A Programming Model for User Interface Compositions

A.B. PoTENGY!2
C.J.P. LuceENa?
D.D. Cowan?

Instituto de Matematica Pura e Aplicada
Estrada Dona Castorina 110, Rio de Janeiro
22460, RJ, Brazil
potengyQ@visgraf.impa.br

2Depto. de Informatica
Pontificia Universidade Catdlica
Rio de Janeiro, 22460, RJ, Brazil

lucenaQinf.pub-rio.br

3Computer Science Department
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
dcowan@watcsg.uwaterloo.ca

Abstract. Current improvements in software development techniques are changing the concept
of reusability to a more general approach. In this context, the Object Oriented Model has been
providing great advances to the programming process. One advance is the reuse of objects by
abstract operations like aggregation/decomposition and by generalization/specialization, in con-
trast with the old fashioned “cut and paste then modify” paradigm of Structured Programming.
The Abstract Data View (ADV) model is a clean alternative for reusing Abstract Data Types and
their Graphics User Interfaces. This article discusses mechanisms for reusing user interfaces by
compositions, as well as development environments designed to support construction of GUIs. An
ADV-based graphics user interface development environment is described, providing a basic frame-
work for experiments. We are interested in identifying the benefits of applying the ADV model to

a programining process.
P

1 Introduction

A Graphics User Interface Development Environment
(GUIDE) is a set of tools designed to improve pro-
grammer’s performance in creating high quality in-
teractive applications. Such an environment (see fig-
ure 1) typically receives a GUI design and an ap-
plication code as input and returns a well behaved
interactive application as output.

Although command-driven applications can be
considered to be interactive, once they establish some
level of dialog with the user, we are concerned with
user-friendly window applications. Most GUIDE sys-
tems available today were created to solve a set of
problems raised by the increase of user needs. This
set of problems typically involves the integration of
multiple media (text, graphics, images, video and
audio) with underlying applications (such as DBMS
and spreadsheets) into a single tool, allowing both
user input and media output. We describe below

simple examples of what we call composite interac-
tive documents (integrating only text, graphics and
underlying applications). These problems were ad-
dressed in [8], where solutions are presented based
on the Abstract Data View model described later.

1.1 Composite Interactive Documents
1.1.1 Example 1

Consider a simple composite interactive document
requiring a picture in the middle of text. We open
a window of a drawing program inside the text area
and proceed to produce a picture using the usual
draw commands. The window containing the text
document and the text document are called the en-
closing window and the enclosing document, respec-
tively; similarly, the drawing window and the draw-
ing document are called the enclosing window and
enclosing document. Of course, these definitions ap-

Anais do SIBGRAPI V (1992) 177-186

178

Designer Application code

Design

User Interface

Development Environment

Interactive Application

Figure 1: User Interface Development Environment

ply recursively; an enclosed document can become an
enclosing document, since it can contain an enclosed
window. The enclosed window can be manipulated
in the usual way within the enclosing document, that
is it can be opened, closed, moved and resized.

In this example the enclosed document displays
the user interface of the drawing package. The en-
closing and enclosed documents are independent, as
they do not need to communicate their contents to
each other: the drawing does not affect the text, and
the text does not affect the drawing. However, the
enclosing document and the enclosing window must
communicate some kinds of controls, since both can
be affected by commands to open, close, resize, move
or print the enclosed window.

1.1.2 Example 2

Consider a document where a table representing the
result of an SQL database is to be placed in an en-
closed window within the enclosed document. We
open an SQL query window on the screen for input
(not in the enclosing document), where we type the
query, and also an enclosed window in the document
for the result of the query.

This example requires that both an input and
output window be opened for the SQL query, the
output window being an enclosed window. The out-
put from the SQL query must be directed to the
enclosed window.

