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Abstract. Sectional images generated by medical scanners usually have lower interslice resolution
than resolution within the slices. Shape-based interpolation is a method of interpolation that can
be applied to the segmented 3D volume to create an isotropic data set. It uses a distance transform
applied to every slice prior to estimation of intermediate binary slices. Gray-level interpolation has
been the classical way of estimating intermediate slices. There is also a combination of these two
forms of interpolation, using the average magnitude of the gradients as a normalizing factor of the
combination. This paper presents new comparison results of these interpolation methods.

1 Introduction

Three-dimensional data created by tomographic
medical imaging devices are usually presented as a
sequence of two-dimensional slices. The distance be-
tween the slices is typically greater than the distance
between the pixels within the slices. An interpola-
tion technique is often applied to convert the data
to an isotropic volume with the same resolution in
all three dimensions. Interpolation is also necessary
for accurate quantitative analysis and/or display of
information in such data . The classical method of
interpolation ? uses the gray-level information in the
slices to estimate what the gray values would be in
intermediate slices.

Raya and Udupa  have introduced a technique
called shape-based interpolation which can be ap-
plied to segmented binary slices. The technique con-
verts the binary slice into a gray-level image, in which
the gray value approximates the distance of the pixel
to the nearest point on the boundary of the object.
Positive values are assigned to pixels inside the ob-
Jject and negative values to pixels outside. The inter-
mediate binary slices are estimated by interpolating
the distances and thresholding the result at zero.

Herman et al. * reported on a performance anal-
ysis of shape-based interpolation, confirming its gen-
eral superiority to gray-level interpolation. However,
they found cases where traditional gray-level inter-
polation performs better than shape-based interpo-
lation.

Higgins et al. 5 described an extension to the

shape-based interpolation algorithm focusing on the
problem of extracting the 3-D coronary arterial tree.
They used the centroid and the gray-level informa-
tion on the objects to register each cross-section be-
fore applying the interpolation procedure.

Recently, Lotufo et al. ¢ introduced a new com-
bination of the gray-level information with the dis-
tance measurements used in shape-based interpola-
tion. The resulting algorithm is generally superior
to algorithms based either only on gray value or on
distance information.

This paper shows new results of the compar-
ison evaluation amoung the classical gray interpo-
lation, the Euclidean shape-based interpolation and
their combination. Although shape-based interpo-
lation methods have been studied for a while, we
present, at first time, results of the behavior of the
algorithms at every slice, whereas previous work usu-
ally only report statistical comparison measurements
of the total data set.

2 Methods
2.1 Shape-based Interpolation Methods

Shape-based interpolation assigns to each pixel in a
slice an estimate of its distance to the nearest bound-
ary point in that slice. The pixels inside an object are
assigned positive values while the pixels outside are
assigned negative values. The interpolation is then
performed on these new distance values and the re-
sultant slices are thresholded at zero.
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One way of incorporating the gray-level informa-
tion into shape-based interpolation is by designing a
new distance measurement as a function of the gray
information in the slices. If this distance is compara-
ble to the Euclidean Distance (ED) to the boundary,
then the two distances can be combined.

In situations where segmentation can be per-
formed by thresholding, we define the gray-ezcess of
a pixel as the pixel gray value minus the threshold.
Dividing this gray-excess by the average magnitude
of the gradients, computed over all the pixels used
for between-slice interpolation, results (at least in the
neighborhood of the boundary) in a new estimate of
the distance to the boundary. We call this new dis-
tance Gray Distance (GD).

With the two distinct but comparable distance
transforms: Euclidean and Gray distances, it is pos-
sible to generate three different configurations by us-
ing them individually or combined.

e Gray Distance (GD): shape-based interpolation
using this distance is equivalent to gray interpo-
lation.

e Euclidean Distance (ED): original shape-based
interpolation, but using Euclidean distance
(rather than the cityblock distance as in 3).

¢ Euclidean-Gray Distance (EGD): is the sum of
Euclidean and Gray distances.

The equations for these distance transforms are
summarized in Fig. 1.

The effect of the two basic distance transforms
used individually and combined is illustrated in Fig-
ure 2. For easy visualization, the problem is shown
in one dimension, assuming linear interpolation. Fig.
2a shows the gray values of two original slices used to
interpolate the three intermediate slices. The thresh-
old value is 136 and the bold lines show the bound-
aries. Fig. 2b gives the Euclidean distance mapping
of the two slices and the interpolated distance val-
ues. Fig. 2c shows the Gray distance mapping. This
method is equivalent to classical gray-level interpo-
lation. Fig. 2d gives the combination of the two
distance mappings (Euclidean-Gray distance).

