢ is associated with a mul-
tiresolution analysis of L?(R) consisting of a se-
quence of nested spaces V

Voo cWwe vy

The collection of functions {¢o.x : k¥ € Z} forms a
Riesz basis of the approximation space V;, and all
spaces in the sequence are scaled versions of this ref-
erence space Vp (i.e. each space V; has a “natural”
scale 27).

Note that, unlike the above scheme, in the
framework of multiresolution analysis, a function f
is represented by its approximations simultaneously
at all these scales (Rosenfeld, 1984). Such a descrip-
tion is composed of several versions of the function
f that are computed by projecting f onto the spaces
Vi.
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3.2 Existence and Analysis

The existence of a multiscale decomposition is simple
to show. Denote by P; : L?(R) — V; the orthogonal
projection onto V;. The properties of the hierarchy
of spaces V; guarantee that:

L. limj_.e P;f = f for all f € L*(R), since UV; =
L*(R)

2. if f € V; then f is also in V}, for all j > I.

Condition (1) ensures that every function has a
trivial decomposition. Condition (2) implies that a
function f € Vi can be expressed in the basis of any
one of the approximation spaces V;, j > [, which
contain V;. It is just the projection on Vi.f=F5f
(there is no loss of information in this projection if
ji>1).

The dictionary D is very redundant. This is ev-
ident from the nested structure of the spaces Vi. A
direct implication of the redundancy of D is that the
multiscale decomposition is not unique in general. It
is easy to see that any function f € L%(R) has in-
finitely many multiscale representations (by simply
adding and subtracting different projections, PLg
and Png of the same function g € Vi, with I < m, n).

If a function f € V; has different components g;
in the spaces Vj, j > 0, then f can be written as as
a linear combination of these functions at scales 2/

F=Y0=3_3 aijbnuz)
7 H

J

The problem now is: 1) to construct a multiscale
decomposition such that 2_; 9; generates a suitable
representation of f; and 2) to compute the coeffi-
cients of g; = ). a; j@os ..

In the next section we describe in detail a strat-
egy for generating a multiscale decomposition, as
well as a computational method based on the wavelet
transform. We subdivide the approximation spaces
V; into wavelet spaces W; creating a partition of
L*(R). This scheme is very general and has the ad-
vantage of being independent of the function f.

4 A Wavelet Based Method

Orthogonal wavelets generate a direct sum decompo-
sition of L?(IR) and are intimately related to multires-
olution analysis. They provide a rigorous mathemat-
ical framework that can be used to derive multiscale
decomposition methods.

4.1 The Wavelet Transform

The wavelet spaces W, can be defined as the differ-
ence spaces between two consecutive approximation
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spaces Vj41 and V; of a multiresolution analysis. The
W; is the orthogonal complement of V; in Vj 4

Wi@V;=Via, WLV

L%(R) is naturally decomposed into
Pw; = L*(R).
j

The connection of wavelets with multiresolution
analysis is the key to the efficient computation of the
wavelet decomposition of a function (Mallat, 1989).

The wavelet transform decomposes a function
f € Vj recursively through orthogonal projection
onto the spaces V;_; and Wj_;. In this algorithm,
the spaces V; are just intermediate elements that are
used for the recursion step.

4.2 The Laplacian Decomposition

The wavelet transform gives a multiple scale repre-
sentation of a function. Unfortunately, we cannot
use the wavelet description directly as a multiscale
decomposition because its coefficients are not rela-
tive to a scaling function.

A multiresolution analysis is the projection of
a function onto the spaces V; spawned by a scaling
function. It represents approximations of the func-
tion f at each resolution 2. We also cannot use this
description either because, it does not constitute a
linear expansion of f.

Instead, we would like to obtain a representation
that is multiscale, but given in terms of the scaling
function ¢. Such a representation can be constructed
if we combine the wavelet description and the mul-
tiresolution analysis.

Observing that V; = V;_; & W;_; implies that
W;_1 C V;. Therefore, we can represent W;_; in
terms of a basis of V; without any loss of informa-
tion. For this, we need only project the wavelet com-
ponents in the subspaces W;_; back to the subspaces
V;. This method produces a multiscale description in
terms of the scaling function (this structure is equiv-
alent to the Laplacian pyramid (Burt, 1983)).

4.3 The B-Spline Scaling Basis

So far we have discussed the multiscale decomposi-
tion without defining the scaling function associated
with it. The B-spline is a scaling function that is
suited to our purposes.

