Scripting and Artistic Control in Computer animation

Alan Watt
Mark Watt

IMPA - Instituto de Matematica Pura e Aplicada
Estrada Dona Castorina, 110
22460 Rio de Janeiro, RJ, Brasil

Xaos, San Francisco, EUA

Abstract

This paper presents experience in using curves as a script base in a variety of computer animation techniques. We
present a general model of motion control in animation and look at practical examples in the context of rigid body
animation, the animation of soft bodies or deformation and the animation of articulated structures. Experience
suggests that the conceptual difficulty that a non-numerate or non-computer literate animator may have in relating
the script to its effect, is soon overcome. An animator very quickly becomes used to using and editing curves that
specify some aspect of motion. The methods employed are discussed in tne context of how best to give complete
artistic control to the animator while at the same time insulating him from the tedium of specifying movement in a

low level or detailed form.

1) Introduction

The script or interface process can be categorised
as enabling a specification and interactive modification
of motion. We can call the means that facilitates this
process an animation language. Thus we have the
analogy between an animation language advantages that
accrue in high level languages carry over into animation
languages - in particular being able to develop scripts of
greater and greater complexity by developing simpler
scripts (bootstrapping), and being able to store past
experience as procedural modules reusing them when
required.

The motion control process can itself be subdivided
into two parts. In the first process we supply an interface
with which the animator interacts. The information
given by the animator is then interpreted by the second
process which provides low level information for the
renderer. Thus we have an animation language/compiler
model.

Consider again rigid body animation. To protect
the animator from supplying a list of three-dimensional
coordinates as a function of unit time intervals (a low
level motion specification) we provide an interface or
script facility that enables the animator to describe the
motion in high level terms (Figure 1). We distinguish
between an interface and a script at this point by saying

that a script provides a record of the animation that can
subsequently be retrieved and edited. Also we
distinguish between full explicit control, where the
animator specifies the changes in the animated attribute
of the object in every frame, and high level or automatic
control, where the animator may specify , for example,
that an "actor' is to walk from a point to a destination by
the most direct route. There is always a trade-off
between artistic control and the work involved in
creating an animation. As we tend towards higher level
facilities more control is taken from the animator by the
software writer. In the authors' experience animators
tend to prefer to do more work than use a system that
tends to limit their art form at a detailed level. A
practical example of this trade-off is given in Section 3.

In all that follows we shall be talking about full
explicit control. Full explicit control is necessary for
general purpose animation wherein the animator is free
to create novel motion. Other important attributes that
any scripting system should possess are as follows.
Editing should be possible so that incremental design is
facilitated and previous experience can be built upon. A
script should be a high level summary of the motion so
that it is obvious to the animator what alterations are
necessary to achieve the desired effects. The script
form should be accessible to a non-computer-literate
animator.

Anais do SIBGRAPI VI (1993) 123-132

124

The success of any script form depends to some
extent on the conceptual distance between the motion
and its specification. So that, for example, a script
written in ASAS (an animation language built on top of
LISP) is difficult to 'read’. That is, it is difficult to
imagine the movement by reading the program or script.
This distance can be reduced if the animator is able to
participate in a real time loop, previewing the animation
as the changes are made to the script. This is usually
possible nowadays on graphics workstations, at least for
wire frame objects. (Such a facility - wire frame
previews - is somwhat similar to the line tests made by
traditional animators. Here an animator makes pencil
sketches without colour and background to test out the
character of the movement.)

Three general types of animation languages have
emerged. [Foley et al(1990)] categorise these as linear
list notations, general purpose languages with embedded
animation directives and graphical languages. We
concentrate, in this paper, on using curves as a basis for
animation graphical language. In particular we confine
ourselves to a general discussion of curves and motion
control. Facilities that would be required to make a
complete animation language are not discussed.

Motion Control

A. WATT, M. WATT

An early example of linear -list notation is given in
[Catmull(1972)]. The motion of a rigid body is specified
1o take place between two frames. For example:

37,48, A, ROTATE "BOX", 1,30

specifies that the object called BOX is to be rotated
through 30 degrees about axis 1. The motion is to take
place between frames 37 and 48 and the rotational
increments are to be deteremined from table A.

