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Abstract. The discrimination of volumetric pieces or parts of objects from range data is one key
element for achieving 3-D object recognition. In this paper it is shown that previously segmented
and acquired superquadrics from range data can be reliably mapped into a set of qualitative volu-
metric shapes (geons) by means of an RBF (Radial Basis Function) neural network classifier. We
use a regularised RBF classifier and the results are shown to be both reliable and efficient in the

context of range image understanding.

1 Introduction

Recognition of three dimensional articulated objects
with complex curved surfaces is an important, and
yet unsolved problem in Computer Vision. Volumet-
ric modelling and recovering of articulated objects
from range data is a solution to this problem, but the
volumetric representations used have to offer both
quantitative and qualitative information in order for
the matching be flexible and efficient.

Deformable superquadrics offer a solution for
representing and acquiring models from range images
of articulated objects [Borges and Fisher (1993)], how-
ever because of the continuum of the superquadric
parameters they do not provide a straightforward
way to index shape identities into large databases
of objects which is necessary for achieving efficient
recognition and localisation. Geons [Biederman (19-
87)] however are a set of qualitative volumetric shapes
which are suitable for the purpose of indexing be-
cause of their distinctive symbolic nature.

In the context of investigating how to recognise
articulated objects, the use of both deformable su-
perquadrics and geons will strengthen the expres-
siveness and the indexing power of such a recogni-
tion engine. In our lab we are investigating this ap-
proach and in this paper we report on using a ra-
dial basis function (RBF) neural network to map de-
formable superquadrics onto a set of qualitative vol-
umetric shapes (a subset of the geons). The network
is trained using regularisation and details are given
on how to tune the regularisation parameter and the

basis function widths using cross-validation.

The main contributions of this work are twofold:
First, it presents a new algorithm for training RBF
neural networks in the context of multi-dimensional
spaces, second this classification method is applied to
derive indexing capabilities from fitted superquadric
surfaces in order to produce suitable data for a su-
perquadrics’ model-based recognition engine.

2 Superquadrics and Geons

Volumetric primitives capture well the notion of parts
in natural [Marr and Nishihara (1978)] and man-
made objects [Biederman (1987)]. They are also
well suited for indexing since they have a relatively
small number of parameters compared to other prim-
itives. Basically five types of volumetric primitives
have been used in Computer Vision, Generalised Cy-
linders [Marr and Nishihara (1978), Brooks (1981)],
“Sticks, plates, and blobs” [Mulgaonkar et al. (1984)],
Superquadrics [Pentland (1986)], second-order topo-
graphic features [Fisher (1992)], and Geons [Raja
and Jain (1992), Dickinson et al. (1992), [Bergevin
and Levine (1992)]. Superquadrics are a family of
parametric shapes that can be globally deformed,
and thus represent a wide range of prototypical parts.

A superquadric surface can be defined by the
following vector in 3D space

a; cos'(n) cos®?(w)
ascos*(n)sin®?(w)
a3 sin‘*(n)

z(nw) = (1)
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where,

-m/2<n< 7/2.
—-T<w< .

The parameters a;, ag, and ay define the size of the
superquadrics in the coordinates z, y, and z respec-
tively. €; and €3 are the squareness parameters. The
capabilities of the superquadrics for modeling can be
enhanced by introducing tapering and bending de-
formations.

For the purpose of recovering a superquadric
surface from the data, equation (1) can be manip-
ulated in order to get the following implicit equation

()" + &))"+
()™

Based on this equation we can define the follow-
ing inside-outside function [Solina and Bajcsy (1990)]

(2)

F(z,y,z) =

€2 €2 €2/€1 € € (3)
(@ @)™ ™)

Following Solina [Solina and Bajcsy (1990)] we
estimate the 15 parameters (6 for position and 9 su-
perquadric parameters, being the 5 defined above
plus 4 for tapering(7;, Ty) and bending (8;, fy) de-
formations) using the Levenberg-Marquadt method
for nonlinear least squares minimisation of the ex-
pression

N
Z[R(r.,y,-,::,;al,...,a15)]2. (4)
i=1
where,
R = \/aja0a5(F-1). (5)

and N is the number of observed points. In our case,
we use all of the range data points in each surface
patch found by the isolating discontinuity boundaries
found from segmentation [Borges and Fisher (1993)].
Using only superquadric parameters for 3-D ob-
Jject recognition would not be very efficient because
they lack expressiveness for indexing into the object
database. This problem could be solved by mapping
the superquadrics parameters into a set of distinctive
volumetric shapes with good potential for indexing.
In the end, both qualitative and quantitative shape
information would be readily available.
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One set of distinctive volumetric shapes are the
geons, which were proposed as part of the Recogni-
tion-by-Components theory of Biederman [Bieder-
man (1987)]. In his theory Biederman proposes that
a set of 36 fundamental part primitives (geons) can
represent many complex 3D objects for the purpose
of primal access.