The B-spline function has several desirable prop-
erties: symmetry, smoothness, compact support,
good localization in space and scale, a simple ana-
lytical form in both spatial and frequency domains,
and efficient implementation (Chui and Wang, 1990).
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The only disadvantage is that the B-spline does
not generate an orthogonal basis. But it is possible to
construct a dual function, which together with the B-
spline, defines a pair (¢, ¢) that is bi-orthogonal and
can be used in the multiscale decomposition method
(Cohen, 1992).

Figure 1 shows a plot of the cubic B-spline scal-
ing and wavelet functions.

/\—@vﬂva—

(2) (b)

Figure 1: Cubic B-spline (a) scaling function (b)
wavelet function

5 The Multiscale Representation

The results in the previous section allow us to cre-
ate an implicit piecewise representation based on a
multiscale decomposition of the implicit function f.
This representation is adapted to the variations of f
at different scales.

As we mentioned in section 3, the multiscale rep-
resentation contains the coefficients a; of the multi-
scale decomposition. The indices v; = (j;, ki) relate
these coefficients to elements ¢.,, of the dictionary D.

In order to produce the representation, we com-
pute the coefficients a; of the B-spline multiscale
decomposition and convert them to a suitable data
structure.

5.1 Properties

The multiscale implicit description is:

o Hierarchical

e Structured

The multiscale representation describes a func-
tion f by its components g; € V;. This represen-
tation is hierarchical because the spaces V; form a
ladder of approximation spaces. It is structured be-
cause the basis functions ¢; x of V; are located in a
regular rectangular grid.

These two properties are the key for efficient
computation with piecewise implicit models.

5.2 Computing the Representation

There are two equivalent procedures to compute the
multiscale decomposition of a function f € Vy: an
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extended wavelet transform, and a Laplacian trans-
form.

In both cases, we assume that we have computed
the coefficient sequence {c}o = < f,dor > of the
representation of f in the basis of Vp, such that f is
written as

f() =" < f,dok > dok(z).
k

In the extended wavelet transform we apply the
wavelet decomposition to the coefficient sequence
{c}o obtaining the wavelet coefficients {d};, j =
—1,...,—n, and then for each scale 27, we project
the wavelet coefficients {d}; € W; back to V;4; by
applying the wavelet reconstruction from level j to
J + 1. This procedure is illustrated in the diagram
below.

{c}; % {e}i-1 % {e}j-z -+
G G G

N\ \ X

{d}; {d};-1 {d}j_s -
G

v

{a}j {a}j_1 {a}j_2

where H, G, H and G are the pairs of digital filters
associated with the B-spline scaling function, the B-
spline wavelet and their duals (Cohen, Daubechies
and Feauveau, 1991).

In the Laplacian transform, we exploit the fact
that, since W;_; = V; © V;_y, the coefficients {a;}
of the multiscale decomposition can be computed by
subtracting the coefficients of the approximations at
V; and Vj_;. This procedure is illustrated in the
diagram below.

{c}j E’ {C}j_l —E» {c}j_2
H H H

{b}J {b}j—l {—b}j-—Q

{a}j {a}j—l {a}j_g

In one dimension, these two procedures require
roughly the same amount of computation. In higher
dimensions, the Laplacian transform is more effi-
cient.

5.3 Data Structures

We can use three alternative data structures to en-
code the coefficients of the multiscale decomposition:

97

o A list of the coefficients ! = {a;, vi}.
e A pyramid data structure, A; = (a; ).
e A spatial hash table H = [ a;, vi].

The list structure is simply an enumeration of
the coefficients of the multiscale decomposition a;
and the indices 9; = (s;,u;) corresponding to the
functions @, i of the dictionary D.

The pyramid structure contains all coefficients
associated with the basis functions &(2i k) of the ap-
proximating spaces V;. This is essentially an enumer-
ation of the coefficients corresponding to all elements
in D, such that the functions that are not in 7; have
a coefficient a; x = 0. This eliminates the need for
including the indices 4; in the representation.

The coefficients a; may also be associated with
a spatial hash table in which each cell has pointers to
the elements whose support is in the cell. This cell
complex can be formed by any adaptive subdivision
of space, such as an Octree or a BSP tree (Carvalho,
Gomes and Velho, 1992).