It can be seen from this example that the orig-
inal shape-based interpolation gives a straight line
connecting the boundaries. The problem is that the
straight line is not always the best estimation for the
structures to be interpolated. On the other hand,
gray interpolation, given by Fig. 2c, resulted in a
step too sharp. Euclidean-Gray distance (Fig. 2d)
gives an intermediate result of the two previous dis-
tances. It is a blend of the methods and the experi-
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ments reported here have demonstrated its superior-
ity when linear between-slice interpolation is used.

In 8, it was also introduced a so-called Local
Gray Distance, which has been abandoned, as this
distance values can sometimes be high, when they
are far away from the boundary.

Figure 2 is also useful for illustrating some as-
pects of the evaluation of interpolation methods. In
biomedical imaging applications, the shape complex-
ity of some structures is very high and it is difficult
to quantify the way in which a given interpolation
technique is better than another. Given the two orig-
inal slices presented in Fig. 2, it is difficult to assess
which method is the best. We can guess that pos-
sibly something between shape-based interpolation
and gray-level interpolation may be better, but it is
hard to say what should be the optimal interpolation
for this example.

2.2 Computing the Euclidean distance

In their work on shape-based interpolation, Raya and
Udupa 3 used the cityblock distance for their algo-
rithms and Herman et al. % used a chamfer distance 7
as an approximation to the Euclidean distance. Raya
and Udupa proposed a very fast algorithm which
computes the distance only for pixels which are to
be used for between-slice interpolation due to a dif-
ference in classification from the corresponding pixels
in adjacent slices. The same technique cannot be ap-
plied to shape-based interpolation with the chamfer
distance, as that algorithm requires the processing of
all pixels in the slices.

As the number of pixels actually contributing to
the between-slice interpolation is normally a small
fraction of the total number of pixels, the algorithm
reported in © uses a fast technique based on a lookup
table to help the search for the nearest boundary
point.

The table consists of three values per entry:
Toff, Yoss, and the distance of the pixel at position
(Zoff,Yoss) to the origin. The table is built for values
of offsets z,¢; and y,¢s within a specified neighbor-
hood and then sorted in increasing order of the dis-
tance. To determine the distance mapping at a given
pixel in the slice, the offsets, obtained from the table,
are added to the coordinates of the current pixel and
the pixel at that resulting position is tested. The off-
sets in the table are used to search sequentially to the
nearest border point of the neighborhood specified.
This point is found when the first pixel at the offset
gives a value different from that of the pixel under
the current coordinate. The corresponding distance
is then used as the distance value of that pixel. If the
table is fully searched without hitting any boundary,
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Within slice distance to the boundary Equation
Gray GD = E!zzy!—cﬂ;{eahold
Euclidean ED = \/(.’E == zbound)2 + (y - ybound)2 —0.5

Euclidean-Gray

EGD=ED+GD

where :
p(z,y) is the value of pixel (z,y);

Thound; Ysound are the coordinates of the nearest boundary pixel;
GR is the average of the magnitudes |grad(z, y)| of the gradients of the pixels (z, y) used during between-slice

interpolation.

Figure 1: Equations for the new distance transforms.

it means that there is no boundary within the neigh-
borhood used for building the table. In such cases
the largest distance value in the table is used. Nor-
mally the parameter to specify the neighborhood is
chosen to create a neighborhood whose radius is the
maximum interslice distance within the data set.
With this lookup table method, the definition
of the distance can be precomputed once during the
table-building process. In the implementation of the
algorithm, the 2D Euclidean distance is given by:

D(zots,Y011) = \V xsz + ygff =05

The subtraction of half pixel distance gives the
distance from the center of the pixel to the boundary,
as suggested in *. Interpolation now is as fast as the
Raya-Udupa algorithm.

2.3 Computing the average magnitude of the
gradients GR

The Gray distance requires the determination of the
average magnitude of the gradients computed over
the pixels used for between-slice interpolation. The
estimation of the local gradient is made by the Sobel
edge operator applied within the slice. The equations
of the operator are given by:

Pz—1,y-1) F 2P(z,y-1) + P(z+1,y-1) _

G,(l‘,y) 8
Pz-1,y+1) T 2D(z,y+1) + Plot+1,y+1)
8
Gy(z,y) = Bectazi 2p(xgl'y) +P-19+1)
P(z+1,y-1) + 2p(x+1,y) +p(1'+1,y+l)
8
Gyl = /Giz,4)+ Gi(z,v)

In regions where the boundary is near an homo-
geneous area, the local gradient can be very small
or even null. To avoid such situations, which result
in large values for the Gray distance, a parameter is
introduced that specifies the minimum allowed gra-
dient value used in determining Gray distance.