Anais do SIBGRAPI V, novembro de 1992

A. B. POTENGY, C. J. P. LUCENA, D. D. COWAN

Example 3

In this example the enclosing document is a spread-
sheet with one cell containing a SQL database query
that produces a single numerical result. Comput-
ing numbers by a SQL server and placing it in the
spreadsheet data structure could cause a recalcu-
lation of the contents of several other cells in the
spreadsheet. The cell containing the query is both
the enclosed window and the enclosed document.
When the cell with the query is recognized as
containing a foreign element, it is passed to the ap-
propriate application for computation. Upon com-
pletion of the calculation, the results of the query
are returned to the spreadsheet data structure. The
interaction is strictly among the SQL server, the
spreadsheet data structure, and the program; the
SQL server does not link to the spreadsheet user
interface. The solution to this problem is already
solved in several commercial software systems.

1.2 Multi-level Graph Editor

Another application of interest is what we call a
multi-level graph editor. A simple graph editor al-
lows users to build graph diagrams interactively by
grouping simple graphics primitives representing nodes
and links. In a multi-level graph, nodes are actually
anchors to enclosed graphs. For example, if the user
clicks on a node, a new window containing the graph
associated with that node appears on the screen. An-
other way to activate an enclosed graph is by contin-
uously zooming on a node until the associated graph
becomes visible.

This example can be used as a reusable com-
ponent to build applications like Petri-Nets editors
and simulators, Data-Flow-Diagrams Editors, etc.,
as multi-level graph editor subclasses. There are
many graph-representable models in our environment
that can be implemented by changing the constraints
over graph editor subclasses. Some systems allow
this capability, although they do not necessarily ad-
dress this problem as a starting point in their devel-
opment.

1.3 3D Graphics Viewers

The current state-of-the-art GUIDESs enforce the sep-
aration between user interface objects and applica-
tion objects. Such a feature makes it possible, for
example, to associate multiple instances of different
UI objects to the very same instance of application
object. Some objects act on mutually exclusive sub-
sets of the application object members, while others
act on the same data or call the same methods. Hav-
ing multiple instances of user interface objects acting

A PROGRAMMING MODEL FOR USER INTERFACE COMPOSITIONS

on the same instance of application object provides
great flexibility. However, the development of ap-
plications using that kind of facility requires careful
design.

Think of a view as a window where a rendering
algorithm output is displayed. Consider, for exam-
ple, a wire-frame view and a ray-tracing view rep-
resenting a model. Suppose the user is able to pick
a polygon in the model by generating an appropri-
ate event in the view where it is displayed. If the
user performs some operations on this polygon (like
changing its color), there should be a automatic mech-
anism to propagate the effect of the operation to
other views that are associated with the same model.
However, if the user is able to change light source
parameters in the ray-tracing view, these changes
do not need to be propagated to wire-frame views,
whereas it is probably necessary to update other ray-
tracing views.

It is possible to solve these problems with most
systems available today. However, the amount of
work to be spent on the solutions and the quality
of these solutions depend on the quality of the con-
cepts these systems implement. In this article we are
concerned with establishing some concepts for GUI
construction by composition, concentrating our at-
tention on reuse aspects.

1.4 Specifying GUIs

Most current systems offer an integrated environ-
ment providing interactive GUI editors, GUI descrip-
tion languages, code translators, and toolkit libraries.
In the following subsections we present an overview
of some systems that offer GUI development facili-
ties.

The programmer can use the GUI editor to gen-
erate a GUI specification file, which is generally in a
declarative description language, or create it directly
by text editing. The specification code in this file is
translated into a specification in a procedural lan-
guage or into an intermediate code by a translator.
This new code is bound to the toolkit library and the
application code to form an executable application
(see figure 2). This process is repeated every time it
is necessary to change the user interface. The toolkit
library must provide routines for the interpretation
of the intermediate code generated by the GUI de-
scription translator.

Specifying user interfaces using a declarative lan-
guage directly is an approach that many program-
mers prefer over interactive editors. Sometimes pro-
grammers feel more comfortable in dealing with tex-
tual information, which gives the illusion of greater
control over the objects.

179

Interactive Application

Figure 2: Integrated GUIDE

Translating the UI description into an interme-
diate code for interpretation has the advantage that
users are able to redefine the UI without having to
recompile any application code. Another advantage
is that the binding process between the application
code and the user interface code is much simpler than
if the programmer were using a programming lan-
guage code generator.

