
A SIMD SYSTEM FOR IMAGE PROCESSING *

Celso Luiz Mendes
Cecilia de Azevedo Castro César

Antonio Francisco Junior
Flávio Roberto Dias Velasco

INPE - Instituto de Pesquisas Espaciais

Caixa Postal 515 - S.J.Campos, SP 12201 - Brasil

ABSTRACT

This work rresents a massively parallel system that is
being built at INPE, based on the GAPP device, for image

rrocessing arplications. This parallel system will operate as a
coprocessor of a PC-like microcomputer. After introducing the

architecture, a preliminar evaluation of the system is shown,

followed by a description of the software environment that is

being developed. This environment includes assembly-level and

high-level programming tools. Some comments on the current

situation of the project are given at the end.

1. INTROOUCTION

It has long been suggested that SIMD architecture is the

most appropriate organization for the implementation of low­

level image processing operations (1)(2). These operations are

characterized by their locality (the processing of each image

point uses only the point itself and a small neighborhood) anct

repetitiveness (the same operation is performed all over the

image). Moreover, the processing operations are ust1ally simple

and iterative. These characteristics were exploited by some
proposals like the MPP (3) and DAP (4).

Although the processors can be simple and their spatial

arrangement very regular (mirroring the image structure), they

have to be employed in large numbers to be effective. In SIMD

* This work was supported by SIO Informática ("Estra" Project)
and by FAPESP (Project "Computação: 87/1786-1"}.

• •

•

•

246

• •

•

•

organizations for image processing, arrays of 128 by 128,

comprising thousands of processors, are common. The gain in
speed that can be achieved, however, can be impressive. A1so,

because the organization is we11 matched to the prob1em, the

programming of the 1ow-1eve1 image processing operations is not

such a formidable task.

Notwithstanding the potentia1 gains, this organization has

not been more wide1y deployed due to the non-availability of the

individual processors in the market. This situation has changed

since the introduction of the GAPP (Geometric Arithmetic
Parallel Processar) (5) by NCR. This made possible for research

and educational institutions to experiment with severa1 SIMD

system organizations.

This work describes one of I~PE's project, which objective

is to develop a SIMD coprocessor based on the GAPP chip and

programming environment for the IBM-PC microcomputer and

compatibles. The coprocessor system is composed of a processar

array, a data memory, an I/0 contro11er and an array controller .

The existence of two controllers, one specifically for I/0,

• makes it possible to execute I/0 instructions in parallel with

the processing of the individual units, g1v1ng an additional

level of parallelism. The programming environment resides on the

PC and is composed of a simulator, an assembly language, a

linker, a preprocessar for the C language and a C-like language
compiler.

•

In this paper, Section 2 describes the general architecture

of the coprocessor. This section gives special attention to the
solution that has been adopted for the I/0 transfer of data and

how the architecture exploits the possible parallelism between

//i/0 and processing. An evaluation of the proposed architecture

for typical image processing operations is shown in Section 3.

The basic programming environment, which is composed of the

simulator, the assember and the linker is briefly explained in

Section 4. The high level tools for programming: the C

preprocessar and the C-like compiler are described in Section 5.

The final section presents the current status of the project and
the perspectives for future work.

247

2. SYSTEM ARCHITECTURE

The architecture of the coprocessor is shown in Fig. 1. The

general coordination of the system will be provided by the PC,

which will also communicate with peripheral devices, interact

with users and house the programming environment. For the

execution of tasks in the system, the PC itself will process the

sequential parts of the programs, and will activate the

coprocessor for the execution of the parallel operations. This

scheme is very similar to that used on the Connection
r~ a c h i n e (6) •

The coprocessor

expansion bus. The main
i s connected

module of
to the PC through i t s

the system is the array of

take pl ace . processing elements, where parallel computations .
It's an array of ~8x~8 P.E. 's, implemented with 32 GAPP chips

connected simply side by side, due to the modular characteristic

of this device. The edges of the array may be programmed in one

of two modes: in the first one the north edge is connected to

the south and the east to the west. In the second mode there is

only a connection between the north and the west, providing a

way to reformat data inside the array. This reformatting is a

transformation between the pixel/byte access employed by the PC

and the bit-plane access by the array, which is a common feature
of bit-serial SIMD machines.

