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Abstract. A general scheme for adaptive triangulation refinements is described where the simplices of
3D triangulation are bisected as part of the refinement. The refinements are shown to be minimal in the
number of elements. The scheme is dependent only on a refinement criterion that is application
dependent. Examples of application to piecewisc-linear approximation of implicit surfaces and finite-
clements are bricfly discussed. A sweeping version of the scheme is described.

The recent years have shown an increasing interest in
simplicial subdivision schemes to solve geometrical
problems, system of algebraic equations and differential
problems in 3D space and even in n-space. Simplicial
subdivision has been applied to find the fixed points of
transforms, to define meshes for finite element methods
(RIVARA[1991], NAMBIAR[1993]), to track
implicitly defined curves and surfaces in Euclidean

spaces (ALLGOWER[1987], MIRANDA[89],
SALIM[1991], CASTELO[1990]) and to dctermine a
boundary representation of CSG solids
(PERSIANO[1991]). However, many simplicial

subdivision schemes are either regular, that is,
subdivide the space in equivalent cells, or irregular but
a triangulation structure is not assured. In this paper we
will discuss a class of nonrcgular triangulations derived
from the bisections of CFK triangulations. A general

. scheme for the construction of such triangulations will
be presented and shown to have optimality properties.
Finally, a sweeping version of this scheme will be
presented.

1. Regular CFK Triangulations

Threc-dimensional simplices are non degenerated
tetrahedra. They are the more simple volumetric form
in three-dimensional space comparable only to cubes in
simplicity and utility. Cubes have been used in grid
arrays and in recursive subdivisions, like in octrees,
mainly due to simple orientation in respect to Cartesian
coordinate systems. ~We will consider simplicial
subdivisions of cubic portions of the space in the
sequel.

A cube may be subdivided by three planar cuts in 6
similar tetrahedra sharing its vertices and one of the

cube diagonals (fig. 1). The cube so subdivided will
present each of its faces subdivided in two triangles by
their diagonals. From a regular subdivision of the space
in cubes, regular simplicial subdivision for the whole
space may be defined from the subdivision of the cubes.
If the subdivision of a cube in 6 simplices is translated
to every other cube of the cubic mesh we obtain a K/
triangulation of the space. If, instead, the basic
subdivision of a cube is reflected by its faces to its
neighbors, a J1I triangulation of the space is formed.
These two schemes assure a conform simplicial
subdivision, that is, the intersection of any two
simplices either is empty or is a vertex, or a full edge or
a full face of both simplices. Conform simplicial
subdivisions are generically called triangulations. The
K1 and J1 triangulations have been called Coxeter-
Freudenthal-Kuhn (CFK) (MIRANDA[1989]) and have
been used in several applications (ALLGOWER[1987],
CASTELO[1990] , SALIM[1991], PERSIANO[1991]).
See fig. 2 for examples of K1 and J1 triangulations in
2D.

~
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Figure 1: The basic subdivision of a cube in 6 similar
tetrahedra
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Figure 2: The J1 and K1 CFK triangulations in 2D.

2. Simplex Bisections and Variations of CFK
Triangulations

Two variations of the above CFK triangulations may be
built by simple refinement of its simplices by a halving
bisection procedure. A halving bisection of a simplex
is attained by cutting it by the plane passing by the
midpoint of its longest edge containing its opposed
edge. '

Each simplex of a J1 or K1 CFK triangulation has
the diagonal of the cube as its longest edge and some of
the edges of the cube as its smallest edges. The
extensive application of the halving bisection procedure
to all simplices of a J1 or K1 triangulation will lead to a
new triangulation that we will call a S! triangulation.
The new vertices and faces inserted in the original
triangulation will all be contained in the interior of the
cubes (fig. 3a).

The longest edge of a S1 triangulation simplex is a
diagonal of a face of its cube and their smallest edges
are halves of cube diagonals. Another variation of CFK
triangulation results by applying the same halving
bisection procedure to each simplex of a Sl
triangulation. The resulting triangulation will be called
a R1 triangulation (fig. 3b). If another general bisection
is applied to a RI triangulation then a finer J1
triangulation is again achieved (independently whether
we started from a J1 or K1 triangulation) (sec fig. 3¢).

Note that the clusters of simplices of a J1 or K1
triangulation in 3D having the same longest edge form
cubes. For S1 triangulations, the clusters of simplices
having the same longest edge form octahedra, each one
contained in two original cubes. For R1 triangulation,
these clusters are also octahedra but contained in four
cubes (fig. 3). In any case, the halving bisections of the
simplices in a cluster will insert edges and faces
restricted to the interior of that cluster.

