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Abstract. Distance-discriminator neurons — DDNs — and their combination in Distance-
discriminator Neural Networks — DDNNs are proposed and discussed. DDNs, based on distance
metric concepts, are able to discriminate whether a given point (z,y) belongs to a closed region
such as diamond-, rectangle- and ellipse-hound regions, which are tasks traditionally performed
by perceptrons. DDNs can also be straightforwardly modified in order to discriminate hollow re-
gions having as outer boundaries the above mentioned geometrical figures or even combinations of
them. The principal advantage of DDNNs over perceptrons is a substantial reduction of execution
time and/or the amount of required hardware operators: many polygonal classification regions
which would otherwise demand large perceptron structures can be discriminated with only a few
DDNNs. DDNNs can also be easily progranuned by design or automatically with the help of the
Hough transform. Such issues as well as the relative advantages of DDNNs and perceptrons and a

complete application example are presented and discussed in the present paper.

‘Entia non sunt multiplicanda praeter necessita-
tem” — attributed to William of Occam, 1300-1349.

1 Imtroduction

Perceptrons and similar neural networks [Beale and
Jackson (1990), Lippman (1987), Hush and Horne
(1993)] are traditional alternatives for classifica-
tion and pattern recognition tasks thanks to the
following interesting features: (a) their operation
can be trained (supervised or auto-organized); (b)
their structures are inherently suitable for paral-
lelization and (c) certain levels of generalization can
be achieved [Lippman (1987), Beale and Jackson
(1990)].  The model of neuron typically used in
perceptrons is the adaptive linear neuron, or ADA-
LINE, though higher order neurons are also possible
[Widrow (1991), Beale and Jackson (1990)].

This paper presents distance-discriminator neu-
rons — DDNs, as well as their combination into
distance-discriminator neural networks - DDNN s, as
means of improving the performance of perceptron-
like feedforward artificial neural networks for the
tasks of classification and pattern recognition. DDNs

are inspired on distance metric operators that,
though known for a long time, e.g. [Beale and Jack-
son (1990)], have been largely neglected as a means
of speeding-up neural networks. Compared to ADA-
LINEs, DDNs can be understood as more special-
ized types of neurons which require approximately
the same amount of operations (or hardware oper-
ators, for the case of dedicated implementations) as
ADALINES, but that often can perform the same job
as many ADALINEs.

The present paper starts by presen ting the
DDNs, their combination into DDNNs as well as
their properties and training strategies and fol-
lows by comparing the performance of traditional
ADALINE-based perceptrons and DDNNs. An ac-
tual application example is presented for which the
DDNN resulted about 40% faster than the respective
perceptron structure.

2 Distance Discriminator Neurons

A distance metric operator is a function which cal-
culates some kind of distance between a given point
(#,y) and another point (F,7) [Beale and Jackson
(1990)]. Three types of distance metric operators
are considered in this paper: diamond, rectangle (or
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Figure 1: Mapping of D for 7 =5 = 0.5 and w; =
Wo = 1. .

‘city- block’) and Euclidian, which are respectively
given by expressions ( 1), ( 2) and ( 3). Figure 1 il-
lustrates the mapping of D in terms of the Cartesian
coordinates x and y; it can be easily verified that
the produced surface corresponds to the bhoundaries
(except for the basis) of an inverted pyramid.

D =|(x —F)wi| +|(y — 7)wa| (1)
R = Mazx(|x —F|.wy, |y — Jlwa) (2)

E=\/e =%l +(y -7} (3)

where w; and w;y are non-negative real values.

By taking the difference between the distance-
metric operator output (ie. D, R or E) and a spe-
cific threshold (respectively D, R or E), distance-
discriminator neurons — DDNs — can be obtained
which produce the outputs d, r, and e, as given by
expressions ( 4) to ( 6) 1 The diamond, rectangle
and Fuclidian DDNs are henceforth abbreviated as
D-, R-and E-DDNs. The following three situations
are defined according to the DDN output value: (a)

IE-DDNs can be implemented without square roots by
adopting E? = (¢ —F)?.w? + (y —7)? w} instead of expression