1.5 Motif Overview
1.5.1 UIL and MRM

The User Interface Language (UIL) is a specifica-
tion language for describing the initial state of a
user interface for interactive applications. The spec-
ification describes the objects (such as menus, form
boxes, labels, and pushbuttons) used in the interface
and specifies the functions called when the interface
changes state as a result of user interaction. The
Resource Manager (MRM) consists of library sub-
routines that access UIL at run time and create a
user interface.

A widget, as defined by the Xt Intrinsics, is a
user-interface component consisting of data struc-
tures and of a set of procedures that act on those
data structures. The UIL specifies the widgets, gad-
gets, and compound objects (objects created from
widgets and gadgets) that make up the interface. It
also identifies the subroutines to be called whenever
the interface changes state as a result of user interac-
tion. The MRM creates widgets based on definitions

Anais do SIBGRAPI V, novembro de 1992

180

obtained from one or more User Interface Definition
(UID) files generated by the UIL Compiler.

The MRM is able to create multiple instances of
widget classes defined in the UID files. Thisis an im-
portant feature that makes it possible to implement
a clean solution for the 3D Graphics Viewer problem,
for example. Unfortunately the UIL does not offer
nice inheritance mechanisms. But it may not be too
expensive to enhance the language to provide such
capability.

1.5.2 AIXwindows Interface Composer (AIC)

The AIXwindows Interface Composer is an editor
allowing developers to interactively create and test
Motif graphics user interfaces. This GUI editor of-
fers C and UIL code generation. The Xt intrinsics
enables defining a new widget class as a subclass of
an existing widget class. AIC can be extended to
support any new widget classes.

1.6 InterViews

Interviews [7] is a software system for window-based
applications. Like most user environments, Inter-
Views is object-oriented in that components such as
windows, buttons, menus, and documents are active
elements with inherited behavior. The name Inter-
Views comes from the idea of a user interface object
presenting an interactive view of some data. For ex-
ample, a text editor implements an interactive view
of the contents of a text file. The goal of InterViews
is to facilitate the composition of user interfaces from
reusable components.

1.6.1 Interface Builder

InterViews contains Ibuild, a tool for interactively
building a user interface. Ibuild allows the user to
arrange and connect interactors and scenes, generate
C++ code for the interface, compile the code and
execute the resulting mini-application. To complete
the application, the generated code defines a base
class from which subclasses can be written. This
approach allows the interface to be modified later
without affecting the subclasses.

1.7 Serpent

Serpent [13] is a user interface management system
(UIMS) being developed at the Software Engineering
Institute (SEI). Serpent supports the development
and implementation of user interfaces, providing an
editor to specify the user interface and a runtime
system enabling communication between the appli-
cation and the user.

Anais do SIBGRAPI V, novembro de 1992

A. B. POTENGY, C. J. P. LUCENA, D. D. COWAN

Serpent supports the incremental development
of the user interface from prototyping through pro-
duction and maintenance. This is done by provid-
ing an interactive layout editor for prototyping, by
integrating the layout editor with a dynamic spec-
ification language for production and maintenance,
and by having an open architecture so that new user
interface functionality can be added during the main-
tenance phase.

1.8 Andrew Toolkit

The Andrew Toolkit [10] (ATK) is an object-oriented
system designed to provide a foundation on which
a large number of diverse user-interface applications
can be developed. With the Toolkit, the programmer
can piece together components such as text, buttons,
and scroll bars to form more complex components.
It also allows for the embedding of components in-
side other components, such as tables inside text or
drawings inside of tables. Some of the components
included in the Toolkit are multi-font text, tables,
spreadsheets, drawings, equations, rasters, and sim-
ple animations. The Toolkit is written in C, using
a simple preprocessor to provide an object-oriented
environment.

The original concept of the Andrew Toolkit came
from discussions about the development of a text ed-
itor allowing the user to embed and edit other com-
ponents, such as tables, drawings, and rasters. This
is the composite editor problem exemplified above.
To solve this problem, ATK offers two abstractions:
data objects and views. These concepts are very
similar to the abstract data types and abstract data
views we present in this document.