With the set of deformations we use in the su-
perquadrics parameters (tapering and bending) we
can model 12 geon classes, the other 24 require dis-
tortions in the cross-sections to be introduced. How-
ever, for our purposes distortions in the cross-sections
are not actually needed (the input of the classifier is
of segmented data) and what is important is that
we should have enough indexing capability (qualita-
tive shape information) to improve our representa-
tion. Figure 3 shows the 12 geon classes used as the
target mapping set.

This mapping from superquadrics to geons does
not depend on all the 15 recovered superquadrics pa-
rameters. Actually in order to obtain one of the 12
geons shown on Figure 3 we need the following 5
superquadrics parameters:

® €.
® €9.

e T, tapering in x.

e T,, tapering in y.

radius-of-bending/a3 (derived from the bending
and a3 parameters).

The classification task is to map these 5 su-
perquadric parameters into 12 distinct classes of geons.
Reconstructing such complicated mapping functions,
as efficiently as possible (i.e. achieving high accuracy
using small amount of time and training data), is an
active area of research in neural networks. The next
section introduces a radial basis function network
which achieves higher classification rates than other
previously published algorithms for the problem at
hand, making it possible in our case to deduce more
accurate qualitative information for visual matching
of three dimensional shapes.

3 RBF Neural Networks

Radial basis functions started as function approx-
imation tools [Powell (1987), Jackson (1989)] and
later found favour as neural network learning algo-
rithms [Broomhead and Lowe (1988), Girosi et al.
(1993)].

The basic probiem is to approximate a function
given a finite set of example input-output pairs (the
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training set). If the function is from ®? to ®¢ then
the training set inputs can be written

{zr € RP;k=1,2,...,n},
and corresponding outputs
{ye eRGE=1,2,...,n}.

In a straightforward regression problem the normal
procedure is to assume that the data is explained by

y = flz; W)+e,

where f(-;-) is a function which depends on some
unknown parameters, W, and ¢ is zero mean additive
noise. The unknown parameters can be estimated
by some optimisation criterion such as least squares.
For classification problems the same technique often
works in practice. In that case the components of
the training outputs {y:}7 are all zero except the
component which corresponds to the correct output
class, which is unity. Then the regression function
f(z; W) estimates the probabilities of each of the ¢
classes given the input (features) z.

RBF networks assume that the components of
the vector function f(-, -) are given by

f,'(:t; W) = ZWj,’h(:B, CJ‘), 1<:<¢q,
=1

a sum of functions which depend on m fixed posi-
tions (centres), ¢; € ®P, in the input space and an
m-by-q weight matrix whose rows are points in the
output space. Such a function can be viewed as a
network (see Figure 2). Certain conditions must be
met by the function h(-, -) such as being radial and
monotonic for positive values. We use the Gaussian

function,
lz—cl?
h(z,c) = -,
(z, ) exp( =

where the scaling parameter r is, like the {c;}7*, cho-
sen in advance. As the function is linear in the un-
known parameters (W) the least squares criterion
leads to a system of linear simultaneous equations
to solve, a less daunting prospect than the nonlinear
optimisation problems posed by some other types of
neural networks.

A common problem with all regression and clas-
sification methods is the trade off between bias and
variance [Geman et al. (1992)]. If the model is too
flexible it will overfit (too much variance) and if it is
not flexible enough it will underfit (too much bias).
In RBFs there are basically three frameworks to deal
with this:

1. random centre selection [Broomhead and Lowe

(1988)].

2. forward centre selection [Chen et al. (1991)],
and

3. regularisation [Bishop (1991)].

In this paper the regularisation framework, which
stems from the work of Tikhonov and others [Tikhonov
and Arsenin (1977)], is used.

A common choice for the fixed centres are the
n input points in the training data, {z;}} so that
m = n and ¢; = r;. Then the normal solution to the
least squares minimisation is

W = (HTH)'HTYy |
where

ij = h(.’L‘k,$j), 15"?ij",

and the rows of the n-by-¢ matrix Y are the training
set outputs. The problem with this choice of centres
is that the number of parameters to estimate is the
same as the number of data available and any redun-
dancy in the data will lead to overfit. Often also the
matrix HTH will be ill-conditioned. The simplest
regularisation technique to avoid such overfit (and
also ill-conditioning) is to add a weight penalty term
to the least squares criterion so that the function to
be minimised (with respect to W) is

n m q
ol = fEe W) P+ 233 wh,
k=1

j=1 4=1

(instead of just the first term). This is called zero-
order regularisation [Press et al (1992)] and X is a
positive constant called the regularisation parameter.
The solution to this minimisation problem is

W = (HTH+ D) 'HTY .