( 3).
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negative — when the input point (z,y) is inside the
classification region; (b) zero —if the input point lies
on the region contour and (c) posifive — for input
points outside the region (the zero-output contours
for the three considered DDNs are shown in Figure
2). It is thus clear that DDNs are inherently capable
of classification according to their respective regions.
It is also possible to define hollow classification re-
gions by adopting expressions ( 7) to ( 9) instead of
( 4) to ( 6); the thus obtained classification regions
are illustrated in Figure 3(a), (b) and (c). It should
be observed that infinite straight bands can also be
similarly obtained from ADALINE classification re-
gions, as given by expression 11 and exemplified in
Figure 3(d). It should be observed that the contour
width does not depend exclusively on &, but also on
the respective neuron weights.

d=D-D (4)
r=R-R ()
e=E-E (6)
dy=|D-D|-6 (7)
rp=|R-R|-6 (8)
en=|E-FE|-6 (9)

3 Distance-Discriminator Neural Networks

DDNs can be used as building blocks of three princi-
pal kinds of feedforward neural networks: those con-
taining exclusively DDNs (hence pure-DDNNs); a
mix of DDNs and Boolean-logic operators (i.e. those
able to perform AND, OR and NOT, henceforth re-
ferred to as logic-DDNNs), and combinations of DDNs,
ADALINEs and Boolean logic operators (henceforth
abbreviated as hybrid—= DDNNs). Tt should be ob-
served that the translation of the sign of the DDN or
ADALINE output into a logical value (true or ‘1" is
henceforth adopted to indicate that the input point
belongs to the classification region) is assumed to
occur at the input of the logic operators.

While pure-DDNNs do not seem to vield any
particularly interesting property, the other two kinds
of DDNNs can be employed to substantially extend
the repertoire of possible classification regions. Ior
instance, by using the logical operations OR, AND
and NOT, logic-DDNNs can be obtained which ini-
plement classification regions respectively given by
the union, intersection and complement of the stan-
dard DDN regions: an asynunetric diamond can he
defined through the union of two D-DDNs (see Fig-
ure 5(a)), and a nut-like region can be obtained by
the intersection of a standard circular region and a
complemented diamond region (see Figure 5(b)).
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Hybrid-DDNNs can be used as means of ex-
tending still further the possible classification re-
gions through the combination of ADALINEs and
DDNs. The basic two-dimensional ADALINE, de-
fined by expression ( 10) [Widrow (1991)], defines
the semi-plane classification region illustrated in Fig-
ure 4(a); applying a strategy similar to that used
to define hollow DDNs, it is possible to modify the
basic ADALINE in order to define the band [Costa
and Sandler (1989), Costa and Sandler (1993), Costa
(1992-a)], given by expression ( 11) and depicted
in Figure 4(b). ADALINEs which implement triv-
ial semi-planes, i.e. those with vertical or horizon-
tal boundaries, are henceforth referred to as trivial
ADALINES; such neurons can be straightforwardly
obtained by comparing respectively the x and y co-
ordinates of each input point to be classified. Exam-
ples of hybrid-DDNNs yielding triangle, trapezium
and section-of-circle classification regions are respec-
tively exemplified in Figures 5(c), (d) and (e).

a=aw +yws+ A (10)

ap = |a| =6 (L1)

Before proceeding to describe how perceptrons
and DDNNs can be programmed to perform classi-
fication and pattern recognition, it is opportune to
review the meaning of these two operations. The
operation which determines whether a given point
(x,y) lies inside, outside or on the border of a spe-
cific region is henceforth referred to as classification.
Pattern recognition consists of classifying every in-
put point with respect to the region: the input is
understood to contain an instance of the sought pat-
tern whenever the amount of input points found to
be within the region is higher than a fixed threshold
T. Pattern recognition can be performed in two prin-
cipal ways: by scanning the whole set of input points
serially over the recognizing neural net as it would
be typical in sequential software executions, or by as-
sociating every input point to a copy of that neural
network in such a way as to achieve massively parallel
execution. It is interesting to notice that DDNNs and
perceptrons when applied to pattern recognition per-
form exactly the same operation as template match-
ing; the advantages of the neural aproaches cousist
hasically in the fact that these latter are usually more
compact (just some weights, rather than the com-
plete template, have to be stored) and that the as-
sociated classificaiton regions, being mathematically
defined, can be straightforwardly transformed (e.g.
dilation, rotation, translation).
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Figure 4: Semi-plane (a) and band (b) classification
regions defined by ADALINEs.
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Figure 5: Asynunetric diamond (a), nut-like bound-
ary (D), straight-triangle (c), trapezium (d) and a
section of a circular region (e).
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4 Programming DDNNs

