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Abstract. A method to fit algebraic curves and surfaces using a data independent con-

straint invariant to rotations and translations is presented. This constraint corresponds to

the generalization of the Bockstein constraint to algebraic curves of arbitrary order p > 1

in 2 — D space, and algebraic surfaces of arbitrary order p > 1 in N-dimensional real

space, with N > 3. The fitting is solved using standard eingenvector-eingenvalue results.

1. Introduction

The use of algebraic surfaces has become quite
important since it permits modeling complicated
forms, as they may arise in problems of medical
imaging, robotics, etc., [5]. Algebraic curves and
surfaces are an attractive model because they
simply use polynomials in the involved variables,
and hence they are simple to deal with. An al-
gebraic curve or surface is given implicitly by
equating to zero a polynomial on the given vari-
ables. The most simple examples are the conic
curves: algebraic polynomials of second degree
in two variables; and the quadric surfaces: al-
gebraic polynomials of second degree in three

variables.

When data is obtained from different loca-
tions as in the case of stereo vision, or when the
‘data corresponds to a moving object, one has
several image frames corresponding to the same
object taken from different view points. In such
cases, if we assume that these images correspond
to a rigid object, the images correspond to trans-

lations and rotations in 3D space of the object,

[4].

Two models may be assumed for the cam-
era: either the camera performs an orthogonal
projection on the image plane, or it performs a
perspective projection on the image plane. The
first model is adequate if the objects are far away
with respect to the focal distance of the lens of
the camera. But for both models, the algebraic
character of the surface or the curve when pro-

jected on the image plane is not altered.

Though there are several different tech-
niques for algebraic curve and surface fitting,
one of the most popular is the one that simply
minimizes the sum of the squares of the value of
the algebraic polynomial for each data point. If
the data point lie exactly on the curve, the al-
gebraic polynomial equals zero. Hence the value
of the algebraic polynomial measures some sort
of “distance” to the curve, when the point does
not lies exactly on the curve. Several variants
have been proposed so that this “distance” ef-
fectively corresponds to the Euclidean distance

from the point to the curve. But, the method
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described previously has the advantage of sim-
plicity, and it is very attractive when thousands
of points have to be analyzed, or when the de-
gree of the surface is high. Though the usual
problem in computer vision is to deal with pla-
nar curves ([3]) and surfaces in 3-D space ([4]),
called here algebraic surfaces of dimension two
and three respectively, the interest of algebraic
surfaces of higher dimension is important in sta-

tistical analysis and pattern recognition.

There is a first main reason to introduce
a constraint among the coefficients of the alge-
braic curve. For the error measure introduced
above, if all the coefficients are zero, then the
error measure is trivially equal to zero. Hence,
some form of constraint has to be introduced so

that it forces not all of the coefficients to be zero.

Bookstein ([2]) introduced for conic curves,
a constraint which guarantees that the obtained
coefficients are invariant to rotations and trans-
That is, if the data is

fitted using different reference frames, the cor-

lations of the curves.

responding curves have compatible coefficients
that transforms according to the corresponding
translations and rotations of the reference frame.
The Bookstein constraint is data independent.
Data dependent constraints have the advantage
of better fitting algebraic surfaces when the or-
der of the surfaces are not known a priori. The
main advantage of the data independent con-
straint is the simplicity of the algorithm that

obtains the surface coefficients.

Such a constraint was later generalized to
quadric surfaces independently, by Bookstein
and this author, (see references in [5]). In [5], the
Bookstein constraint was generalized by this au-

thor, to algebraic surfaces of arbitrary number
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or dimensions through the use of tensor prod-
ucts, in the form of matrix Kronecker products,
(1]. In [5] an invariant form of the coefficients
of the monomials of degree p (where p is the or-
der of the algebraic surface) was obtained, which
generalizes the Bookstein constraint.

The constraint obtained is quadratic in the
coefficients of the algebraic surface. Since also
the error measure is quadratic in the coefficients
of the algebraic surface, a closed form solution in
the form of an eigenvalue, eigenvector problem

is obtained.

2. Algebraic Surfaces

An algebraic surface in R", (the N-dimensional
real space), with NV > 2, is given implicitly by a
polynomial in the variables z1,z,,...,zxn equal

to zero. An example of such a surface is:
(1)  azizizd +bzizszz +cza+d=0

The degree of each monomial is defined as the
sum of the degrees of each of the variables
T1,Z3,...,ZN. In (1) the degree of the first
monomial is 9, 4 for the second, 1 for the third,
and 0 for the fourth. The degree of the algebraic
surface is the highest degree p corresponding to
a non-zero coefficient. For the surface defined in
(1), the degree of the surface is 9 assuming the
coefficient a is non-zero.