The idea is that a small A > 0 will introduce a small
bias but greatly reduce the variance.

Anais do VII SIBGRAPI, novembro de 1994



80 D. L. BORGES, M. J. ORR, R. B. FISHER

b—s—co

b—s—id

b—s—ta

Figure 1: The set of twelve(12) geons modelled using the parameters from the deformable superquadrics.
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Figure 2: Radial Basis Function Neural Network.
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Figure 3: Regularised R.B.F. Neural Network using Cross-Validation.
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Figure 4: (a) Pseudo-intensity image (from range); (b) Rayshaded image of recovered superquadrics from
range data and labels with RBF classification of geons. Left and right similar parts (e.g. left upper-arm,
right upper-arm) are labelled the same and the figure just shows the label on one of them.
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We now have two free parameters in the RBF,
the Gaussian radius r and the regularisation param-
eter A\. The optimal values to use for these parame-
ters depend on the amount and characteristics of the
training data available for the classifier. However,
there exist criteria for ranking different classifiers on
the same data and one of these, generalised cross-
validation (GCV) [Golub et al. (1979)], we employ
here. The GCV score is given by

trace(YT P%Y)
[(1/n) trace(P))? ’

GCV =

where
P=I-HHTH+XI)"'HT,

and lower GCV score is associated with better gen-
eralisation.

Figure 3 shows a contour plot of GCV (in arbi-
trary units) for different choices of r and A for the
superquadrics to geon classification data (see next
section). There is a clear minimum near the point
r =7, A= 10" and the classification results we
describe below are based on these values.

4 Experiments

Data used for training the classifier was acquired
by a segmentation procedure for range images using
the algorithm of [Borges and Fisher (1993)], where
wooden and plastic articulated objects were scanned
by a laser striper, and then submitted to the segmen-
tation. The segmentation works first by detecting
the discontinuities on the surface, then followed by
dynamic grouping of these points, and fitting of the
closed regions by deformable superquadrics.

In order to achieve the results shown in Tables
1 and 2, n = 369 input-output training examples
were used, including sometimes the same object to
be segmented but in different positions. We included
approximately the same number of examples from
each of the 12 classes.

Table 1 gives the mean and standard deviations
of all the 5 parameters used in the experiments for all
the 12 geon classes. Table 2 shows the success rates
for the classifier using the hold-out method (which is
known to give a pessimistic estimate) indicating the
individual and the overall rates for all the classes.
The method involves training the classifier on some
percentage of the data (we used 90%) and testing it
on the rest which is held in reserve. The process is
repeated a number of times to get an average success
rate.

Figure 4 shows a ray-shaded image of fitted su-

erquadrics on an original range image of a wooden
nais do VII SIBGRAPI, novembro de 1994
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manikin. Labels with the highest ranked geon class
given by the RBF classifier are attached to the parts.

5 Conclusions

[Raja and Jain (1992)] presented experiments on clas-
sifying superquadrics parameters into 12 geon classes
similarly to our classification problem here. They
have used range images of hand-carved models of
geons and ran experiments with a tree classifier and
k-nearest-neighbour classifiers. They presented as
the best figure achieved by a tree classifier on range
data from “smooth” objects an error rate of 23.3%
(i.e. 76.7% correct).

From Table 2 the success rate achieved for the
RBF classifier presented here (79.0%) is better than
Raja and Jain’s figure. If we count the number of
times the correct classification is included in the top
three probabilities of the classifier then the success
rate hits 94.4%. The including of more than just the
highest probability value is particularly interesting
for our original problem of using the classification
as an additional measure for the matching of three
dimensional parts, because it- makes it possible to
include additional hypotheses with different rankings
in the recognition of the objects.

Our RBF network is being used as part of a
complete system to segment and recognise (with lo-
calisation) complex articulated objects such as the
recovered object shown in Figure 4. The training of
the RBF net is done off-line and the final weights are
then used for classification of new data in the recog-
nition program. The algorithm could be generalised
for other areas where multi-dimensional classification
is necessary, and further investigation into other ar-
eas of application is being pursued.
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Table 1: Mean and Standard Deviation Values for the Classification Parameters of each Class of Geon

Hold-out success %, 40 | Hold-out success %, 40
averages, including averages, including the
Gt_eon type only the highest three highest
classification classifications
b-c-co 75.0 92.4
b-c-id 71.6 96.6
b-c-ta 92.8 100.0
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s-c-ta 81.0 94.8
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Overall (all classes) 79.0 94.4

Table 2: Rates of Classification for the RBF Neural Net Classifier
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