All simplices of S1 (or R1) triangulations have the
same shape being either a translation or a reflection
(followed by a translation) of any other one. However,
although J1 and K1 triangulation simplices possess the
same shape, S1 and R1 simplices have different shapes.
Therefore, the successive application of the general
bisection procedure produces only three shapes of
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simplices denominated here types A (for JI and K1I),
types B (for S1) and types C (for R1). Note that the
bisection of a simplex of type A generates two simplices
of type B, whose bisection generates two simplices of
type C, whose bisection regenerates two type-A
simplices again. '

The simplices of these three types have reasonable
shape in the sense they are relatively "fat" simplices.
We may measure how "fat" a tetrahedron is by
evaluating its minimum internal solid angle. Fatter
tetrahedra will have greater measure. Regular -
tetrahedra are the fattest by that measure and
degenerated tetrahedra have zero measure.

Fig. 3: Successive bisections of simplices of a CFK
triangulation

The table below presents the values in degrees of
the internal angles of the three types of tetrahedra A, B
and C. Recall that the internal angle of a regular
tetrahedron is 45 degrees. Tetrahedra of types A, B and
C all have the same minimum internal solid angle that
is 1/3 of the measure of regular tetrahedra.

Type A Type B Type C
15 15 15
45 60 90
45 30 30
15 15 15
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Figure 2 shows the corresponding J1 and K1 CFK
triangulations in 2D space. Note that all triangles have
the same format. A S1 triangulation in 2D has similar
triangles but rotated 45 degrees in a distinct
arrangement. The general bisection of S1 triangulations
produces a J1 triangulation. Therefore, in 2D space
there are only two types of triangles genecrated by the
general bisection.

Hierarchical Simplicial Subdivision

A simplex may be subdivided in many ways, so leading
to several recursive subdivisions. The halving bisection
of a simplex introduced in the previous section leads to
a hierarchical binary subdivision scheme (fig. 4) that
may be adapted to local requirements in contrast to the
widespread uniform refinement of S1 and RI1
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Fig. 4: Binary subdivision tree of a CFK simplex.
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Adaptive simplicial subdivisions based on CFK
triangulations have been used to reduce the complexity
of the subdivisions. SALIM[1991] reports an adaptive
simplicial subdivision where the halving bisections of
simplices are locally guided by a root search criterion.
However, Salim's simplicial subdivision is by no means
a triangulation that is unacceptable to other
applications like finite-element mesh generation and
piecewise-linear approximation of three-variate real-
valued functions.

3. Adaptive Triangulation Refinement

Subdivision Refinement

We call the domain of a subdivision the union of all its
cells. Given any two subdivisions T1 and T2, we say
that T2 is a subdivision refinement of T1 if the domain
of T2 equals the domain of T1 and each cell of T2 is
fully contained in some cell of T1. A triangulation
refinement is a subdivision refinement of a
triangulation that happens to be a triangulation. The
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refinement of a triangulation is the result of cutting
some of its simplices in two or more simplices. In a
binary refinement of a triangulation the refinement of a
simplex is performed by successive binary cuts. S1 and
R1 triangulations are examples of binary refinements of
JI or Kl triangulations. Note that hierarchical
subdivisions are examples of subdivision refinements of
triangulations but are not triangulation refinements.

It is possible to associate a binary subdivision tree
to any binary refinement of a triangulation: the
branches of the tree correspond to the binary cuts and
the leaves of the tree correspond to the simplices of the
refined triangulation. For any simplex of a binary
refinement we may associate the depth of the
corresponding leaf of its binary subdivision tree.

Adaptive Refinements of CFK Triangulations

CFK  triangulations have many interesting
combinatorial properties and have been the basis for
several triangulation techniques in n-dimensional
spaces. However, if regular triangulation is used the
depth of refinement (size of simplices) should be
adjusted by the critical spot of the problem space and a
huge triangulation may result. Ideally, a (not
necessarily regular) triangulation could be tailored to
the problem in such a way that cach simplex is just
small enough to ensure that a given precision criterion
be satisfied. For example, if the triangulation is
intended to ground a piecewise-linear approximation of
a three-variate function, some local linearization
criteria (possibly based on second order derivatives)
might guide the choice of the maximum size of simplex
that is locally allowed.