110

tr~fTP.Ili.I.IR

I L
I
!
'

I:XH~Hf•L
V<· r~

,.il': R'/

40·

~ ... ~ ARRJIY

Cotrl ROL!.[R

I
'

(ólfp

ARRJIY

48 X 48 P.l.'s

l

Fig. 1 - Basic architecture

of the system

• •

•

•

248

• •

•
•

•
•

The image data to be processed are stored by the PC in the

external data memory, on a byte sequential mode. From this

memory, data may be transfered to the array, with the

simultaneous transmission of 48 bits. In the maximum array speed

(10 MHz), this represents an I/0 rate of 60 MBytes/sec.

Operations on the coprocessor are supervised by two

controllers: an array controller and an I/0 controller. They are

both implemented with a microprogrammable structure. Each of

them has its own instruction sequencer (Amd-2910A), a fast

microprogram memory, which may be loaded by the PC, and some

special purpose registers. These controllers may operate

independently of each other, but th~y are fed by the same clock

s i g na 1 a n d t h e r e i s ã s p e c i a 1 me c h a n i s m, t· e p r e s ente d b y t h e
dotted lines in Fig. 1, which allows the synchronization between
them, if necessary (7).

The basic tunction of the I/0 controller is to coordinate

the transfers of data between the external data memory and the

array of P.E. 's. This includes the flow of data through the 1/0

registers of the GAPP processors and also the access to the

local memory inside each P.E. The microinstruction for this
controller is ~5 bit long.

The array controller provides the control signals th at
drive a 1 1 operations inside the GAPP array. I t h as a
microinstruction o f 63 b i t s' trom which are derived the GAPP
instruction bits that control the ALU, and a 1 s o the contra)
lines to the special purpose registers. These registers include

some local memory address registers, a global data register for
broadcast operations and also an index register, to select a

sing1e bit from the global data. The mode of connection between
the edges of the array is also set by this controller.

lhis structure was built to take advantage of the potential

parallelism between I/0 and processing, which is instrinsic to

the GAPP chip. By having the two controllers operating

simultaneously, it is possible to have general processing and

flow of data through the I/0 registers, in a cooperative

fashion. The single contention problem happens when the I/0

249

controller accesses the local memory, since the P.E. 's may also

be accessing that memory. The solution adopted to this problem

was to stop the array controller. This does not cause much

degradation in performance, as for each access of the I/0
controller into local memory there are 48 corresponding shifts,

to get the data in or out of the array. Thus, the worst

degradation is around 2%.

If the data to be processed have just been stored by the PC

on the external memory, the processing of I/0 will include the

reformatting of data, which shall be dane on the array. If,

however, the data have been previously processed on the array,

they may be stored in the external memory in bit-plane mode, and

so the I/0 may be dane simultaneously with other tasks. The

current configuration for the direct connection between the

external memory and the array takes this fact into account.

Although there is the extra overhead for reformatting, this

configuration provides the maximum I/0 rate for the case of

previously formatted data. If an additional hardware had been

• •

•

• used to speed up the reformatting process, the resulting

performance would be the same for both formatted and unformatted *
data, and also the cost of the system would be much higher. As

it is anticipated that the I/0 will be frequent, due to the

small size of the local memory in each P.E. (128 bits), the

present configuration seems to be the best choice.

3. EVALUATION OF TYPICAL OPERATIONS

In arder to evaluate this architecture, some typical image
processing operations were analysed. These operations were

spatial filtering on gray level images and erosion on binary

images. They were chosen because, besides being time-consuming

for conventional machines, they exercise several characteristics

of the array, like transfer of data, arithmetical and logical

operations, global transmissions, etc.

