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ABSTRACT-This work presents an alternative approach - to
reconstructing images with low signal-to-noise ratioc. It
consists of estimating projections assuming that the dbise
is Poisson and reconstructing the inage applying tran sform

methods. The proposed method 7lelds results similar to “L-”"
but using much less processing time (1 to 2 oruers)

1.INTRODUCTION 3

Computerized Tomography (CT) has been applied tc ﬁany
fields, involving fron molecular dimensions (elect vn
micrescopy) to  cosmic dimensicns (radio astronony) (Herman,
1980). Its ability to visualize inrernal structures, such as
transverse sections of the human body, made CT in an invaluaple
instrument for medicine.

The speed and simplicity of transfornm nethods for
reconstruction have led to their widespread use in tecrnography.
However, for projections with pcor signal-to-noise ratic, direct
application of transform methods yields unacceptable results. on
the other hand statistical methods such as Maximum Likelihood
implemented by the Expectation-Maximization technique (ML-2zM)
preduces better results (Chorncboy, 1520) in  Emissiocn
Computerized Tomography (ECT), but it is rather tirze consuxning.

In this paper, we bresent a fast alternative technigue fcr
Teconstructing images with Poisson noise and low signal-to-ncise
ratio. The preposed method is based on estimating projections
considering a model for noise and projection formaticn.

2 .MODEL
We will assume the medel depicted in figure 1, where ¢
=[f1,f2...fN] represents the object image that isg subjected <o
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independent Poisson process resulting in a random field denoted
by ﬁ§=[xl,x2,...xN;. The noisy projections (?M) are obtained by
applying the projection operator Hy.n ©n X. Therefore the
following expressions are valid (Lo, 1979) (capital letters for
X,¥,2 and G denote random variables):

-f X
Y s N N o3 (£ !
Prob(%=x |} 1= M Prob(X =x |f] =1 ] (1)
3=1 SRR S | x !
1= ¢ = 2
f[lef’, :rar[xj]fj] f} (2}
Y™ Hyen - Xn (3)

where H :projection matrix that can encompass point spread
function, geometric characteristic of the acquisition
device, attenuation and scattering correction.

- - N N 2
fN Poisson XN Pgo;iggéin YM
Noise P
Generator H

Figure 1. Model for formation of noisy projections (?M)
where the object image (fN) corresponds to the average

rate of a Poisson process (iN)

It can be shown that ({ Y o i=1,M )} are independent random
variables with Poisson distribution (Vardi, 1985). Therefore,
N
E[Yi[fN]=var[vi|fN]=, Lh .f i=1,M (4)

j=1

E[YM}fN]fH.fN (5)
Making In= H.{ . and considering the equations above, we

can first estimate g and then reconstruct f as shown in figure
2.

~ A

-

gM P01§son YM Estimator gM Reconstr. fN
noise
Generator

Figure 2. Model for estimation and reconstruction
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3 .METHOD

The proposed technique consists basically of wusing an

optimized estimator to obtain éM given §%’ considering the
Poisson nature of the noise.

MAP estimator (Lo, 1979)
Assuming that {Gi ,i=1,M) are uncorrelated random variables

with Gaussian distribution, and the distribution of Y given g

{figure 2) is a Poisson process, the MAP (Maximum a Posteriori)

estimator is derived by

maqurob[é=% ly]= max Propo(¥ |g].Probié]

g Prob(?]
yielding

(6)

Y 3y 2_;. + .
E(Gi)~var(Gi)+v/(E(Gi)—var(Gi)) ‘4.Jar(Gi).yi

i 3 i=1,M (7}

Wiener estimator (Kuan, 1985)

Assuming the same hypothesis of MAP estimator, the Wiener
estimator can be obtained by

~

ming E(||& - §i 121 where g=£(&)+B.(¥-E(D)) (8)
resulting in a punctual estimator (adaptive filter)

n var{( G )

g; =E(G) +J§?ﬂ§3—:37?:3' (y, = E(G))) i=1,M (2)

Anscombe Transformation

Alternatively, the Ansconbe transformation (Anscombe, 1948)
can be applied to QM in order to transform Poisson noise in
approximately Gaussian noise with variance egual to 1.
Henceforth we can use MAP estimator assuming that the noise is
Gaussian.

—
] ~
? Ansconmbe Z Estimator s, ilnverse 6‘
M . M i ! ) M
 Transf. i Anscombe
iTransf.
L , T

Figure 3. ‘Diagram used for estimation with Anscombe
transformation
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Using a similar approach, it can be demonstrated that MAP and
Wiener estimators coincide and are given by

s,=8,z,+ (1-8)E(S)) i=1,M (10)
var(sl)

B,= var(z)+ var(s)) (11)

where var(zl)=1 . (12)

In equation (10), if we estimate E(§) using smoothed noisy
data, the estimated value s is a linear combination of the
available and the smoothed data. A heuristic filter (Maeda,
1987) can be formulated using the local median instead of z,.

Heuristic estimator
s‘=B‘.E‘ + (1-8,) E‘ (14)
where z :local median

z : local average
. local variance
B = maximum variance
This filter has interesting properties such as preserving edges

due to median filter and use of local statistics.