Binary refinements of CFK triangulations based
on halving bisections may profit from the reasonable
shape of the simplices that is essential for applications
like the one above. Ideally we may ask for the better
(less complex) binary refinement of an initial CFK
triangulation that suits the problem requirements. This
certainly encompasses a combinatorial optimization
problem that may be too complex in the general case.
Alternatively, a sequence of optimal small steps of
refinement may lead to a good sub-optimal solution.

A procedure to refine general triangulations by
halving bisections was proposed by RIVARA[1991] for
application to the generation of finite-element meshes.
Her procedure determines a triangulation refinement
resultant from halving simplices that accommodates the
halving bisection of a given simplex. Rivara's
refinement is recursive and may be rewritten the
following way: -
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Basic Refinement Procedure of Simplex S of
triangulation T

Step 1: let E be the longest edge of S
while E is not the longest edge of some
simplex S' of T containing E
do a basic refinement of S';
Step2: do a halving bisection of all simplices
containing E.

The basic refinement procedure has very useful
properties. It is a finite algorithm because at each
recursive call the longest edge of the simplex S is
greater than the longest edge of the previous call. The
goal of the procedure is achieved by recursively
determining what to do and bisecting the simplices just
in the backtracking. The only step that produces a
change in the triangulation is the step 2 that ensures
the triangulation structure is preserved; therefore if we
perform this step in a single execution we will always
have a (conforming) triangulation (and no inconsistent
data structure may be generated). Observe that for
general triangulations the number of iterations of the
while loop of the step 1 is dependent on the geometry of
the simplices that are incident to E and may be
performed many times if the triangulation contains
excessively thin simplices.

We will call basic (binary) refinement of (S,T) the
triangulation generated by applying the basic
refinement procedure to (S,T). An (CFK-based)
adaptive triangulation is any triangulation generated by
successive applications of the basic refinement
procedure to simplices of a (K1 or J1) CFK
triangulation. Certainly, due to the properties of the
simplices of CFK triangulations, the simplices of a
three-dimensional adaptive refinement all have one of
the three shapes of types A, B or C described above and
therefore the measure of the initial simplices is
preserved (which is not true in general triangulations).

We claim that the basic refinement of (S,T) solves
the problem of finding the best (minimal) binary
refinement of the triangulation T that bisects the
simplex S. Therefore, any other binary triangulation
refinement that bisects S will be a refinement of the
basic refinement of (S,T). In this sense, the basic
refinement is the minimal step in any scheme of binary
triangulation refinement by halving bisections.

Furthermore, if we denote by B(S,T) the basic,
refinement of (S,T), then we may verify that for any
simplices S1 and S2 of T the two triangulations
B(S2,B(S1,T)) and B(S1,B(S2,T)) are equal
Therefore, the triangulation refinement by halving
bisections is order invariant.
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Fig. 5: An adaptive triangulation in 2D.

Figure 5 shows an example of a 2D adaptive
refinement where the dotted segments represent the
edges the basic refinement procedure would insert in
the triangulation to bisect the hatched triangle. It is
easy to see that in 2D adaptive refinements the basic
refinement will ever follow a unique path of triangles to
bisect. In the 3D case, however, many "branches” may
be followed by the procedure whose "ends" are clusters
of simplices of the same type meeting at their longest
edge. Besides, in the 2D case, the length of the longest
edge at each recursive call is increased by a factor of
square root of 2, and a maximum of n simplices is
introduced in the triangulation by each application of
the basic refinement, where n is the subdivision depth.

Adaptive Refinement Construction

Triangulations are used as a support to many
applications (see section 4). Often, the application
demands the triangulation be refined enough to
guarantee that some problem requirements are fulfilled.
Adaptive triangulations are suitable for problems whose
refinement requirements vary throughout the problem
space domain.

Now suppose that the requirements of the
application problem is spatially decomposable, that is
they may be expressed by some criterion that evaluates
whether a simplex of a triangulation is acceptable or
not. The whole triangulation will satisfy the problem
requirements if all its simplices are accepted by the
criterion. Given any triangulation T for the problem
then we may ask for a (minimal) refinement of T that is
accepted by the refinement criterion.

Spatially decomposable requirements are often
expressed by invariant-to-inclusion criteria that is if a
simplex is approved by the criterion then any simplex
contained in it will also be approved. Invariance to
inclusion is a property of the problem that may
expressed by "the finer the better".
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A simple scheme may be proposed to build refined
triangulations for solving problems whose requirements
are spatially decomposable and expressed by a criterion
invariant to inclusions:

Step 1: Start with a CFK triangulation T covering
the problem domain;

Step 2: while T has some simplex S not accepted
by the criterion do a basic refinement of (5,T).