In the second category general purpose languages
are enhanced to include animation utilities and types.
Examples are ASAS [Reynolds(1982)], a superset of
LISP and CINEMIRA [Magenat-Thalmann(1985)] - an
cnhanced version of PASCAL. Because these languages
retain the advantages of general purpose high level
languages, actions can be embedded in procedural
modules. A script now becomes a program but the
greater flexibility of this approach, over the linear list
notation, is paid for by the requirement that the animator
must be a skilled programmer. For example, in
CINEMIRA animattion types can be declared and the
following defines a vector that starts at time 10 and
moves with constant speed <<3,0,0>> from the point
<<0,10,4>> stopping at time 13:

Script or Script
Interface Interpreter Renderer | . Frames
v
Animator High level Low level
Motion Motion
Specification Specification

Figure 1 A model of a scripting system for motion control

Anais do SIBGRAPI VI, outubro de 1993

SCRIPTING AND ARTISTIC CONTROL IN COMPUTER ANIMATION

125
(script spinning-cubes
type TVEC = animated VECTOR;
val <<0,10,14>> .. UNLIMITED:; (local: (runtime 96)
t me 10..13; (midpoint(half runtime)))
law <<0,10,14>> + <<3,0,0>> *
(CLOCK - 10); (animate (cue (at 0)
end; (start (spin-cube-actor green)))
var VEC: TVEC;
(cue (at 0)

(start (spin-cube-actor blue)))
The following example is a single animate block

in ASAS. It contains two actors - a green spinning cube

(cue (at runtime)
and a blue spinning cube:

(cut)))

(b)

Lmooeon 000 0 o oo coxmo

‘ @000 00 © 0 0 000 0o

X

(c)

Figure 2 Baecker's motion control specification
a) The path of a body moving from point A to point B
b) Motion characteristic as two distance time curves.

¢) Motion characteritic as a P-curve. The dots represent points on the path curve
at which frames are generated.

Anais do SIBGRAPI VI, outubro de 1993

126

These examples demonstrate the point that access
to the animation facilities requires a high degree of
programming skill.

Both linear-list notation and enhanced high level
languages have drawbacks as far as our list of desirable
attributes is concerned. We propose that these can be
overcome by using curves as a script form and we
demonstrate the efficacy of such a technique in three
animation forms:

rigid body animation
animation of deformation - soft body animation
articulated structure animation

2) Curves in rigid body animation

This form of computer animation is ubiquitous.
Perhaps its most common manifestation is 'tumbling
logo' sequences on TV. Much work has been done in
this area and this section describes an implementation of
an approach that has been implemented in different
practical manifestations by other authors - notably
[Baeker(1969)] and [Steketee-Badler(1985)].

The work described in this paper has its origins in a
system developed by Baecker in 1969 [Backer(1969)].
In this work Baecker introduces the concept of a P-

A. WATT, M. WATT

curve, describing this concept with the following
example. Consider the motion of a body moving from
point A to point C, diagonally opposite, by following a
path along a wall to corner B, then from B to C (Figure
2a). We can plot the variation of the position in x and y
of the body as a function of time and from Figures 2b
and ¢ we can see that the body starts from rest ,
accelerates and then decelerates into the corner. A pause
occurs at B then the body accelerates and decelerates on
its path to point B. Figure 2d is the same as Figure 2a
except that superimposed on the path characteristic are
markers that represent equal intervals in time. These, in
the context of animation, are frame markers - the points
at which the renderer ,using information given in the
characteristics, generates a frame. Baecker terms such a
characteristic a P-curve and we note that it contains both
positional information together with the dynamics of
the motion. If we were using such curves as an interface
then we would control the dynamic characteristic , either
by changing the shape of the curves in Figures 2b and c,
or, by altering Figure 2d to change the spacing between
frame markers.

In traditonal animation such scripting of the
dynamics of a character is achieved by altering the
difference or distance between the character's position
in consecutive drawings. Acceleration and deceleration
is called 'easing in' and 'easing out'. Such control via the

s(u) [~

M(u)

t(u)
(b)

V(u)

(©)

1(u)

Figure 3 a) Path characteristic as a parameteric function.
b) and c) Single motion characteristics specifying velocity or acceleration along the path.

Anais do SIBGRAPI VI, outubro de 1993

SCRIPTING AND ARTISTIC CONTROL IN COMPUTER ANIMATION 127

drawings is particular for the character and is a fine
skill of the animator. The character could be a walking
figure with arm and leg movements or it could be a
motor car.