Assuming that the intended classification regions are
composed of parametric curves, it is in principle pos-
sible to devise algorithms which program the desired
operation of DDNNs according to parametric and
endpoint information about the classification region
constituent curves produced by some curve detec-
tion algorithm. TFor simplicity’s sake, the following
discussions are restricted to polygonal regions — the
extension to other curves is straightforward.

Since polygons are composed exclusively of
straight line segments, an algorithm suitable for
such kind of curve detection has to be firstly oh-
tained. An effective Hough-transform-based alter-
native for digital bar segment detection (digital bar
segments are henceforth understood as extensions of
straight line segments with non-infinitesimal width)
has been presented in [Costa and Sandler (1993),
Costa (1992-b), Costa (1992-a)]. In that approach,
an improved Hough transform variation, namely the
binary Hough transform, is adopted as a means of
detecting possible digital bars in the image, which
are confirmed through a post-Iough transform con-
nectedness analysis also capable of determining the
endpoints of the actual digital bar segments. In order
to reduce the amount of replicated and broken seg-
ments usually produced by Hough transform-based
techniques, a merging stage is applied after the con-
nectedness analysis. The final product of this frame-
work is a list L of the parameters and endpoints of
most of the significant straight segments in the im-
age. The performance of such a framework has been
quantitatively assessed in terms of execution speed,
amount of false and true detected lines and accuracy
for the segment. parameter determination in [Costa
(1992-a)].

Now, an algorithm must be devised which pro-
cesses the above mentioned list I of straight seg-
ments in order to derive the suitable DDN weights.
One possible algorithin, which treats separately D-
and R-DDNs and which is not guaranteed to pro-
duce optimal results, is presented in the following.
The algorithm begins by looking for parallel straight
segments in L which indicate the presence of rectan-
gular regions or sub-regions in the image. The short-
est of the parallel lines must be chosen, the other
parallel will have to be cut in such a way as hoth
parallels have the same length, this length will give
the value of the weights w; and ws. The point where
the diagonals joining the end points of these paral-
lel lines meet will yield the point (F,%) where the
R-DDN is centered. This process is then repeated
with other pairs of parallel segments. From the list
of straight line segment endpoints it is also possi-
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ble to find the corners defined by a pair of straight
segments. Once a pair of these segments has heen
identified, they can be used to program a D-DDN.
In this case, it will have to be determined if both
lines are symmetric with respect to either a verti-
cal or a horizontal/vertical lines passing through the
vertices. Here also both lines will have to be of the
sawe length, otherwise the longest one will have to
be cut to the length of the shortest. As usual, the
length of the lines will yield the value of the weights
w; and wy. The D-DDN center can be determined
similarly to the R-DDN case.

The above described programming strategy can
be extended to the situation where many distinet
patterns are present in the input image. 'T'his can be
achieved by applying a second conectedness analy-
sis which assigns pointers expressing the connections
between distinct straigth segments. In this way, the
closed polygonal region will be reconstructed. Lach
of the thus obtained polygons will then be treated
by the above presented algorithm.

"

5 Comparing DDNNs and Perceptrons

The relative advantages and disadvantages of DDNNs
and perceptrons for classification and pattern recog-
nition respectively to a series of performance param-
eters such as amount of required hardware resources,
execution time, programming and generalization ca-
pability are discussed in the following subsections.