It is easy to see that the simple procedure above
obtain an acceptable solution (and stops) if there is
some refinement of the initial triangulation T that
fulfills the problem requirements. We claim in addition
that the final refined triangulation is minimal, that is it
is the less complex refinement of T acceptable by the
criterion. This optimality property of the refined
solution is a consequence of the minimality of basic
refinement procedure and the invariance to inclusions
of the criterion. Note that the optimal refinement
scheme above does not require any specific order for
applying the basi¢ refinement: once any unacceptable
simplex is detected the basic refinement is applied to it.
Specific ordering of the criterion tests and of basic
refinement may lead to algorithms with distinct
features. In section 5, a specific ordering will be used in
a sweeping version of the optimal refinement scheme.

4. Adaptive Triangulation Applications

Adaptive triangulations are appropriated for problems
whose solution is spatially nonuniform and where some
kind of local lincarization leads to a reasonable
approximation. Typically, the schemes based on
adaptive triangulation break the space in small portions
and build for each portion an approximate (possibly
linear) solution to the problem in that portion of space.

Implicitly Defined Surface Evaluation

Consider a surface defined by an equation f{x,y,z)=0
where f is a continuous three-variate real function.
The f values at the vertices of a given triangulation
define a unique affine function in each simplex that
interpolates f* at the vertices of the simplex. The

piecewise-linear function f, so induced in the whole
triangulation is continuous for the interpolants
corresponding to tw@ simplices sharing the same face
have the same values in that face. Therefore if [ is
smooth enough and the triangulation is fine enough

then f, will be a good approximation of f on the
domain of the triangulation (ALLGOWER[1985]).
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If a precision is prescribed for the approximation,
a criterion may be set to evaluate whether that precision
is attained in a given simplex or not. Such criterion
may, for example, consider the maximum value of the
second order derivatives to estimate the error the
linearization will produce and compare it with the
precision level. This kind of criterion is certainly
invariant to inclusions and therefore meets the
requirements of applicability and optimality of the
optimal refinement scheme of the previous section. The
final triangulation generated by this method will be
minimal and formed by well-shaped tetrahedra.

.Boundary Evaluation of CSG Solids

The boundary of regular CSG solids may be described
as the roots of a real valued three-variate function if the
CSG primitives are half-spaces. Therefore, the general
scheme discussed above may be tailored to evaluate the
boundary of CSG solids.

A scheme similar to PERSIANO[92] may be
designed, guided, however, by a refinement criterion
that takes into account the "curvature” of the boundary
to stop the level refinement when the linearization is
good enough. As a consequence of using a curvature-
dependent criterion, the polyhedral approximation of
the solid boundary will contain smaller polygons only
on portions of the surface of high curvature or near the
solid edges. An adaptive boundary evaluation of CSG
solids based on these idecas is being studied
(APOLINARIO[1993]).

Finite Element Mesh Construction

Adaptive methods for finite element analysis are
techniques that interlcave the generation of the finite
clement mesh and the finite element analysis
(RIVARA[1990], NAMBIAR[1993], DEVLOO[1991],
LOHNER[1992]). Typically, starting from an initial
mesh, a finite clement analysis is carried on producing
an estimate of the local error duc to the mesh geometry.
Based on this error estimates a new mesh is generated
by refining the elements where the errors are
unacceptable, and a new analysis is done. The method
iterates these two phases until an adequate mesh for the
problem is obtained. '

The basic refinement introduced by Rivara[1990]
was originally proposed as part of an adaptive finite
element technique. When a complex geometric model
is under analysis, the triangulation refinement should
take into account both the geometric approximation of
the model and the adequacy of the triangulation for the
phenomena being studied. Barbalho[93] is currently
developing a finite element mesh generator for adaptive
finite eclement analysis of three-dimensional models
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described by CSG expressions. Adaptive refinement of
CFK triangulations seems to meet all requirements for
these applications.

5. Adaptive Triangulation Refinement by Sweeping

The optimal refinement scheme of section 3 operates
basically scanning the current triangulation refinement
looking for a simplex not accepted by the criterion and
applying to it the basic refinement. Although the order
of this search and basic refinements are not relevant to
the final result, an organization of the simplices to be

-scanned for testing may avoid unnecessary criterion
tests and reduce lists of candidate simplices.