A curve system expresses the dynamic
characteristics globally - the movement is scripted,
summarized and is in a form that can be easily edited -
by changing the shape of the curves. Having an
animation sequence specified by a global characteristic
is an attractive proposition and its the key to interactive
animation design. By curve editing the animator can
view and alter the motion characteristics of the entire
sequence. Also note that the dynamic or velocity
characteristic can be separate from the position
characteristic. Unlike the method of traditional
animation the designer can concentrate separately on the
design of the position and velocity characteristic. For
example, he can experiment with different velocity
characteristics while using the same position
characteristic.

The system that we have used takes the above
basic idea with certain simple changes. First we use a
parametric representation for the path and velocity
characteristic. Figure 3a shows the positional
characteristic as a parametric function X(u), where point
A occurs at u = 0 and point B occurs at u = 1. This
allows us to have a single velocity characteristic that
specifies the motion along the path and this can either be
M(u) or V(u) as shown in Figures 3¢ and d. The other
advantage that this scheme confers is that we can use
splines for the characteristic thus facilitating a
convenient editing device for changing the shape of the
curve. We have found that non-computer-literate
animators become very quickly used to this dual
parametric specification and the curves can be displayed
in windows alongside the window in which the
wireframe animation is displayed. The parametric
representation is invisible to the animator and a low
level motion specification is derived from the curves.
Our experience has shown that animators find the
concept intuitively simple. In three space the path or
motion characteristic is of course a function of three
spatial variables requiring something like an interface
display of three projections.

Atthis stage we mention that although we are only
discussing the issues involved in an animation language,
there are problems of some significance that the
compiler has to deal with. The most significant of these
concerns the interpretation of the information that is
presented as a parametric function. To derive the
information necessary for the frame generation we need

to measure equal distances along the path length.
Unfortunately equal intervals in u do not correspond to
equal distances along the curve (the arclength) and
when such a system is implemented this distinctly non-
trivial problem must be addressed. Of course, this is all
invisible to the animator and full details of finding equal
arclength intervals is given in [Watt-Watt(1992)].

The velocity curve can , of course, be used for any
motion parameter; there is no reason for it to be
restricted to arclength. The term then encompasses
anything that moves in the animation sequence apart
from the usual kinetic variables such as position and
orientation. Movement could also include colour,
transparency or any attribute that is represented by
numbers.

A similar system was developed by Steketee and
Badler [Steketee-Badler(1985)]. and they were the first
to recognize the value of separate specification of
motion and velocity characteristics. Thus the use of
such an approach is now fairly standard and we will now
show how it can be extended to script more unusual
modes of animation, namely articulated structures and
deformation.

3) Curves in articulated structure animation

We now look at a case study of an articulated
structure animation that uses forward kinematics. All the
advantages of using curves as a script carry over into
this animation form. In addition it is possible to script
the animation of complex articulated structures with
many connected parts. Of course it could be argued that
the animation of an articulated figure, that performs a
task such as walking, playing a musical instrument or a
sport, is best carried out by using a high level or goal
directed system. However, apart from the fact that such
systems are in their infancy, they are usually artistically
restrictive. There is always a trade-off between the
freedom that an animator requiresto design a unique
sequence (implying general or low level facilities) and
the facilities that may be provided by a goal directed
system. After all we are talking about the ability to
provide characterization or personality to the movement
- a requirement that is often absent from commercial
animation systems. For example, say we require a
character to walk from point A to point B. We may, in a
goal directed system, to specify the speed of the walk,
but in all probability we would be unable to specify that
the character of the walk was to be a 'pimp roll'. The
subtleties of the pimp roll are shown in Figure 4.

Anais do SIBGRAPI VI, outubro de 1993

128 A. WATT, M. WATT

45

Knec

Lower leg

Ankle

Foot

Hip joint

Knee joint

AN
~—

© @ 28 v@g ﬁD ©

L N[

Ankle joint

Figure 7 Animating a simple articulated structure.

Anais do SIBGRAPI VI, outubro de 1993

SCRIPTING AND ARTISTIC CONTROL IN COMPUTER ANIMATION 129

Let us consider the nature of the problem. An
articulated figure is normally a structure that consists of
a series of (usually rigid) links connected at joints.
Animating such a structure means assigning movement
to all the nodes, in general. Thus the nodes are treated
as individual objects and animated in the same way that
we animated rigid bodies in the previous section. The
difference now is that the objects or nodes are linked.
The structure is represented as a hiearchy and any
movement assigned to a node effects all nodes beneath
it. In our example rotating the shoulder rotates the entire
arm. In such a system an animator has to start at the top
and work down, perfecting the animation at each node
before going deeper into the hierarchy. The need to
animate each node is the source of the workload in a full
explicit or forward kinematic motion control system for
an articulated structure.