In spatial filtering, with the non-recursive case, the •

image is convolved with a 3x3 mask, in arder to perform a given

transformation (8). The characteristics of the result will •

250

• •

•

•
•

•

depend on the values of the mask. In the present system,

comprising an array of 48x48 P.E. 's, the processing of large

images requires their division in sub-images of size 48x48, with

a common pixel in the edges of neighbor sub-images. For an

individual sub-image, it's assumed that each pixel is stored in

a corresponding P.E .. The convolution is performed by

transfering data between P.E. 's, multiplying pixel values by
corresponding mask values, and adding all the products together.

Since the mask values are constants, they may be transmitted in
a broadcast opcration.

This filtering operation, when simulated on the

system, assuming images 512x512, 8 bits/pixel and a

present

clock of

lO MHz, may be run in a total of 1,5 s. This rate is much better

than what is normally obtained with the PC {520 s) and even

better than the rate achieved with a special purpose board,

using a TMS-320C25 digital signal processar {4 s).

In the erosion operation, the binary image is convolved

with a given binary mask. For the original points that have the

value 1 their neighborhood is compaired to the mask. If they

match, the remains; otherwise, that is, if there is any

mismatch, the point becomes O. So, the area of the objects is

decreased. This operation, together with dilation, may form the

basis of an image analysis system {9).

The result of simulation was a time of 18 ms for each

512x512 binary image, with a 3x3 mask. This represents a very

large gain over the PC {40 s), dueto the intrinsic bit-serial

mode of the GAPP, where the time is linearly dependent on the

number of bits/pixel. Thus, it's a very effective tool for tl1e

processing of binary images.

4. BASIC PROGRAMMING ENVIRONMENT

Some basic programming tools have been developed to aid the

process of programming the system. These tools are divided in

two major groups. The first group is composed of tools for the

chip level. In the second group, there are tools for the whole

system, including the 1/0 and array controllers. All these tools

251

have been completely developed at INPE, using the C-language on

an IBM-PC under MS-DOS 3.2.

lhe modules of the first group are shown in Fig. 2. The

main objective is to simulate an array of up to 64x64 GAPP
P.E. 's. The assembler module receives instructions as documented
on the GAPP data sheet, and produces the corresponding object
code file, which is read by the simulator. Since there is no
control structure on the GAPP itself, the user must write the
program according to the desired sequence of operations. This
set of tools proved to be an effective means for a basic

understanding of the GAPP chip.

arq, UM ASSIJo!BLDI

llttin9

lt'<J.n,. r sourct-progrl/1
II"'J,ObJ I ObJtd-pr09r~"
arq.bkp 1 "brul·po1nh"
lr'{.lnr I lnrut data
II"'J.OU I QU put data
lf'j.ra,. 1 local-uM data

arq.obj ----·

OBJ[CT ·CO DI

LIBRA R'/

'

Hq, tlM
uq. lnp

S IIIIJLATOR

~1 ,,~~.~ l'""'·'"9 ~
L... __ L_ft_j~----·c::_r-y US~

Ô----· B ... "
~

SYSTDI DOORD

Fig. 2 - GAPP programming
tools

Fig. 3 - System programming
enviror.ment

•
•

•

252

• •

•

•
•

With the second group of tools, presented in Fig. 3, it is

possible to write and simulate programs for the whole system .

The programs for each controller, composed of lines with

instructions for each module, may be assembled and linked

individually, ànd then submitted together to the simulator or to

the real system, when it becomes available. This simulator has

many interactive features, which let the user watch or modify
every register or memory in the system. Although many hardware

aspects (delays, glitches, ...) are not taken into account, and

the simulation time is long for a common PC, this simulator is a

good instrument to test the correct execution of new algorithms .

5. HIGH LEVEL PROGRAMMING

The programming of this system in the assembly level,
besides being difficult, would not be reliable for medium-to­

large applications. It was soon foreseen that compilers for high

level languages would be needed. Moving in that direction, two

developments were started: a C-like language compiler and a

preprocessar for the C language .

The C-like language is dependent not only of the GAPP

processar but also of the coprocessor structure. It basically

enables the programmer to use high-level syntax and control

structures, still having free access to all the resources of the

system. The result of this compilation is a source program that
can be submitted to the assembler.

