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Abstract. After reviewing three classical sampling methods for implicit objects, we describe a new
sampling method that is not based on scanning. In this method, samples are “randomly” generated

using physically-based particle systems.

Introduction

Polygonal approximations are frequently used to rep-
resent discrete versions of geometric objects inside
computers. Such approximations are useful in prac-
tice not only for solving numerical problems, such as
partial differential equations arising in engineering,
but also for rendering, because many graphics sys-
tems have special hardware for handling polygons.

The computation of polygonal approximations
of geometric objects can be conceptually divided into
two phases: sampling, which is the computation of
points on the object, and structuring, which is the
creation of a data structure representing a polygonal
approximation interpolating these points (see Fig-
ure 1).

Figure 1: sampling.

The way these sub-problems are solved depends
on how geometric objects are defined: the two
most common ways of defining geometric objects—
parametric and implicit equations—require very dif-
ferent methods for sampling and structuring.

Sampling parametric objects is easy because it
reduces to sampling the parameter domain; this is

usually done on a mesh so that structuring is im-
mediate. Therefore, constructing polygonal approx-
imations for parametric objects is easy not only be-
cause it is easy to generate points on them, but also
because it is easy to structure mesh samples: they
have a prior: structure. On the other hand, con-
structing polygonal approximations for objects de-
fined implicitly is hard because both sampling and
structuring are hard: sampling requires the solution
of many non-linear equations, and structuring is a
difficult problem because there is no guiding mesh
[Allgower—Schmidt (1985)].

Polygonal approximations for implicit objects
are classically computed with methods that combine
sampling and structuring (see below). In this article,
we study sampling as a problem independent from
structuring. This separation aims to identify the
problems which are particular to each phase. When
structuring is done concurrently with sampling, these
problems tend to lose their original source and merge
into a set of problems that is characteristic of the
combined method used. The goal in separating struc-
turing from sampling is not to claim that the com-
putation of polygonal approximations of geometric
objects should be done in two phases, although such
a method has been proposed for curves [Figueiredo

(1992)].

Sampling implicit objects

Let h be a differentiable real function on R” defining
an implicit object V = h~1(0). Sampling points on
V means finding solutions of the equation h(z) = 0.
In practice, sampling means finding enough solutions
so that the topology of V' can be reconstructed and
the geometry can be approximated.

A sampling method can impose a structure that
does not correspond to the geometry of the object be-
ing sampled [Boissonnat (1984)]. For instance, sam-
pling an object by slices, as done in computer-aided
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tomography, impose a sweep structure on the ob-
Jject; accordingly, reconstructing a solid from a series
of slices is a difficult problem [Giertsen—-Halvorsen—
Flood (1990)].

Classical methods compute polygonal approxi-
mations for implicit objects by performing structur-
ing concurrently with sampling. As mentioned in the
Introduction, we prefer to study sampling and struc-
turing separately. We shall now review the sampling
technique of three classical polygonization methods
and then describe a new, physically-based approach
to sampling. The problems of structuring are dis-
cussed elsewhere [Figueiredo (1992)].

Sampling by ray-casting

A naive way of finding solutions of the equation
h(z1,...,zp) =0

is to reduce it to single-variable equations by comput-

ing the intersection of V with a family R of straight

lines, which we shall call rays.

The simplest rays correspond to fixing some of
the variables. For instance, we could fix the first
n — 1 variables and solve h(a,t) = 0 for a sample of
points a = (aj,...,an—1) in R®~!. This computes
the intersection of V' with the “vertical” rays {a} x
R; accordingly, we call this method vertical ray-
casting (see Figure 2).

Figure 2: sampling by ray-casting.

Sampling by ray-casting needs the solution of
many single-variable equations. Even if a good equa-
tion solver is available, there are several problems
with this approach, showing how the sample ob-
tained on V will depend on the sample of rays R
(see Figure 2):

e because there is no a priori criterion for choosing
rays intersecting V', a majority of the rays in R
may not contribute sample points on V/;
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e even when a ray intersects V', the equation solver
may not find all intersections, resulting in a partial
sample of V;

e several rays in R may intersect V at the same point
(this is is not a problem if the rays in R are par-
allel, as in vertical ray-casting).

e a common choice for vertical ray-casting is to sam-
ple R®~! on a uniform mesh, as in parametric sam-
pling. The resulting sample on V' is biased against
regions where the tangent space of V is vertical.