— c——|Evebrows

& &b
O

L) Tee

i] Teeth

Head

Hat

Evebrows Eyes 1
yuby) Teeth
(eftand (lefrand (upperand
right) right) lower)

Figure 5 The head of a character and the local hierarchy.
The links in the hiearchy are elastic and the hat,
eyebrows, eyes and teeth can inherit the movement of the
head or not as required by the sequence.

The following examples are taken from a
production made for a rock music program shown on
Channel 4 , UK in 1988. The complete animation
features a band of musicians which are composed, in the
main, of spheres and cylinders. Since only a very few
modelling primitives are used for the characters, the
success of the animation derives entirely from the
complexity and subtlety of the movement. Since each
character consists of a somewhat complex hierarchy of
linked moving parts, the animation of the entire
sequence would have been extremely difficult and
tedious without the use of curves.

In the first example the nodes themselves are
animated as objects. The links between the objects are
invisible and elastic as the first example will
demonstrate. The second example is a more
conventional articulated structure. Here the links are the
objects, in this case limbs.

As an example we consider controlling the
animation of just the head of one character. This has a
hierarchy shown in Figure 5. The head is subject to three
possible movement categories.

1) Global movement, where the entire head is
animated using motion inherited from movement of the
entire structure. This is equivalent to considering the
entire character as a rigid body whose global movement
would be scripted as in the previous section.

2) Local movement of the head. In this case the
head can tilt and rotate about the z axis.

3) Local movement of the hat, eyebrows, eyes and
teeth. As well as inheriting the global and local
movement of the head, these structures can have their
own movement. Their links to the head are ‘elastic'.

Considering that this is just one of a small part of
one character in the animation, scripting without the use
of curves would have been practically impossible.

We consider now a small characterization in the
complete sequence. The character (called Mad Bastard)
snaps at the camera then turns his head away; but the
eyes continue to stare at the viewer before turning also.
To animate the local movement of the head and eyes we
use just two curves similar to P-curves of the previous
section. The path characteristic is unnecessary because
the local movement of the head is restricted, in this
sequence, to rotation about the z axis, and the eyes can
only translate over the cylindrical surface of the head.
Thus we combine motion and velocity specification in

Anais do SIBGRAPI VI, outubro de 1993

130

one curve as shown in Figure 6a and b. Figure 6a
shows the head's z rotation that was used. In this case
the eyes inherit the head rotation and move as if they
were rigidly linked to the head. The concept of an elastic
link is implemented by applying a compensatory motion
to the eyes in the form of a z rotation as shown in
Figure 6b that causes the eyes to lag behind the head
movement.

In the second example the objects to be animated
are the links themselves. We do this by scripting their
rotation about the joints which are the nodes. Consider
the development of a simple walk cycle. Starting at the
hip joint we specify a hip rotation script - angular
displacement as a function of time (Figure 7). This
completed, the knee and then the ankle is scripted. This
is somewhat simplified - other refinements are

9i) ?

Head

z-roll

Frame
[] [J []
(o & (=8
o o
[BEES

(ol & =)
= (e]
] T 7
0

(h)

Figure 6 Script curves for animating the head z-roll and
the eye z-roll. Note that the eye z-roll can be viewed as
compensation for the movement inherited from the head.

Anais do SIBGRAPI VI, outubro de 1993

A. WATT, M. WATT

necessary - the hip, for example, does not move in
a straight line. Although, even with curves, full explicit
control may seem extremely tedious, bear in mind that
an animator can be supplied with a standard script for a
walk cycle giving the facility for characterization by
altering a previously stored script.