The algorithm described in this section
implements the optimal . refinement scheme for 2D
triangulations by progressing the test and basic
refinement in a single sweeping of the triangulation.
The sweeping frontier will advance from left to right in
the plane and at any time will delimit the region (to its
left) of triangles already tested and accepted by the
criterion. Triangles to be tested will basically remain to
the right of the frontier. Hence, when the frontier
reaches the right border of the triangulation domain,
the refinement is concluded and all simplices were
approved by the criterion.

The strategy of the algorithm was inspired in
topological sweeping techniques like the one proposed
by EDELSBRUNNER[1986] where a topological line,
not necessarily straight, is used to sweep a collection of
figures in the plane. The sweeping frontier in our case,
however, will not be necessarily continuous.

The Sweeping Algorithm

Suppose the initial CFK triangulation domain is a
rectangle in the plane. The basic idea of the algorithm
is to sweep the triangulation from left to right,
partitioning triangles (by basic refinements) when the
evaluation criterion requires. The sweeping frontier
(also called sweeping list) will be a collection of
triangle edges such as their projection on the right
border of the domain covers that border.

In addition to the triangulation itself, the sweeping
list will be the only data structure the algorithm will
keep to perform its task. While the sweeping list is not
empty, the algorithm iteratively removes an edge E
from the list, determines the triangle T to the right of
E, and if T has not been accepted yet, tests it against
the criterion, and depending on the result performs one
of the following steps:

Advance step: when the triangle T is accepted

by the criterion the sweeping frontier must
advance; the rightmost (nonhorizontal) edges
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of the triangle are inserted in the sweeping
list.

Refinement step: otherwise, a basic refinement
is applied to the triangle T; the edge E (or its
refinement) is reinserted in the sweeping list;
and if, during the propagation of the basic
refinement, any edge of the sweeping list
suffers a bisection, then it is removed from the
list and its bisected parts are inserted instead.

Note that during the process as long as the
triangles are accepted in the advance step, they are
marked in order to avoid that the triangle be processed
again in a further iteration. From the above description,
it is clear that we should keep for each edge in the
sweeping list the triangle to its right and for each
triangle we should be able to determine its rightmost
edges. In order to support these demands, the
orientation of the triangles is the main key.

In a 2D CFK triangulation refinement, all
triangles are right triangles and may assume 38
orientations classified according to the direction of its
right angle: N, S, E, W, NE, NW, SE, and SW.
Keeping a record of the orientation of the triangles and
a convenient enumeration of its edges enable us to
determine the rightmost edges of a triangle by a table-
driven method. The orientations and edge enumerations
of two triangles generated by a bisection may also be
tabulated as a function of the ori¢ntation of their father.

Figurc 6 shows the refinement of a CFK
triangulation after some iterations of the sweeping
method. In this example, the criterion approves a
triangle if either it docs not contains any root of the

equation X’ —y>+x%y®—xy? =0 or it is smaller than
a prescribed size. The final refined triangulation
illustrated in figure 7 has 4664 triangles.

3D Sweeping Algorithm

The gencralization of the sweeping refinement
algorithm to the 3D case is almost straightforward. The
sweeping frontier is now a surface that travels from the
left border of the domain to the right border and the
sweeping list is composed of tetrahedron faces. No
modification is needed in the previous formulation of
the algorithm in two steps.

Certainly, the number of tetrahedron positions,
shapes and orientations is greater than the 8 instances
of the 2D case but there is no additional complexity.
The simple combinatorics of the CFK triangulation
refinements allows that tables may be built to drive the
steps of the method .
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Fig. 6: Initial steps of the sweeping algorithm

Conclusions

We presented here a general scheme for simplicial
subdivisions suitable for adaptive refinements. Thanks
to the one-step optimality of the basic refinement
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procedure and its order invariance we are able to assure
that any refinement generated by a sequence of
applications of the basic refinement will be optimal. On
the other hand, the good shape of the bisections of CFK
simplices enables us to produce good triangulations
from refinements of a given CFK triangulation.

Based on those properties we discussed a general
refinement scheme based on a simplex-based
refinement criterion. That scheme allows that
triangulation refinements be built by the simple
application of the basic refinement procedure to every
remaining simplex not approved by the refinement
criterion. If the criterion satisfies a reasonable
assumption of invariance to inclusion, it is possible to
guarantee the optimality of the final refinement.

Applications of that general scheme to implicitly-
defined surface evaluation, to boundary evaluation of
CSG solids and finite element mesh construction
illustrated its potential. A sweeping version of the
general scheme were discussed.

Nl

Fig. 7: Final refinement generated by the sweeping algorithm.
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