1.8.1 The Basic Toolkit Objects: Data Ob-
Jects and Views

Data objects and views are the Toolkit’s basic ob-
ject types; a Toolkit component is usually made of
a view/data object pair. While the data object con-
tains information to be displayed, the view contains
information about how data is to be displayed and
how the user is to manipulate the data object. For
example, the text data object contains the actual
characters, style information, and pointers to em-
bedded data objects, as well as ways to alter the
data, such as inserting and deleting characters. The
text view consists of information such as the location
of the text, the currently visible portion of the text,
and what piece of text is currently selected. The text
view provides ways to draw the text, handle various
input events, and manipulate the visual representa-
tion of the text.

A PROGRAMMING MODEL FOR USER INTERFACE COMPOSITIONS

The view/data object distinction exists to pro-
vide a system where multiple views can simultane-
ously display information contained in a single data
object. There may also be two different types of
views displaying information contained in a single
data object.

1.9 OpenWindows Developer’s Guide

The OpenWindows Developers’s Guide is a GUIDE
designed to improve GUI development in the Open-
Windows system. It consists of an interactive editor
(guide), a Graphical Interface Language (GIL), and
Language translators (gxv and gxv++ - the former
translates GIL into C code and the latter translates
GIL into C++ code).

The guide interactive editor enables program-
mers to create, modify and test user interfaces very
easily, and generate GIL code. The language proces-
sors translate the GIL code output from the editor
into C or C++ code calling the XView library. The
OpenWindows Developer’s Guide encourages sepa-
ration between application objects and user inter-
face objects. By using the C++ code generator fea-
ture, programmers can build UI objects inheriting
the classes created by gxv++. As a consequence, it
is possible to change the user interface without any
changes to the existing application code. The gxv++
creates a class for each window in the user interface.
Each of these classes contain XView objects as mem-
bers.

1.10 GUIIZER

The GUIIZER is a GUIDE designed to offer some
facilities in GUI development work and system cus-
tomization. The first version of GUIIZER, devel-
oped by A. Potengy, D. Marchesin, and B. Plohr at
the State University of New York at Stony Brook,
is informally specified in [11]. We have been apply-
ing this tool to nontrivial applications since work on
its beta version was completed in February, 1990.
The initial application was a set of simulation tools
for petroleum recovery, large applications created fol-
lowing the structured model of programming.

Since this model did not provide enough global
control and evolvability it was decided to adopt the
Object Oriented model [16] [17] [9], trying to pre-
serve the existing tools (like the GUIIZER) as much
as possible. Experience showed that although the
GUIIZER gives a lot of power in GUI development
and maintainability when applied to traditional struc-
tured fashion “good-apps”, it is not general enough
to offer full support to object orientation, even though
its basic components were object oriented. We needed

181

to adopt another GUIDE for our purposes.

The basic reason we had problems applying the
GUIIZER in OOP is that it was an object-oriented
tool designed to support structured programming. In
fact, the whole architecture of this tool reflects the
way “structured good-apps” should behave in gen-
eral. For the GUIIZER, an application is a unique
object, and the only way it can be accessed is through
certain standard public member functions. The GUI
for an application is specified in a GUISPEC file
(GUISPEC is a specification language for GUIs). Dur-
ing the application initialization, the tool reads this
file and builds its GUIL.

This approach is fine if one considers applica-
tions as finite sets of routines and their GUIs com-
municate with them by calling these routines. But
this is not the case with object oriented “good-apps”,
when an application is defined as a set of abstract
data typed objects and the GUI communicates through
methods. Actually one wants more. A GUI specifi-
cation should exist for each object class to which the
user is allowed access, and the specification should
be flexible enough to reflect the way the class was
defined. If a class was defined using inheritance,
composition, referencing or whatever, the GUI for
that class should be specified using a very similar
mechanism. Finally, one does not want to be forced
to locate that specification in a separate single file,
away from the class definition.