The average magnitude GR is estimated as the
average of the magnitudes |G(z, y)| of the gradients
of the pixels (z,y) used during between-slice inter-
polation.

3 Experiments

The data sets used for comparing the methods were
a set of CT slices of a dry skull, a set of CT slices
of a pacient head and a set of MRI slices of a brain
specimen. Their description is given in Table 1. The
CT data have been thresholded at 68 for the Skull-A,
-200, -100 and 200 HU for Skull-B and the MRI data
at 100 and 136. We used linear interpolation and
four-point cubic spline interpolation 8. Tables 2 and
3 show the results of applying linear between-slice in-
terpolation to slices n-1 and n+1 and of comparing
the outcome to the n-th slice and of applying modi-
fied cubic spline to slices n-3, n-1, n+1 and n+3 and
comparing the outcome to the n-th slice.

One of 3D image analysis objectives is to esti-
mate the volume of a specified object. While the
accuracy of the volume computation is very much
dependent on the segmentation process, the inter-
polation method applied to the segmented data also
affect accuracy. We computed two comparison mea-
surements in our experiments, the number of individ-
ual errors (Table 2) and the global percentage error
on the volume estimates (Table 3). For each column,
a bullet marks the overall best performance and a

- dagger marks the best performance either for lin-

ear or cubic spline between-slice interpolation. The
equations of the individual error and -volume error
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189 | 145 | 83 33 11 11 14 14 |12
166 | 164 | 164 | 174 188 183 139 69 | 14
a) original slices: upper and lower
0.5]-0.5|-1.5| -2.5 -3.5 | -4.5 | -5.5
17107 1-02] -1.2 | -22 [-3.2 | -42
30| 20 [ 1.0 0.0 -1.0 | -2.0 | -3.0
4.2 | 3.2 2.2 1.2 0.2 -0.7 | -1.7
55| 4.5 | 3.5 2.5 1.5 0.5 | -0.5
b) original shape-based interpolation (Euclidean distance)
0.3 |-1.7|-43| -16 -9.6 | -4.2 | -3.8
05| -1.1[-28| -10 -6.3 | -3.1 | -3.4
07]-04]-14] 47 | -30 |-2.1|-29
08| 02 | 0.1 1.0 03 |-1.0]-25
1.0 | 0.9 | 1.6 6.7 3.6 0.1 | -2.1
c) gray interpolation (Gray distance)
08[-22[-5.8]|-185]-13.1 | -8.7 | -9.3
221-04]-30]-11.2 ]| -85 | -63 | -7.6
3.7 1.6 | -04 | 4.7 -4.0 | -4.1 ] -5.9
50 | 3.4 | 2.3 2.2 05 |-1.7 ] -42
6.5 | 54 | 5.1 9.2 5.1 0.6 | -2.6

d) Euclidean-Gray shape-based interpolation

Figure 2: Illustrative one-dimensional example from 4, Threshold = 136.

object description imager pixel size | slice spacing dimensions

Skull A | skull specimen | GE8800 CT 0.8 mm 3.0 mm 256 x 256 x 66

Skull B patient skull GE9800 CT 0.4 mm 1.5 mm 256 x 256 x 66
Brain | brain specimen | GESigma-MR | 3.0 mm 3.0 mm 256 x 256 x 31

Table 1: Summary of the data sets used in the experiments
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are given by:

n
e = E Il‘,' —fi
i=1

where:
le is the individual error,
z; is the real value of the i — th voxel,
&; is the estimated value of the i — th voxel,
n is the total number of voxels.

o Y- feu2)

Z'iy)z
vo= Y flz,y2)
‘rYylz
V—v
ve =
v

where:

¥ is the estimated total volume,

v is the real total volume,

ve is the volume error,

f(z,y, z) is the estimated volume of the (z,y, z)
voxel,

f(z,y, z) is the real volume of the (z,y, z) voxel.

Although the performance on individual errors
of the Euclidean shape-based interpolation is compa-
rable with the results from Euclidean-Gray method,
for volume estimation, the Euclidean-Gray method
gave the best performance. We can note a ten-
dency of overestimation of the volume for Euclidean
method and an underestimation of the volume for
the Gray method, or vice-versa. In this sense, as
the Euclidean-Gray combines both methods, it was
expected that its performance on volume estimates
should be the best.