Minimum cost estimator
If we define
cost(s) = ||2-3]|* + B.|L3||? - (15)

where (Lé)l= s ., 2 s + S 4 (16)
This function involves the distance between the input data and
the estimated data as well as a measure of roughness. Minimizing
this function in 5, we have, in frequency domain (where T is
sample distance)ﬁ

S(w)= 1+B.(2c§é¥&T—8cosz+6) (17)
S(w) is a low-pass band filter, with parameter g8 for roughness
effect. The response of this filter in the frequency domain is
illustrated in figure 4 for B=0.01, 0.1,1,10 and 100.

In order to assess these estimators,-simulated data with
512 samples was generated. Table 1 summarizes the results where
square root of normalized mean square error (NMSE) was used as a
measure of estimation quality (figure 2):
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sz = | Y9, "9y o (18)

Reconstruction

It was assumed that the projections are Radon transform of
the object image. Thus the image can be reconstructed using FBP
(Filtering~Backprojection) applied to estimated projections. The
results are compared with simple FBP and ML-EM.

4., RESULTS

For quantitative evaluation we used a circle-like image
(radius R=8 pixels), as shown in figure 35, divided into 32x32
pixels, generating 64 prociection views, 32 samples on each
projection view. Total count was 10000, resulting in 49.7 counts
in average for regions inside the circle, and a maximum of 26.0
for noisy projecticns.

The results are shown. in figure 6 and tabkle 2, where NMSE
was calculated in 3 regions of the circle: a)central (inner
circle with radius egual to 70% of R); b) edge (ring delimited
by circumferences of radius 0.7R and 1.3R); and <c)global.
Estimation and reconstruction time was alsoc measured. This table
shows that the proposed technique produces resuits corparable to
ML-EM, but spending only a fraction of ML-EM tine.

5. CONCLUSIONS

It has been shown that the reconstruction of images with
independent Poisson noise can be done more efficiently in two
steps: estimatiocn and reconstruction. The proposed estimator is
a heuristic filter (Maeda) applied to transformed projections by
the Anscombe transform. If the projections can be approximated
. .by a Radon transform of the original image, a conventional
Filtering-Backprojection algorithm can be used for
reconstruction. We have shown that the proposed approach leads

to results comparable to ML-EM, but with a much lower
computating time.

193



Table 1. Performance of discussed estimators in relation to

error. and computational time

NHSE time,

(s)

MAP 0.1123 1.10

Wiener 0.1121 1.04
Anscombe .

MAP 0.1113 1.38

Heuristic 0.0958 : 1.81

Cost(B8=1) 0.1005 6.86

*Based on IBM PC-AT at 6MHz, with 80287 co-processor
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Figure 4. Frequency response of a filter based on minimum cost

for B=0.01, 0.1, 1.0, 10 and 100
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Table 2. Reconstruction performance of simple

Filtering-B8ackprojection (FBP), proposed technique and ML~-EM method

with S iterations using noisy projections (figure 5c).

T WHSE
' Central Edge Global Time"
(s)
FBP 0.1383 0.2692 0.2660 73.0

Proposed| 0.0493 - 0.2474 0.1875 82.12

ML~-EM 0.0954  0,2504 0.1905 2370.0

*Based on IBM-PCAT, at 6MHZ/:§ith 80287 co—proqéqsor

a) b) <)
Figure 5,  a) Simulated object image (32x32 pixels); b)
sinogram with 64 projection views and 32 samples each;

c)noisy sinogranm (Poisson noise).
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Figure 6.Reconstruction results based on: a) simple
Filtering-Backprojection; b)proposed technique; c)ML-EM with 5

iterations, for circle with and without noise, and Tanaka’s figure (9}

-

196



6. REFERENCES

HERMAN, G.T. Image reconstruction from projections; the
fundamentals of computerized tomography. New York, Academic
Press, 1980. 316p.

LEWITT, R.M. Reccnstruction algorithms: transform mnethods.
Proceeding of the IEEE, New York, 71(3):390-408, Mar. 1983.
CHORNOBOY,E.S. ;CHEN, C.J;MILLER, M.I;MILLER, T.R;SNYDER, D.L. An
evaluation of maximum likelihood reconstructicn for SPECT.
IEEE Transactions on Medical Imaging, 9(1):99~110, March 1990

LD, C.M.; SAWCHUK, A.A. ffon linear restoration of filtered
images with Pcisson noise. Proceedings of SPIE, Bellingham,
207:84-95, 1979.

VARDI, Y.:SHEPP, L.A.;KAUFMAN, L. A statistical model for
positron enmission tomography. Journal of American Statistical
Association, Boston, 80(389):8-27, Mar. 1985.

KUAN, D.T.; SAWCHUK, A.2.;STRAND, T.C.;CHAVEL, D. Adaptive
noise smoothing filter for image with signal—dependent noise.
IEEE Transactions on Pattern Analysis and Machine
Intelligence,. New York, 7(2):165-77, Mar.1985.

ANSCOMBE, F.J. The transformation of Poisson, binomial and
negative-binomial data. Biometrika, Cambridge, UK, 35:246-54,
1948.

MAEDA,J.;MURATA,K. Digital restoratiocn of scintigraphic irages
by a two-step procedure. IEEE Transactions on Medical
Imaging, New York, 6(4):320-24, Dec.1987.

TANAKA, E. A fast reconstruction algorithm for stationary
positron emission tomography based on a rmodified EM
algorithm. IEEE Transactions on Medical Imaging, New York,
6(2):98-105, June 1987.

197