This is what Abstract Data Views (ADV) [1]
is all about. Our goal was then to bring the GUI-
IZER into the ADV model described in the next sec-
tion and to identify the long-term benefits of doing
it. The main idea was to build a simple ADV-based
GUIDE, reusing the objects of GUIIZER, and to ex-
periment with user interface design by compositions.
We did not simply adopt other available GUIDEs
(like the ones above) because we needed to keep a
clear separation between the concepts around the de-
sign and the implementation. After establishing the
appropriate concepts, we would be able to choose a
system to use, or to develop one if needed.

The new GUIDE developed contains the classes
present in the GUIIZER and a set of new classes to
support the ADV model. The classes present in the
GUIIZER implement the Open Look hierarchy using
the XView toolkit [4] on X-Windows [5] [14] [12]
[18](called GUIObjects) and some other related to
GUISPEC management (Parser, Scanner, Definition,
Guispec, etc.). The ability to deal with GUI specifi-
cations independently of any programming language
is still a useful feature and was preserved. The new
classes are composed of general definitions of ADV
and Interactive abstract classes.

Anais do SIBGRAPI V, novembro de 1992

182

The ADV based GUIDE was implemented using
the C++ language [15] [3] [2] and the X View toolkit.
A simple example is provided to show its basic capa-
bilities. Current object oriented “good-apps” should
be adapted to the ADV model with very low cost. It
would be interesting to make experiments to deter-
mine the ADV model behavior in adapting general
object oriented applications to its context.

2 The ADV concept

All the systems mentioned above have two funda-
mental ideas in common: the separation of appli-
cation objects from their graphics user interfaces,
and the presence of some kind of object/view pairs.
These ideas are combined in what we call the ADV
Model.

An Abstract Data View [1] (ADV) might be
called a visual realization of an abstract data type
(ADT) because it has many of the properties of an
ADT. However, the ADV is restricted to the user
interface aspects of applications. An ADV is essen-
tially a “visual object”, that is, an object which has a
graphical representation in a window, an entity with
which a user can interact through devices such as
the mouse and the keyboard. A visual object repre-
sents graphically an object of an application which,
otherwise, has no “external representation”.

Moreover, ADVs can be nested. The nesting ca-
pability shows itself on the screen, where each ADV
is drawn inside its parent region. This feature is a
generalization of the concept of subwindow. Among
other advantages over the “old” mechanism ADVs
are form-free, that is, they do not necessarily have
the conventional rectangular shape.

Nesting also allows for an external ADV (as-
sociated with a different application) to be used as
a component by another ADV. This allows, for in-
stance, the insertion of images generated by a draw-
package inside text being manipulated in a text edi-
tor, in a way the user can actually interact with the
images.

ADVs can also be specialized. An existing ADV
for a ADT can be used as a basis for defining an-
other ADV for that ADT, or ADVs for the ADT’s
subclasses. A GUIDE supporting ADVs should en-
courage inheritance abstractions for this kind of com-
position. This characteristic allows the programmer
to apply to the ADVs the same abstract composition
operations applied to the application ADTs.

An ADV is similar to an ADT in that an ADV
also possesses an internal state and a set of oper-
ations. The set of operations of an ADV are the
ones found in general-purpose GUIs: operations to
manage input events such as mouse movements, and

Anais do SIBGRAPI V, novembro de 1992

A. B. POTENGY, C. J. P. LUCENA, D. D. COWAN

clicks, and to perform output such as drawing, re-
sizing and scrolling. The ADV approach assumes
that the application ADTs never include operations
related to user interface aspects of the applications.
The ADV represents all user interface aspects of ADTs.