In general, it is too hard to relate the size and density
a sample of rays R to the size and density of the cor-
responding sample of V. Nevertheless, ray-casting is
useful for rendering implicit surfaces.

Sampling by continuation
The gradient of h,

Oh Oh
Vh = (621,..., 01‘,,)’
is the Jacobian matrix of h in co-dimension 1. The
gradient is a vector field on the ambient space R™,
which, at the regular points of h, points in the direc-
tion of local growth of h. Moreover, Vh is orthogonal
to the level sets of h.

In dimension 2, the associated Hamiltonian
vector field H(h) = (—0h/8y,0h/dz) is orthogo-
nal to the gradient Vh = (0h/0z,0h/dy), and is
therefore tangent to the level curves of h. Thus, the
level sets of h are the integral curves of H(k), and
hence can be traced by solving an ordinary differ-
ential equation (see Figure 3). The integration of
ordinary differential equations related to the gradi-
ent is also the main theme of the physically-based
sampling method described later in this article.

To cast the computation of a level curve as an
initial value problem, a point on the curve is needed.
Actually, a point on each connected component of
the level curve is needed, if all components are to be
found. In this case, for each such point (z¢, yo), the
corresponding connected component is the solution
of the following Cauchy problem:

dz _ 0Oh
dt — 9y z(0) = o,
dy _ ok %(0) = wo.
dt Oz

Several classical numerical methods exist for
solving initial value problems [Lambert (1973)]. Al-
though they are well-known and easily implemented,
these general methods cannot exploit the fact that
the solution of the Cauchy problem above is a level
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curve of a smooth function. One way to use this ad-
ditional information to help stabilize the integration
is to do a few iterations of Newton’s method for the
solution of non-linear equations as a correction after
each prediction [Allgower—-Georg (1990)]: if p is the
current point on the curve, then Euler’s prediction of
the next point is p — p+8H(h)(p), which is possibly
on another level curve; we use Newton’s method to
bring the point p back to the correct level along the
straight line orthogonal to Vh(p) (see Figure 3).

gradient
Euler prediction

Newton correction

Figure 3: sampling by continuation.

Thus, we have the following continuation algo-
rithm:

p —p+ §H(h)(p) Euler predictor
u — Vh(p) correction direction
while |h(p)| > ¢

h(p)

P P — it Newton corrector
(Vh(p), u)

The combination of single-step predictors (such
as Euler’s) and Newton correctors provides a robust
method for tracing level curves in several circum-
stances, despite the following restrictions:

e it is only applicable to plane curves;

e it needs starting points on each connected compo-
nent;

e it needs special care with closed orbits.

It is possible to extend the continuation method
described above to higher-dimensional manifolds by
starting with an orthogonal complement of the gra-
dient and carefully integrating along each vector in
this complement; this is called the moving frame

method [Allgower-Georg (1990)].

Sampling by enumeration

Instead of computing an approximation of the level
sets of the exact h, we can compute the exact level
sets of an approximation of h. If this is to be easier
than dealing with the exact h, then the approxima-
tion should be sufficiently simple so that its exact
level sets are easy to compute. This is achieved by

taking a piecewise smooth approximation that is very
simple on each piece: the pieces are the cells of a cel-
lular decomposition of the ambient space, and the
most common approximations are piecewise linear,
obtained by scanning the decomposition and com-
puting the intersection of the level set with each
cell. The need for starting points is thus avoided and
all connected components are found with no special
processing. Methods that solve equations by scan-
ning cellular decompositions are called enumera-
tion methods; when the cells are simplices—a very
common choice—these methods are called simpli-
cial methods (see Figure 4).

Figure 4: sampling by enumeration.

The simplest decompositions are regular, ob-
tained by translating and scaling a single prototype
cell, e.g., a unit hypercube aligned with the coor-
dinate axes. The next level of complexity allows
rotations of the prototype cell, as in regular tri-
angular decompositions. In principle, the geome-
try of the cells could be arbitrary, but if a cell has
many facets, then there are many possibilities for
its intersection with the level set. Moreover, if the
cells have complex geometry, then the decomposi-
tion has a complex topology, making it harder to
coordinate the scan. In practice, only hypercubical
or simplicial cells are used, arranged in cellular de-
compositions having well understood combinatorics
[Allgower—Schmidt (1985), Hall-Warren (1990)].