4) Curves in the animation of deformation

One of the most useful techniques for deforming an
object was first suggested by Bezier in [Bezier(1972)]
and was introduced into computer graphics by
Sederburg and Parry [Sedeburg-Parry(1986)], where it
was given the name FFD (Free Form Deformation). To
understand how to control the motion of the deformation
of an object we need to explain some facts concerning
this method. We define a Bezier hyperpatch as the solid:

3 33
Q(uyv,w) =X X X pijk B(u) B(v) B(w)

i=0 j=0 k=0

a volume of space parametrized by the parameters
u, v and w. Such a hyperpatch is specified by 64 control
points. For example, if the control points are equally
distributed in a cube then the hyperpatch is a unit cube
in parametric space. Moving any of the 64 control points
distorts or deforms the hyperpatch. Now if we use the
hyperpatch as a space in which we embed , say, a
polygon mesh object, we can deform the object by
moving the hyperpatch's control points. This distorts the
hyperpatch itself which pulls the vertices of the object
embedded in it. Just as the distortions of the hyperpatch
that result from moving control points are 'intuitive'
(that is, the control point movement induces a distortion
that is concepttually related to the this movement) so
also is the distortion of the embedded solid.

Thus the animator has the concept of a rectangular
three-dimensional array of control points called FFD
blocks that are motion controlled to effect the animation
of deformation. An FFD block is generally a stack of
hyperpatches, but for the purpose of this paper we
ignore this distinction (see [Watt-Watt(1992)] for further
details on this point).The script curve method that we
have adopted is best explained by reference to an
example. The animated sequence (Figure 8) shows a
spoon jumping through the air and landing. The
animation is carried out by superimposing deformation
animation on the rigid body animation that controls the
jump. The deformation animation uses two FFD blocks
that control the upper and lower halves of the spoon.
These are shown in the illustration as grey transparent
blocks. The idea of this sequence is to emulate a human

SCRIPTING AND ARTISTIC CONTROL IN COMPUTER ANIMATION 131

Jion

0 1 w

Space factor curve

Time factor curnve

Figure 9 Scripting deformation by controlling the movement of points in an FFD box.

Jjump . A human, when jumping has its head thrown
back, and on landing, has its head brought forward by
momentum.

The deformation is applied along the vertical axis
of the FFD block (Figure 9). The required animation of
the block is rotation about the v axis. Additionally since
we are trying to bend the block we need to apply greater
values of rotation angle for increasin w. This is achieved
by using two curves called 'factor’ curves - a space factor
curve and a time factor curve that modify the parameters
of the deforming transformation according to when and
where they are applied.. The space factor curve @(w) is
aligned along the w axis and increases with increasing
w. The higher a point within the FFD block the greater
the value of @ so the more the block gets bent. @(w)=0
ensures that the bottom of the block remains
undeformed. The time factor curve @(t) is set up with a
large negative value at the start corresponding to the
upper spoon being bent backwards, moving through zero
where the block will be undeformed, to a smaller
positive value as the head gets thrown slightly forward.
The deforming transformation for a point (u,v,w) is then
given by:

B = @(w) ()

Animators have found the use of factor curves in
controlling deformation highly intuitive.

5) Conclusions

Full explicit control allows complete artistic freedom.
This can be acheived by using curves as the basis of an
animation language which can then be used in many
animation forms. Because curves are a succint summary
of motion, complex animation involving articulated
structures is possible.

6) References

Baecker, R.M., "Picture Driven Animation",SJICC,
AFIPS Press, Montvale, NJ, 1969, 273-288.

Bezier, P. ,"Numerical Control: Mathematics and
Applications",Wiley, 1972.

Catmull, E., "A System for Computer Generated
Movies", Proc. Annual Conference, ACM, New York,
NY, Aug 1972, 422-431.

Foley, J.D., Van Dam, A, Feiner, S.K. and Hughes, J.F.
"Computer Graphics: Principles and Practice”, Addison-
Wesley, Reading, MASS, 1990

Magenat-Thalmann, N., and Thalmann, D.,

"Computer Animation: Theory and Practice",
Springer-Verlag, Toyko, 1985.

Reynolds, C.W., "Computer Animation with Scripts and
Actors", SIGGRAPH '82, 289-296.

SEDE85 Sederburg, S.W. and Parry, S.R.,

"Free Form Deformation of Solid Geometric Models",
SIGGRAPH '86, 151-160.

Watt, A. and Watt, M,

"Advanced Animation and Rendering Techniques"
Addison-Wesley, Wokingham, UK, 1992.

Anais do SIBGRAPI VI, outubro de 1993

132 A. WATT, M. WATT

Figura 4 Figura 8

Anais do SIBGRAPI VI, outubro de 1993