Each ADV may or may not be connected to an
object of an application. The correspondence is spe-
cially useful in WYSIWYG! interfaces, because it al-
lows the user to see and manipulate every individual
object inside a program. ADTs also may be discon-
nected from a view. Figure 3 illustrates the ADV x
ADT relation and a clear separation between visual
and application objects.

o @ 0 ©@

@ @

Yy 9O 8 e
2 S

Figure 3: ADV X ADT

3 Description of an ADV/GUIDE

This section describes the basic structure of a GUI
toolkit library designed to support the ADV concept.
Most objects in the toolkit are based on the Open
Look [6] standard. These objects inherited their ba-
sic funcionality from the ones allready available in
the XView toolkit. Some additional features were
added to make the new objects suitable for the com-
position mechanisms like inheritance and aggrega-
tion. This library is composed by a set of objects
that realize the user interface. Inheritance mecha-
nisms are widely used to provide nice opportunities
for extensions. Figure 4 shows the inheritance tree
for the some relevant objects. An example of how
to use this library is shown in the next section. The
objects we used in the example (see Figure 6) are:

3.1 GUI Objects

The highest level class in the GUI system is GUIOb-
Ject. There are no instances of pure GUIObjects,
since it is an abstract class. Every class with the sin-
gle purpose of establishing graphics interaction be-

IWYSIWYG stands for What You See Is What You Get

A PROGRAMMING MODEL FOR USER INTERFACE COMPOSITIONS

MenuButton

[~ =
[J<— ———

ol
i

Figure 4: GUI Objects Inheritance Structure

tween users and applications will be called a GUIOb-
ject. For example, ADVs, as well as Menus, are
GUIObjects

3.2 Window Objects

WindowObjects are objects which can be placed in
Windows. These objects are listed in the Window-
Body. Every WindowObject is associated with a
Window, i.e., belongs to a WindowBody set of el-
ements. Every Window has a WindowBody, and
when a WindowObject is created it is included in
it.

3.3 Buttons

A Button is a WindowObject associated with an “ac-
tion”; it performs an operation according to an event.
When the user “clicks” a Button, a notify procedure
is called (let us use the name action to mean a notify
procedure). Like other GUIObjects it is able to de-
scribe itself in GUISPEC language. The MenuBut-
ton and the WindowButton are Buttons too. The
MenuButton has a reference to a Menu which dis-
played when the mouse menu button is pressed, and
starts a default action if “clicked”. The WindowBut-
ton makes a Window appear when “clicked”.

183

3.4 Settings

There is a whole class of WindowObjects called Set-
tings. Those objects are typically associated with
object attributes, in contrast to Buttons which are
always associated with object methods. Typically, a
Setting has a value associated with it; this value is
directly given by the user. For example, the Num-
Field and the TextField have their values typed in.
And the Slider has its value defined by dragging a
slider cursor.

-
3.5 ADYV Objects

The ADV-model related classes are simple abstract
classes application programmers can use by plugging
their classes in (here plugging A into B means mak-
ing A a subclass of B). Each class, in the Abstract
Data Type (ADT) range, which is supposed to com-
municate with the user via ADVs inherits the proper-
ties of the general Interactive class; thus we say that
an instance of this class is also an Interactive object.
The ADV subclass is specified reflecting the Inter-
active subclass structure, obviously providing access
only to its public members. Figure 5 illustrates the
concept.

Figure 5: ADV x ADT revised

The ADV class contains at least a reference to a
default enclosing Window (a Window is a GUIObject
subclass, present in the current GUIIZER version),
and a reference to an Interactive object. The ADV is

Anais do SIBGRAPI V, novembro de 1992

184

a free form enclosed interface object (as discussed in
the introduction examples - section 1). Each instance
of ADV is related only to one Interactive object at a
time, but many ADV objects can be related to the
same Interactive object at the same time. For ex-
ample, in Figure 5, the A_ADV instance A_ADV; is
associated with the instance A; of A. The instance
B_ADV; sometimes is linked to B; and sometimes
to By. There are also two instances of C_ADV class
associated with the same instance C; of C. Of course
there must be a mechanism to tell the ADV to which
instance it is related. However, because the way in-
stances are stored is application dependent, the ap-
plication designer will be in charge of specifying the
association mechanism.