As usual, tolerance is a problem and the size of
the cells must be carefully chosen to avoid missing
features because of undersampling. However, choos-
ing a very small cell size will greatly increase the
number of cells to be scanned. Thus, regular cellular
decompositions rapidly increase in complexity under
the demands of precision. One attempt to overcome
this problem is to exploit the geometry of the object
and make adaptive cellular decompositions, which
reduce the total number of cells to be scanned by
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concentrating small cells around features [Bloomen-
thal (1988), Velho (1990), Hall-Warren (1990)].

Independently of how the cells are chosen, the
sample provided by a scan is only structured locally
at each cell; global structuring, such as the correct
glueing of pieces and the identification of connected
components, must be done a posteriori. This is an
additional reason for requiring simple decomposition
topology.

Enumeration methods can be very expensive be-
cause only a few cells intersect the object, espe-
cially in high co-dimension. Nevertheless, enumer-
ation methods are applicable not only to hypersur-
faces but to submanifolds of all co-dimensions. How-
ever, the higher the co-dimension, the fewer the cells
intersected by the object. This is a serious problem
because, when the cells are simplices, the total num-
ber of cells grows exponentially with the dimension:
a simplicial decomposition of a hypercube in dimen-
sion n needs Q(c”v/n!) simplices [Haiman (1991)].

Piecewise linear approximations for implicit ob-
Jjects can be found by a continuation variant of the
enumeration method that follows the solution at each
of the intersecting cells and only at those, by us-
ing “pivoting” procedures to choose the cells to be
scanned. This method provides global structuring
concurrently with sampling; however, it brings back
the need for starting points on each connected com-
ponent. Moreover, it is now necessary to keep track
of all visited cells, in order to identify closed com-
ponents. Despite these restrictions, piecewise linear
continuation methods are very successful, and widely
used in practice [Allgower-Georg (1990)].

Physically-based sampling

The main theme of our physically-based method for
sampling an object V given implicitly by a function
h is the integration of ordinary differential equations
related to the gradient vector field Vh.

Unlike continuation methods, which integrate
orthogonal complements of the gradient, and need
starting points correctly placed on each connected
component of V', our method integrates differential
equations based on a modified gradient field, and can
start at an arbitrary sample of points on the ambient
space: the w-limit of the orbit of each point will be
on V, and will provide the desired sample.

The modified gradient vector field we shall use
is F = —sign(h)Vh, obtained by reversing the sense
of Vh when h is positive: this provides a vector field
pointing locally in the direction of V (see Figure 5).
The attractors of F' are the set V and the points
where h has a positive local minimum. Because we
are mainly interested in V/, we shall call these latter
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points spurious attractors. Note that spurious at-
tractors need not be isolated points: in general, they
will be a submanifold of V. Although some sample
points can land on spurious attractors, this does not
seriously affect the sampling because we can discard
points where h is not zero.

Figure 5: modified gradient vector field.

The field F corresponds to the potential func-
tion U = |h|. The points of global minimum po-
tential energy are exactly those on V. However, the
points where h has a positive local minimum are also
local minimaof the potential energy; spurious attrac-
tors correspond to particles that get trapped at these
local minima.

The potential function U is not smooth on V,
where h = 0. This implies that the field F is not
continuous at regular points of V; in fact, the field F
1s continuous on V only at singular points. One way
to avoid this discontinuity is to consider h? instead
of h: the two functions have the same set of zeros
but the modified gradient for h? is —sign(h?)Vh? =
—2hVh, which is continuous everywhere. However,
the convergence of the numerical methods used for
integration is slower for h? than it is for h. Moreover,
the field for A2 has more spurious attractors than the
field for h because all local extrema of h? are positive.

We consider two physical interpretations for the
vector field F'; they provide autonomous dynami-
cal systems that are integrated to simulate Newto-
nian mechanics. Discrete models for physical systems
are well suited for computer simulation [Greenspan
(1973)] and have recently been successfully used in
geometric modeling [Terzopoulos—Fleischer (1988),
Szeliski-Tonnesen (1991)] and mesh generation for
finite-element analysis [Gossard (1991)].