5.1 Execution Time and Required Hardware

The basic operations in the two-dimensional ADA-
LINE and the D-, R- and E- DDNs are respec-
tively illustrated in Figures 7 and 6(a) to (d) 1t
can be easily verified from this figure that an ADA-
LINE and a D-DDN respectively require four (two
products and two additions) and eight (two products,
four additions and two simple absolute value) basic
operalions. Assuming that all these operations can
be executed in the same time period T., it follows
that a total of respectively 4.7, and 8.7, basic cy-
cles will be required by sequential execution of each
of these neurons. For dedicated parallel hardware
implementations where each neuron is implemented
as an individual hardware structure, this will mean
that less hardware will have to be used to achieve the
same operation. It thus becomes clear that DDNNs
will only allow execution time reductions for those
regions which can be conveniently partitioned into
diamonds, rectangles or pieces of these in such a way
that each DDN implement at least two line segments
of the region contour. Given the large percentage of
such types of features in natural and man-made ob-
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(a) D-DDN

(b) R-DDN

Figure 6: The constituent operations of the D- (b),
R~ (¢) and E-DDNs (d).
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Figure 7: The ADALINE constituent operations.

jects and it is reasonable to expect that DDNNs will
often lead to performance benefits (see Section 6).

5.2 Programming

Back propagation (or delta-rule) has traditionally
been used for perceptron programming. Such a strat-
egy relies on the successive modification of the ADA-
LINE weights in the several layers in such a way as
to minimize the difference hetween the current and
desired outputs, which characterizes the program-
ming strategy commonly referred to as supervised-
learning. Many interactions are typically required
until the perceptron, which usually starts with ran-
dom weights, be programmed in the desired way. It
is clear that a perceptron intended for recogniton of
polygonal classification region needs N, ADALINES,
one for each straight line segment in the sought pat-
tern contour. Regions which are not concave ? have
to be partitioned into concave pieces, at the cost of
an additional ADALINE per partition. Direct pro-
gramming of the weights A, w; and wy of each of
these ADALINEs can be done by taking as basis
the orientation and position of each of the straight
line segments defining the sought pattern contour,
which can be obtained by using the Hough trans-
form [Costa and Sandler (1989)]. The evidences from
these ADALINES in the first perceptron layer have
to he combined by additional structures in the fol-
lowing perceptron layers. In this paper we assume
that this combination is done by Boolean logical neu-
rons [Widrow (1991)]. Similarly, in a DDN-based

2 A region R is said to be concave iff, given any two internal
points p1 and pz, all the points on the line extending from pq
to pp are also points of R.
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approach, the position and horizontal and vertical
extents of each of the regions can be used as basis to
respectively determine the suitable DDN structure
reference point and weights.

When discriminating a polygonal region with
ADALINES, the geometrical distribution of these is
unique and it is fixed by the shape of the polyg-
onal region itself, whereas when discriminating the
same polygonal region with DDNs there is freedom
for the programer to choose which combination of
polygon DDN structures presents potential for allow-
ing better convergence and programming strategies .
This means that a smarter programer will be able to
choose a better combination of polygons to discrim-
inate a given region.

5.3 Generalization Capability

The generalization properties of pattern recognition
with perceptrons arise from two principal reasons:
the tolerance commonly allowed for the threshold T°
and the re-utilization of ADALINES.

It can be easily verified from their underlying
expressions that D-DDNs and their respective ADA-
LINE counterparts exhibit basically the same recog-
nition properties, except for differences implied by
the finite numeric representation usually required for
computational implementations.

Let us illustrate the re-usability concept through
a simple example. Given in Figure 8(a) containing
two regions, a square and a triangle with a collinecar
side. The minimal perceptron structure capable of
recognizing such a pattern requires six ADALINES:
four to recognize the square and only two to rec-
ognize the triangle, since the collinear sides can be
implemented with the same ADALINE, see Figure
8(b). It can be straightforwardly verified that DDNNs
do not allow such a re-usability capability, but, would
this imply a severe disadvantage? Before answering
this question, it should be firstly observed that it
is relevant only for situations in which the collinear
sides belong to regions which can be implemented
with DDNs, since all the other cases should be any-
way implemented with ADALINES. Such a situation
is illustrated by the nine diamonds in the 3 X 3 ar-
rangement shown in Figure 9. Recognizing these
diamonds with perceptrons will invariably demand
progrannning twelve perceptrons, whereas if DDNs
are used instead, only nine D-DDNs are required. It
is thus clear that the reduced execution time and/or
amount of hardware resources allowed by DDNs for
such situations will usually compensate for their lack
of re-usability.
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rectangle

triangle

(®)

Figure 8: A triangle and a square with collinear sides
(a) and the minimal logic-perceptron for its recogni-
tion (b).