The following properties of Kronecker prod-
ucts will be used, [1], where the symbol # de-

notes the Kronecker product:
@ (A#B)" = BT#AT,
(A#B)(C#D) = (AC)#(BD),

where we assume that the matrices A, B, C and
D have matching dimensions, and where the

upper-script T denotes matrix transposition.
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Hence for a rotation matrix @ (i.e., a matrix
such that QTQ =

Q#Q# ---#Q is a rotation matrix.

For an arbitrary vector or matrix A, define

I), we readily obtain that

A#P as p times the repeated Kronecker product
of A,

p times

A#”zA#A#---#A.

Define z as the N x 1 column vector con-
taining the N variables of the curve or surface

in RV i.e.,

T

8 = [y By 05 TN

Define Z as the (N 4+ 1) X 1 column vector:
i’ =(z").

Call:

#p

(3) y=2z% and §=

18

Hence, y is a N? x 1 column vector, and § is a
(N 4+ 1)? x 1 column vector.

Then any algebraic surface of degree p in N
variables, (or curve of degree p in two variables,)

may be written as:

(4) afg=0,

|l

where a is a (N + 1)P x 1 column vector, which
contains the coefficients of the monomials in .

Note that in the vector ¥ many monomials
are repeated, and hence, the effective coefficient
of a particular monomial is defined as the sum of
all the coefficients corresponding to that mono-
mial.

Each monomial of degree k = j; +j2+...+
jn, of the form:

J1 J2 JN
xl 2 . .

is repeated

p!
(5) lge!. Nl (p — k)

times in the vector g, [5].

The total number of different monomials of
degree k in N variables is, [5]:
(k+ N —-1)!
(6) RN 1)
and the total number of different monomials up

to degree p in N variables is, [5]:

P k+ N =1
(7) < KI(N - 1)!

_(p+N)!
- p!N!

Hence, a conic curve in 2-D space (p = 2, N = 2)
has 6 different monomials and then 6 effective
coefficients, and a quadric surface in 3-D space
(p = 2, N = 3) has 10 different monomials and
then 10 effective coefficients.

Equation (4) may be rewritten as:

P
(8) Y gz¥i=0,

=0

where z#% = 1,is a 1 x 1 scalar.
Under a rotation of coordinates z' = Qz,
we obtain:
T — Tt T
&,z =g (@1 2')**
T T r¥°
=g (@*7) 2’

T ,#p
! !
=a,z ,

where the results of (2) were used, with:
(9) a, = Q*Pa,.

where Q#P is an orthogonal matrix, as previ-
ously explained. Note that a;, is the vector con-
taining the new coefficients of order p of the sur-

face when referred to the new coordinates z'.
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3. Translation and rotation invariant data

independent constraint

The translation and rotation invariant cons-
traint is obtained using the following three ob-
servations, ([5]):

1) Under a translation of coordinates, z' =
z + t, (where t is the translation vector),
the coefficients of the monomials of order
p are not changed. In general, the coeffi-
cients of the monomials of order less than p
are altered under translations,

2) Under a rotation of coordinates ' = Qz,
(where @Q is a rotation matrix, i.e., a matrix
such that QTQ = I), the new coefficients
of the monomials of order p depend on the
rotation matrix ¢, and the old coefficients
of monomials of order p only,

3) If in the vector a, we take the coefficients
corresponding to identical monomials to be
equal for each group of monomials, then
the vector a’ obtained after rotation from
(9), has the corresponding entties equal, for
each of the different groups of monomials.

As an example, consider the case where p = 3,
and N = 2. The monomials of order p in y (see
(3)) are:

3 2 2 2
Ty, T1T2, T122Z1, T1T5, ITaZy,

3

TyT1Z9, z%zl and z3,

together with the corresponding coefficients a;,
az, ..., ag. Hence if we take a; = a3 = as
and a4 = ag = a7, after rotation it turns that
a) = aj = a} and a) = af = a).

Note that, observation 1) above is readily
obtained from (8). Observation 2), is obtained

from (9).
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As to obtain the constraint, from (9):

T
QI @

T T _ T
P =p = gp (Q#p) Q#pgp - ng

-
This result together with observation 1) shows

that:
(10) a, @, = ala

is an invariant constraint on the coefficients un-
der rotations and translations of the coordi-
nates.

Equation (10) together with observation 3)
above, is the generalization of the Bookstein
constraint to curves of degree p in two variables,
and surfaces of degree p in three or more vari-

ables.