There is an ADV method to update the GUIOb-
Jects contained in the corresponding ADV object when
it is asked to. When an Interactive object is changed
by an ADV, by itself, or by any object internal to the
application, it will send a message to all associated
ADVs, requesting that they update themselves. To
do this, the Interactive class contains a list of refer-
ences to ADV objects. Our experience also tells us
that ADVs should be able to send messages to each
other. This only makes sense on ADVs that are re-
lated to the same object (directly or indirectly), so
that the best object to manage the message traffic is
the Interactive object. A great improvement is that
an ADV subclass is as general as the class it is as-
sociated with, providing nice reusability possibilities
by applying on ADVs the same abstract operations
applied on ADTs. For example, as in Figure 5, class
D is a subclass of B and C, since its correspondent
ADV is built in the same way, the class D_ADV is a
subclass of BLADV and C_ADV .

4 Writing ADV based Applications

This section presents a very simple example using the
ADV objects described above (see Figure 6). Figure
7 illustrates a view of a trivial class called A. A is
an interactive subclass and is composed by a single
integer component called Aattrl. The only method
for this class is Print.

This class can be easely implemented in C++ by
making use of inheritance. Once class A is defined
as an Interactive subclass, the invariant properties of
the latter are preserved. The operation Print can be
implemented as an A method. Doing this, the Print
method does not need to receive arguments because
it is already associated with an instance of class A.

The Abstract Data View for class A is composed
by a Slider subclass (for A’s integer attribute) and
a Button subclass (for A’s Print method). These two
GUIObject subclasses are defined as A_A DV_Members.

Anais do SIBGRAPI V, novembro de 1992

A. B. POTENGY, C. J. P. LUCENA, D. D. COWAN

A

s ﬂ:
Aattrl : 23 10 e S0

Figure 7: An A_ADV instance

The operations on these classes are very simple, since
they inherited the GUIIZER objects functionality. If
we were using a programming language without in-
heritance and polymorphism, interface coding would
be necessary to simulate these mechanisms. In fact
the Slider is an ADV for a “class Integer” and the
Button is an ADV for a “class Method”. These two
ADVs (not Windows) are aggregated to form the
ADV for class A, both being enclosed in a single
Window with label “A”.

Figure 8 shows a view of another trivial class
called B. B was implemented by mimicing the def-
inition of A. B_ADV (Figure 8) was also built this
way.

Having the two trivial classes and their ADVs
shown above, we are able to perform many kinds
of composition experiments. For example, C is an
aggregate with components A and B. Its abstract
Data View (C_ADV) is also defined as an aggregate
with components A_ADV and B_ADV (see Figure
9).

Note that to define the ADV for class C we were
not concerned with the contents of A_ADV and
B_ADV. The definition of C_ADV is a simple com-
position just like C. Again, the basic structure of
the abstract data type is preserved in its graphics

A PROGRAMMING MODEL FOR USER INTERFACE COMPOSITIONS

©

Battrl : 33

Figure 9: A C_ADV instance

representation (or abstract data view). Another in-
teresting fact is that C++ provides a nice syntax
tool to implement ADVs. Once we defined the class
C_ADV it was trivial to create a new visual rep-
resentation for class C' by just defining a C_ADV
subclass with a different visual implementation (see
Figure 10).

Now consider a multiple inheritance composi-
tion of A and B to build a class called D, and with

one more attribute Dattrl and another method Print.

The class D_ADYV is implemented the very same way,
by inheriting A_ADV and B_ADV . Figure 11 shows
the resulting ADV. This is another powerful tool the
ADV concept provides. Almost no additional code
is needed to implement an inherited ADV.

The main idea here is to show that programming
within the ADV model may be considered as a two
step activity. First, define application objects with-
out paying attention to their GUIs. Once there is
a well defined environment model it is time to build
its visual representation, the GUIL. If the model is
composed of a set of composite abstract data types,
its visual representation will be a set of composite
abstract data views consistent with the underlying
model.

5 Conclusion

A programming process (ADV model) was presented
as a standard way of building user interfaces by in-

185

Cattr1 : 2Q, 10 .