The first physical interpretation is kinematic:
the field F' describes velocity in terms of position.

"The equation of motion corresponding to this inter-
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pretation is

c;—;: + sign(h)Vh = 0.

The other interpretation is dynamical: F' is a
force field in a dissipative medium. A particle re-
leased at rest into this medium is subjected to forces
induced by F which make it move towards V and
then oscillate around it. Adding friction to the move-
ment guarantees that the particle will tend to equi-
librium at a point on V. The resulting equation of
motion for a unit mass particle is then

d’z dz .
Tz + L + sign(h)Vh =0,

where v is a positive real number representing fric-
tion proportional to the velocity. The presence of
friction is important because, when y = 0, this
second-order dynamical system can have additional
spurious attractors, other than the ones described
above. Incerti, Parisi and Zirilli (1979) have pro-
posed a similar differential equation for finding zeros
of functions R® — R™; however, they were interested
in finding any one solution, not many, as required in
sampling for geometric modeling.

By releasing a large set of randomly placed par-
ticles into either field and simulating the correspond-
ing physics, we can generate a “random” sample of
points on V (see Figure 6). However, there seems
to be no clear relation between the initial position
of the particles and the final distribution of points
on V, in the sense that we do not know how to pre-
dict where a particle will land on V|, even though we
are dealing with deterministic systems. Nevertheless,
points tend to concentrate near high curvature and
singularities. On the other hand, no portion of V is
consistently missed by this process, in the sense that
every open subset of V' is contained in the w-limit of
some open subset of R™.

Figure 6: orbits and final sample.

The equations of motion for each particle are
solved numerically, using one of the classical numeri-
cal methods, such as those of Euler or Runge-Kutta.
However, if particles are to approach V steadily,
adaptive variations of these methods are required,
in which step control is used to avoid divergent oscil-
lations. Such oscillations are mainly due to the dis-
cretizations used in the numerical methods, although
they are also inherent to the physics in the dynami-
cal case: indeed, whereas the orbits in the kinematic
case do not cross V' and oscillations are the artifact of
numerical methods, in the dynamical case, particles
approach V with non-zero velocity, causing them to
cross V and only then being forced back to it because
the force field changes sign. Controlling integration
step size causes such particles to approach V more
carefully each time they cross it, thus guaranteeing
convergence. On the other hand, approaching at-
tractors with non-zero velocity can actually help a
particle to avoid spurious attractors.

Note that the equations of motion are uncoupled
and hence can be solved in parallel. In particular, it
1s not necessary to keep all particles in a single time
frame, and we may use a different step size for each
particle. This contrasts with other particle systems
used in computer graphics and animation, where the
joint movement of the particles is important for re-
alism [Reeves (1983)]. Therefore, we can implement
independent step control by making the step size of
a particle depend on its position; we do this by halv-
ing the step size every time the particle crosses V.
Moreover, we can stop the simulation of a particle’s
movement as soon as it has reached a desired level
of equilibrium (measured, for instance, by the value
of h at the position of the particle or by the value of
its the step size).

The following algorithm combines a classical
single-step Euler integration with step control as de-
scribed above, to provide a simple and robust method
for the integration of the equations of motion in the
dynamical case. If z is the position of a particle, v
is its velocity, and 6 is its current step size, then its
next position, velocity and step size are computed as
follows:

y — h(z) remember current level
ve—v+6F(z)—yv) Euler predictor
z—z+bv modified Euler predictor
if sign(y) # sign(h(z)) check crossing
§—6/2 step control
ve—20 re-start from rest

Note that this algorithm is a variant of the strict
Euler method, in the sense that the predicted value
of v is used to predict z, instead of predicting both
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in parallel. Step control is done when h changes sign
at two consecutive positions: it is assumed that the
particle has crossed V at this time. As a further
refinement, we re-start a particle from rest after such
crossings; this allows oscillating particles to approach
V very carefully.