4. Minimization Procedure

The problem to solve is, given N data points
in RV, to try to find the best coefficients of a
surface in RY, of a given degree p, using least
squares, such that the coefficients found are in-
variant to translations and rotations of the co-
ordinate system.

Define z as the vector obtained from j as
defined in (3), where all the repeated monomials
except one are deleted, and observe that these
monomials may be deleted in such a way that
the remaining monomials in y are ordered in
non-increasing degree. The number of entries
in 2, is then given by (7). Hence we may split 2z

in two vectors z’ and 2'":
(11) £T s (él g" ),

where z' contains the monomials of degree p
only, and 2" contains the monomials of degree

less than p. The number of entries of 2’ is given
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by (6) for £ = p. Define b as the vector obtained
from a where the coefficients corresponding to
the deleted monomials of § are deleted and the
remaining coefficients are multiplied by the fac-
tors given in (5). Accordingly b’ is the vector
obtained from b corresponding to the scaled co-
efficients of order p only, and note that none is
repeated. Hence we may split the vector bin the

two vectors b’ and b":

(12) QT = (QITI_)IIT)’

where b" contains scaled coefficients correspond-
ing to monomials of degree less than p. Note
that the dimensions of 2z’ and b’ are the same,
as well as those of 2" and b".

With these definitions, equation (4) be-

comes:
(13) b7z =0,

and the constraint of (10), together with obser-

vation 3), becomes:

(14) ¥ DY =1.

which has been arbitrarily equated to one, and
where the matrix D is a diagonal matrix whose
coefficients are the inverses of the scale factors
of the corresponding scaled coefficients.

Given a set of M data points z;, for : =
1,2,...,M, first obtain the corresponding vec-
tors z; as previously explained. In order to find
the coefficients that best fit the data points, the
least squares problem is, minimize (see (13)):

M
(15) e=> (b7z)",
i=1

subject to the constraint (14):

(16) ¥ Db =1

The minimization of (15) subject to (16) is now
solved analogously as in [2], [5], [6], as follows.
Using (11) and (12), from (15) one obtains:

(17) e = Q,T A_b_’ + Qb_ITBQ” +Q”TCQ”,

where:

i=1
M T
_ § : 1_n
B - Ezéz
=1
M T
_E : "_n
C= Z; 2
i=1

Introducing a Lagrange multiplier L in (17) to
take in account (16), equivalently minimize the

unconstrained problem:

E — QITAQI + QQ,TBQ,I+

(18) +Q"TCQ” _ LLJ’T DI_)I‘

The solution for (18) is:

(19) b' = ~Cc BT,
and
(20) (A= BC™'BT)y = LDb

Matrix C in (19) and (20) has no inverse if the
data lies exactly on an algebraic surface of de-
gree less than p, since then, there would exist a

vector b such that:
T
B Ch! =0

and then the corresponding vector b’ could be
taken as the null vector, hence satisfying (15)

with e = 0.
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Call p the matrix on the left hand side of
(20). Taking an arbitrary vector b, and corre-

spondingly taking:
Qg = —C_IBTI—)(,)’
and substituting in (17), one obtains:

(21) e = by Pb.

Since e is greater or equal than zero for any ar-
bitrary vectors b’ and b”, (21) shows that pis a
non-negative definite matrix. Note that D is a
diagonal positive definite matrix, (see text after
(14)).

As to solve (20), let’s introduce the follow-
ing transformation. Eq. (20) may be rewritten
as:

pb = LD}

Premultiplying by the inverse of the square root
of D it is obtained:

(22)  (D7V2PD™V*)D'Y = LDV}
Call:

(23) g= D%,

and call:

(24) B = -2 pp-iit,

so that (22) may be rewritten as:

(25) Hqg= Lqg.

From (24), note that H is a symmetric and non-
negative definite matrix, and then all its eigen-
Also note from (21)
and (15), that P is singular if and only if the

values are non-negative.
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data lies exactly on an algebraic surface of de-
gree at most p. Hence if the data does not ex-
actly lie on the curve, the matrices C and P will
be non-singular, and then the matrix H will also
be non-singular, hence the eigenvalues of H will
be strictly positive. Substituting (19) and (20)
in (17), and taking in account (16), it is clear
that the minimum eigenvalue for H should be
chosen.

Hence the procedure is: find the minimum
eigenvalue L,, and its corresponding eigenvec-
tor g that solve (25), for which highly efficient
algorithms exist, ([6]); normalize g as to have

N
its Euclidean norm equal to one: that obtain b
from (23) as:
b =D |

=-m

(note that ﬁl satisfies (16)); and finally obtain éu
from (19).

The vector él together with the vector én,
give the coefficients of the algebraic surface that
optimize the fit according to the criteria previ-

ously explained.
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