The control of the execution flow is provided by the Amd

• sequencers, since they have instructions to implement the three
basic constructions of structured programming (sequence,
iteration and decision). The synchronization between controllers

is implemented with the special instructions "wait" and

"signal", which are converted by the compiler to one or more
accesses to corresponding bits in the hardware.

Another nice feature of the language is the emulation of

masking, which is not available on the GAPP chip. There is a

"where" instruction that, by means of logical operations, causes

the virtual blocking of access to the local memory of individual

253

f.! r o c e s s o r s , 111 a k i n g

remain unchanged.
values on the memories of masked processors

The C preprocessar implements an extension of the C
language for vector and array processing which is independent of
the underlying architecture (including array size). The idea is
to provide an almost familiar environment for the application
programmers. For this
is being designed,
PARALLEL, which will

preprocessar, a new language,
including the special data
identify the objects that

namely CP,
qualifier

should be
processed in a "different" way. For these objects, there is a
collection of possible operations.

Each of these PARALLEL data items will be treated as an

abstract data type, and the manipulations on

implemented according to the architecture where
it will be

the program
should run. So, the dependency on the real architecture is

restricted to the implementation of some manipulation routines,

not to the source programs. The same source program should be

able to compile and run in a number of different architectures,

as soon as each of them has its corresponding routines.

For the present system, PARALLEL data shall be allocated on
the external data memory and be processed inside the GAPP array.

For each operation involving this kind of data, the preprocessar

will generate calls to routines that activate microcode
procedures, which really perform the operation. If the images

are larger than the array size, these routines may take

advantage of the available parallelism between I/0 and
processing, in order to increase performance.

6. CONCLUSION

The system architecture has been designed and the assembly

of a prototype should start as soon as the chips are available.

Unfortunately, this has been delayed by NCR's decision of not

selling the GAPP chips to INPE. In the meantime, software tools
have been developed. Up to now there are two low-level
programming environmets available, for the GAPP chip and for the

whole system, both of them with an assembler and a simulator.

• •

•
•

254

•

•
•

•

The C-like compiler has been completely specified, and

implementation has just begun. The C preprocessar is being
specified.

Preliminar simulation results have proven the feasibility

of using this architecture in some simple image processing
applications. The development of high level languages should
bring an additional degree of functionality to the system. With

the building of this coprocessor, massive parallelism shall be
\'lithin the reach of personal computer users.

ACKNOWLEDGMENT

The authors would like to thank Dr. Edward Davis (North
Carolina State University) for the original proposal of a GAPP

based system and for his suggestions and comments about this
implementation.

Rf:TERENCES

IJNGER, S. H. A Computer Oriented Toward Spatial Prob1ems .

Proceedings of the IRE, 46:1744-45, Oct. 1958.

2 FLYNN, M. J. Some computer organizations and their

effectiveness. IEEE Trans. Comp., C-21(9):948-68, Sept.
1 9 7 2 •

3 BATCHER, Kenneth E. Design of a Massively Parallel Processor.
IEEE Trans. Comput., C-29(9):836-40, Sept. 1980.

4 PARKINSON, O. The Distributed Array Processar (DAP). Computer
Physics Communications, 28:325-36, 1983.

5 NCR CORPORATION, Dayton. Geometric Arithmctic Parallel
Processor. Dayton, 1987. 12 p.

6 THINKING MACHINES CORPORATION, Cambridge. Conncction Machine

Model CM-2: Technical Summary. Cambridge, 1987.

7 MENDES, C. L. Arquitetura Paralela para Processamento de Ima­

gens. ITA, São José dos Campos, SP, Master's Thesis, 1987.

8 MASCARENHAS, Nelson D. A. & VELASCO, Flávio R. O. Processa­

mento Digital de Imagens. São Paulo, SP, Quarta Escola de
Computação, 1984. 2 v.

9 BARRERA, Junior. Uma Abordagem Unificada para os Problemas de

Processamento de Imagens: A Morfologia Matemática. INPE,
S5o ,José dos Campos, SP, Master's Thesis, 1987.

255