Figure 9: Nine diamonds.
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Figure 10: The sought pattern (a) and its possible
decomposition for perceptron-based (b) and DDNN-
based (c) pattern recognition.

6 Application Example and Experimental Re-
sults

The relative performance of perceptrons and DDNNs
is illustrated by the following actual application ex-
ample for pattern recoguition. Let us assume that a
specific instance of the 511-element-pattern in figure
10(a) is to be verified in an image.

It is clear from figure 10(b) that a minimum of
7 ADALINES have to be implemented only in the
first perceptron layer; an additional ADALINE is
required in order to partition the pattern into two
concave regions and more structures (assumed to be
Boolean logic neurons) are required in the following
layers in order to combine the first layer outputs.
A possible pseudo-code algorithm for the recogni-
tion of the rocket-like object in figure 10(a), where
ADALINE() is a function which returns the ADA-
LINE output for the input point (x, y), is given below
(it has been assumed that wy ;, wy; are non-negative
real values and wy ; is a negative real value):

Function inblockA:
inblock A:=false
I ADALINE(z,y,wo 1,w1,ws1) <0
and ADALINE(z,y,wp 2, Wi 2,w32) >0
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and ADALINE(z,y, w3, w; 3,w33) 20
and ADALINE(z,y,wo 4, Wy 4,w24) >0
and ADALINE(z,y,wos, w15, was) < 0
then inblockA:=true

Function inblockB:
inblock B:=false
If ADALINE(CL‘,y, Wo,6, W1,6, wzys) S 0
and ADALINE(z,y,wo,7, w17, wa7) >0
and ADALINE(2,y,wyg w18, w2g) >0
and ADALINE(z,y,wo 3, w1 3,w23) <0
then inblockB:=true

Main:
count:=0
For every image feature element do
If (inblockA=true) or (inblockB=true)
then count:=count+1
If count > T then recognize pattern

In a DDNN implementation, the rocket—like ob-
ject in figure 10(a) has to be partitioned into dia-
monds, rectangles or parts of these. A minimal par-
tition requiring a total of just three DDNs (a whole
diamond, a whole rectangle and the superior half
of another diamond) is illustrated in Figure 10(c)
and the respective pseudo-code detection procedure,
where D() and R() are functions which respectively
implements the D- and R- DDNs and Y is the y-
coordinate used for partitioning the lower diamond
according to the horizontal axis, is given below:

Function inside:
inside:=false
If D(z,y, 77,71, w11, w21) <0
or R(z,y, T3, T2, w2, w22) <0
or ((y > —)'-") and (D(z,y,T3,73, w3, w23)) < 0)
then inside:=true

Main:
count:=0
For every image feature point do
If inside=true then count:=count+1
If count > T then recognize pattern

One should notice that the simpler test required
to implement the trivial ADALINE region (i.e. ‘y >
¥ in the fourth line of the function ‘inside’) should
always precede the DDN function calls in order to
statistically improve the overall execution time.

Both procedures ahove were translated into Pas-
cal and executed in a VAX- 6420 computer. When
applied to a 92x92 binary image containing a rocket-
like object in a specific position, with 7" = 511 —
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511/4 (a 25% tolerance is allowed), both programs
allowed similar accuracy for the determination of the
position of the sought object. The DDNN structure
resulted about 40% faster than the perceptron alter-
native.

7 Concluding Remarks

The principal objective of this paper has bheen to
present three distance discriminator neurons based
on distance metrics and to point out their potential
as effective building elements in homogenuous and
hybrid neural networks for classification and pattern
recognition.

DDNNs are useful because they can often out-
perform the equivalent perceptron networks in re-
spect to both execution time and/or amount of re-
quired hardware elements. The fact that more than
one DDNN can often be found which performs the
same classification task indicates that these networks
have potential for allowing higher programming flex-
ibility and faster convergence than perceptrons. Al-
though the three basic DDNs implement symmetric
classification regions, it has been shown that many
other, symmetric or asymmetric, hollow or compact.
classification regions can be obtained by using logic
and hybrid-DDNNs. DDNNs can also be easily ex-
tended to accept N-dimensional inputs.
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