In practice, the choice of a particular data struc-
ture will be dictated by the characteristics of the
implicit function, as well as the requirements of the
application.

6 Examples

In this section we give examples of the multiscale
description of implicit objects in two and three di-
mensions.

6.1 2D Example

The implicit object in the following example, is given
in the form of 2D sample array. This volumetric
representation is converted to the B-spline multiscale
representation.

The implicit function is shown as an image, the
boundary of the object as a curve in the plane, and
the B-spline pyramid is depicted as a set of circles
corresponding to the support of B-spline basis func-
tions with non-zero coefficients.

The implicit object is a free-form shape created
with an experimental painting program (Perlin and
Velho, 1992). Figure 2 shows an image of its density
function. Figure 3 shows the B-spline functions in
this representation. Note how the B-spline functions
at finer scales are concentrated in places where the
object presents more detail. Figure 4 shows the curve
generated from the multiscale representation.
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Figure 2: Implicit Shape Function

Figure 3: B-spline Representation

Figure 4: Implicit Boundary Curve

6.2 3D Example

The next example shows the use of the method in
three dimensions. The input is a 3D sample array
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that is converted to the B-spline multiscale repre-
sentation.

The implicit object is the “noisy sphere”, a pro-
cedural implicit shape defined by functional com-
position of an object density function with density
modulation functions (Perlin and Hoffert, 1989). In
this example, the object density function is of a soft
sphere and the modulation function is a bandlimited
noise function.

Figure 5 shows the volume density array gen-
erated by the hypertexture procedure mentioned
above.

Figure 5: Slices of the Volume Density Function for
the Noisy Sphere

Figure 6 shows one slice of each level of the B-
spline pyramid.

Figure 6: One Slice of Each Level of the B-spline
Pyramid

In this figure, the coefficients are depicted ac-
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cording to the following convention: zero is middle
gray, negative is darker and positive is lighter. Note
that almost all the information is contained in the
bottom level of the pyramid, indicating that most of
variations of the implicit function are at that scale.
Figure 7 is a ray-traced image of the noisy
sphere. It was produced by rendering the B-spline
pyramid description of the data in Figure 5.

Figure 7: Noisy Sphere, Raytraced from its B-spline
Pyramid

7 Applications

The multiscale decomposition has many applications
in modeling and graphics. It has the potential to be
the basis for the development of efficient computa-
tional methods in those areas.

Applications of the B-spline multiscale decom-
position include the conversion of volumetric data
to implicit analytic representations, variable level of
detail models, ray tracing of implicit surfaces and
volume rendering.

7.1 Conversion of Volumetric to Implicit De-

scriptions

The multiscale decomposition can be applied to the
conversion of volumetric to implicit descriptions.
The method takes as input a n-dimensional array of
discrete samples and generates a piecewise implicit
representation in terms of the B-spline scaling basis
functions.
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7.2 Variable Level of Detail Models

The multiscale representation describes the model
by its components at different scales. This makes
it particularly effective to represent implicit objects
at variable level of detail.

7.3 Ray Tracing

The multiscale representation is suitable for ray
casting techniques. There are several ray-tracing
algorithms for implicit surfaces given by polyno-
mial functions that could be used to compute the
ray intersection with the B-spline primitives (Ton-
nesen, 1989), (Wyvill and Trotman, 1990). Similarly,
the cone tracing algorithm (Amanatides, 1984) can
be adapted to handle “fuzzy balls” producing an-
tialiased images as well as soft shadows (Perlin and
Zhu, 1990).

7.4 Volume Rendering

The multiscale representation is also well suited to
volumetric rendering techniques. Direct projection
methods, such as splatting (Laur and Hanrahan,
1991), and volume integration methods, such as ray
marching, (Levoy, 1990), can exploit the multiscale
representation in various ways.

8 Conclusions

In this paper we defined the notion of multiscale de-
composition models and discussed the criteria to ana-
lyze such models. We identified the strategies to gen-
erate a multiscale decomposition and investigated a
wavelet based method for producing this kind of de-
scription. We presented algorithms to compute the
biorthogonal B-spline multiscale description, investi-
gated its properties, and described alternative data
structures for this representation.

The multiscale decomposition model has several
applications in the area of computer graphics. Some
of these applications are the conversion from volu-
metric to piecewise implicit representations, variable
level of detail models, rendering of implicit surfaces
using ray tracing, and volume visualization.
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