The corresponding algorithm for the kinematic
case is simply:

y — h(z) remember current level
z—z+6F(z) FEuler predictor
if sign(y) # sign(h(z)) check crossing

6—6/2 step control

Although both methods integrate ordinary dif-
ferential equations, the sampling method we have de-
scribed is more robust than the continuation meth-
ods described earlier because:

e continuation methods need starting points on V,
whereas arbitrary samples are adequate as initial
conditions for our method;

e care must be taken when integrating the Hamilto-
nian in order to stay on level 0: single-step numer-
ical methods without correction tend to jump to
other levels. On the other hand, our method starts
at arbitrary positions in the ambient space and
aims for a submanifold—an easier task than hav-
ing to start on a submanifold and trying to stay on
it. Level jumping is no longer a problem because
all trajectories lead to V; accordingly, single-step
integration methods are adequate.

e our method is naturally parallel;

e our method does not need a predefined region of
interest, because the particles will track V wher-
ever it is in the ambient space.

The two interpretations used in our sampling
method have complementary advantages. In the
kinematic case, the differential equation is simpler,
and the convergence is faster. Moreover, particles
approach V orthogonally. On the other hand, in the
dynamical case, spurious attractors are more easily
avoided, making the sampling more robust. More-
over, convergence can be controlled by modifying the
value of friction or by re-starting particles from rest
when they seem not to be converging to equilibrium.

Practical issues

The sampling method described above can be sum-
marized in the following algorithm:

- select initial sample randomly;

- select sampling tolerance € > 0;

- simulate physical motions;

- stop simulation when |h| < € on the sample;
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The main practical problems with this method are
the selection of the initial sample and the selection
of the sampling tolerance ¢. If the initial sample is
too far away from h=1(0), then the sample after equi-
librium might not cover all of V. We may therefore
view the sampling step as a preliminary search for V.
After V is located, we can then sample it more thor-
oughly by selecting another set of initial conditions
near V, e.g., by sampling a bounding box twice as
large as the bounding box of the preliminary sample.
A few iterations of this process are usually enough to
locate and sample all components of V without bias.

Although prediction and step control are very
simple, the integration algorithms perform well in
practice. One minor problem is the choice of initial
step size. In our explorative implementation, this
choice i1s made by trial and error, but it should be
possible to estimate a good step size based on the
initial position. A naive estimate would be the value
of h at the point, but this is not a good estimate if h
is flat near this point (see Figure 7). Better estimates
would take the gradient of h into account, in a way
similar to Newton’s method.

Figure 7: naive estimate of initial step size.

To get a good final sample with our physically-
based method, we usually need many points, and
this means thousands instead of hundreds, especially
for higher dimensional objects. (The sample in Fig-
ure 6 has 500 points; this many points are usually
enough for curves. On the other hand, the sample
in Figure 1 has 5000 points; surfaces cannot usually
be adequately sampled with less that 1000 points.)
Whereas the simulation of uncoupled physical sys-
tems with thousands of particles is not too expen-
sive in a workstation, geometric computations, such
as the computation of polygonal approximations, are
usually tightly coupled. Moreover, the samples pro-
vided by the physically-based method usually con-
tain many almost coincident points; such concentra-
tions occur at singularities and points of high curva-
ture, as mentioned above. We are thus faced with the
problem of extracting a representative sample from
the equilibrium sample.
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One good way of doing this extraction is to select
a real number § > 0 and collapse all §-cliques: a
§-clique is a set of points such that the distance
between any two points in the set is at most §. The
obvious brute-force algorithm computes é-cliques in
cubic time. A good approximation is given by the
following bucketing algorithm, which runs in linear
time: divide the bounding box of the sample into
square buckets of size §, and collapse the points in
each bucket. This collapsing can be done either by
electing representative or by using the barycenter of
the population of each bucket.

Conclusion

We have described a new method for sampling im-
plicit objects that uses equilibrium configurations of
simulated physical motions, and which is more ro-
bust than classical continuation methods.

Although a sample of points is not a complete
geometric model, dense samples have strong percep-
tual meaning (see Figure 1), especially if adequate
visualization tools are available. It would be easier
to use implicit objects in geometric modeling if sam-
ples on such objects could be computed fast. The
method we have presented is an example of such a
tool.

Much like splines, which are used not only for
approximation, but also for free-form modeling, our
sampling method provides not only an approxima-
tion tool, but also a dynamic modeling tool: by vary-
ing implicit equations or by adding local potential
fields, it is possible to dynamically control the shape
of the model. After a satisfactory shape is found, a
complete geometric model can then be constructed
by using structuring methods [Figueiredo (1992)].
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