To better visualize the nature of the combina-
tion of Gray and Euclidean interpolations, we plot
several graphics ( Figures 3 to 6) showing the indi-
vidual and volume errors at each slice for each data
set. This information gives a better insight to under-
stand the advantage of the Euclidean-Gray method.
For volume estimation, the Euclidean-Gray method
1s always between the Gray and the Euclidean shape-
based interpolation.

4 Computer graphic display of interpolated
objects

We illustrate, in Figures 8 to 7 the effect on three-
dimensional display of the interpolation methods.
The images were produced using the visualization
toolbox of Khoros %%, For all images, the same pro-
grams were used for detecting the surfaces of binary
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objects and for displaying the detected surfaces using
a particular variant of the so-called z-buffer gradient
shading method. As in %, we chose to use this shad-
ing method to reflect more accurately the shape of
the surface of the interpolated binary object.

The Figure 7 is a zoom on the square of the fig-
ures 8 to 10, which are based on the dry skull speci-
men. Generally, the Figures confirm the behavior of
the methods according to the one-dimensional case
illustrated in Figure 2: the Euclidean shape-based
interpolation tries to connect the contours by flat
surfaces while the combined shape-based interpola-
tion gives a blend of the Gray-level interpolation and
the Euclidean shape-based interpolation.

Confirming the statistics results of Tables 2 and
3, the combination of the Gray and Euclidean shape-
based interpolation gave the best performance for
three-dimensional display of the interpolated objects.

5 Conclusions and Final Comments

We have presented techniques for interpolating 3D
objects based on voxel representation. The tech-
niques are the classical gray-level interpolation, the
Euclidean shape-based interpolation and a combina-
tion of both introduced in 6. New results of the com-
parison evaluation amoung these methods are given
in graphical form giving clues for further investiga-
tion in this area.

We intend to study and classify in detail the sit-
uation where the classical gray interpolation and the
Euclidean shape-based interpolation perform best.
Once identified those situations we can be able to
use a weighting function based on this knowledge to
better combine both interpolation methods.
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Skull A - CT Skull B - CT Brain - MRI |
thr 68 -200 [ -100 | 200 100 | 136
linear interpolation
gray 58.2 51.2 | 77.5 114 57.3 119
euclidean 53.9 45.1 | 62.6 | 88.31 || 44.21 | 97.3e
gray-euclidean 50.7¢ 40.71 | 60.21 | 89.1 45.4 | 103
cubic spline interpolation

gray 56.8 48.6 | 77.9 | 111 57.2 117
euclidean 50.0e 41.6 | 59.9 | 84.0e |[ 43.1e | 97.67
gray-euclidean 50.4 39.6e | 59.9e¢ | 89.5 45.3 103

Table 2: Individual errors: (x 1000). A bullet marks the overall best performance and a dagger marks the
best performance either for linear or cubic spline between-slice interpolation

Skull A - CT Skull B - CT Brain - MRI
thr 68 -200 | -100 | 200 100 | 136
linear interpolation

gray 0.89e -0.7 | -09 | 9.7 -19 | -8.3

euclidean -6.4 0.9 1.3 -3.4 2.4 4.3

gray-euclidean -6.4 0.0l1e | 0.1e | -0.4e || 0.09e | -3.3%
cubic spline interpolation

gray 5.7 -0.7 | -1.2 | 10.4 -2.2 | -7.9

euclidean -0.97¢ 0.4 0.5 |-1.9¢ 1.1 1.6e

gray-euclidean 2.3 -0.21 | -0.31 | 4.0 -0.51 | -3.6

Table 3: Volume errors: (absolute %). A bullet marks the overall best performance and a dagger marks the
best performance either for linear or cubic spline between-slice interpolation
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T T

40 |threshold: 68 of 256

T T
CT DRY SKULL 8bits: 256x256x66

gy ——
euclidean -——
gray+eucli

L
60 70

Figure 3: Skull A (dry skull) - Individual and Volume Errors, cubic spline between-slice interpolation using
threshold 68.
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Figure 4: Skull B (bone) - Individual and Volume
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Volume Errors: Cubsic spline between-slice interpolation
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cubic spline between-slice interpolation using
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Figure 5: Skull B (skin) - Individual and Volume Errors, linear between-slice interpolation using threshold

-100.
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Figure 6: Brain - Individual and Volume Errors, linear between-slice interpolation using threshold 136.
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Figure 7: Skull A, zoom of the linear between-slice interpolation using: left is Gray distance, center is
Euclidean distance and right is Euclidean-Gray distance.

Figure 8: Skull A, linear between-slice interpolation  Figure 9: Skull A linear between-slice interpolation
using Gray distance. using Euclidean distance.
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Figure 10: Skull A, linear between-slice interpolation
using Euclidean-Gray distance.
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