Components’ ADV’s

Members of A:

Aattr1 : 15 10 e }——o—— S0
L} L ' L)]

Members of B:
Battr1l : 25 10

]

C Method:

]
Aattri:1Q, 10

Battr1 : 20 10

Dattr1 : 30 10 -

Figure 11: A D_ADV instance

tensive use of compositions. Such operations (like
aggregation and inheritance) offer great reusability,
keeping the GUI structure consistent with the asso-
ciated application objects.

The example presented here made use of very
simple classes. This approach is appropriate for study-
ing composition possibilities. Now suppose there is
a very large system containing thousands of complex
classes without having consistent graphics user in-
terfaces for them. How much effort would be spent
in developing non trivial user friendly applications?
In the ADV model, when a class is constructed, so
is its GUI. After having combined the classes in the
application, one can build the application GUI using
the very same kinds of combinations we used before
for the ADTs.

Anais do SIBGRAPI V, novembro de 1992

186

Two other important results from the use of
ADVs is GUI compatibility and encapsulation. Within
this programming process, large systems (including
their GUIs) can be combined using abstract oper-
ations without worrying about their internal struc-
tures. We believe that an ADV/GUIDE is poten-
tially an apropriate tool for programmers whose goal
is the fast development of nice reusable user friendly
object oriented applications.

References

1. D. D. Cowan, R. Ierusalimschy, C. J. P. Lucena
and T. M. Stepien, Abstract Data Views, University
of Waterloo, Computer Science Department, Techni-
cal Report , Waterloo, Ontario, February 1992.

2.S. C. Dewhurst and K. T. Stark, Programming
in C++, Prentice Hall, 1989.

3. B. Eckel, Using C++, Osborne/McGraw-Hill,
1989.

4. Heller, Dougherty and Nyr, Overview of X View
Programming, O’Reilly & Associates Inc..

5. O. Jones, Introduction to the X Window Sys-
tem, Prentice-Hall International Editions, 1989.

6. J. Kannegaard, Open Look Industry / Qutlook
/ Overview, Sun Technology (Autumn 1988).

7. M. A. Linton, P. R. Calder, J. A. Interrante,
S. Tang and J. M. Vlissides, InterViews Reference
Manual, The Board of Trustees of the Leland Stan-
ford Junior University, October 1991.

8. C. J. P. Lucena, D. D. Cowan, R. Ierusal-
imschy and T. M. Stepien, Application Integration:
Constructing Composite Applications from Interac-
tive Components, University of Waterloo, Computer
Science Department, Technical Report , Waterloo,
Ontario, March 1992.

9. M. Mullin, Object Oriented Program Design
With Examples in C++, Addison-Wesley, 1989.

10. A. J. Palay, W. J. Hansen, M. L. Kazar,
M. Sherman, M. G. Wadlow, T. P. Neuendorffer, Z.
Stern, M. Bader and T. Peters, The Andrew Toolkit:

An Overview, Information Technology Center, Carnegie

Mellon University, Pittsburg, PA.

11. A. B. Potengy, GUIIZER: Um Ambiente de
Desenvolvimento de Interfaces Gréficas com Usudrio,
Instituto Militar de Engenharia, Secdao de Engen-
haria de Sistemas, Projeto de Fim de Curso, Rio de
Janeiro, October 1991.

12. D. Pountain, The X Window System , Byte
(January 1989).

Anais do SIBGRAPI V, novembro de 1992

A. B. POTENGY, C. J. P. LUCENA, D. D. COWAN

13. Software Engineering Institute, Carnegie Mel-
lon University, Serpent Overview, Pittsburg, PA, May
1991.

14. A. Southerton, The Story of X , Supplement
to UnixWorld (1989).

15. B. Stroustrup, The C++ Programming Lan-
guage, Addison-Wesley, 1986.

16. T. Takahashi and H. K. E. Liesenberg, Pro-
gramacao Orientada a Objetos, VII Escola de Com-
putagao, Sao Paulo, 1990.

17. R. Wirfs-Brock, B. Wilkerson and L. Wiener,
Designing Object-Oriented Software, Prentice Hall,
New Jersey, 1990.

18. T. Yager, X Window System on the March,
Byte (October 1989).

