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Abstract—Indoor soccer has been of tactical and scientific
interest, with applications dedicated to analyze tactical and
physiological factors and also physical training. In both cases,
the analysis is based on player tracking, done with human
supervision. This paper presents an automatic tracking method
which shows the trajectories of indoor soccer players during the
game and saving skilled labor during the process. For this, we
use a predictive filter to model the motion and the observation
of multiple stationary cameras, strategically positioned around
the court. We associate a particle filter to a robust probabilistic
observation model with the measurement in court coordinates.
The observation model proposed is based on data fusion across
multiple camera coordinates and projected onto the court plane,
creating a multimodal and bidirectional probability function,
which represents the potential localization of players in the court
plane. The probability function uses an appearance model to
observe player’s location, distinguishing very close players and
yielding good weights in the observation model. The experimental
results show tracking errors below 70 centimeters in most cases
and indicate the potential of the method to help sports teams.
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I. INTRODUCTION

Indoor soccer plays an important role in sports nowadays
due to its dynamic nature and reduced space to play, which
often force the teams to think better and practice their tactics
to the extreme. For this reason, this sport has been the target of
technical and scientific interest, showing several applications
dedicated to tactical, physical and physiological analysis [1].

The tactical staff is interested in player trajectories to verify
the positioning efficiency in the game. The technical staff,
responsible for the players fitness, analyzes the trajectories
to verify data such as speed reached, acceleration peaks
and distance traveled to establish the physical training. The
physiological analysis uses the player trajectory to evaluate the
stress levels to help in physical training. A Computer Vision
system able to retrieve the player trajectories in a game can be
useful to help sport teams to improve all of these aspects [2].

With the advance of technology, the video cameras and
recording media became very accessible. Nowadays, it is
cheap to acquire multiple recordings of an indoor soccer game
with multiple high-resolution cameras. With these videos,
the teams can review their moves, the opponent moves and
identify important characteristics regarding the opponents.

Multiple recordings, taken from different observation points,
can store important redundancies for automatic processing and

further analysis. Estimations of position can be improved by
using multiple observations and a data fusion process, resulting
in more reliable estimations. The use of Computer Vision
methods in indoor soccer are also important in a scientific
point of view. The dynamic environment of a collective game
allows us to try and validate new methods, not only for
applications focused on sports but also for other cases, such
as security, pedestrian counting, and surveillance monitoring.

Most proposed methods to solve the player tracking is-
sue in literature are partially automated and have assisted
tracking steps. In this context, this paper discusses a method
to retrieve the trajectories of indoor soccer players during a
game automatically with human intervention only at startup.
The principal advantage is its automation, saving skilled labor
during the process with great potencial to help sports teams
analisys. The contribution is in observation method with fusion
of data found in multiple camera projected onto the court
plane.

The method consists of a tracking system based on a particle
filter, in which the observation stage combines the data found
in different cameras projected onto the court coordinates.
Initially, for each video on each camera, the method uses a
computer vision standard detector trained to find people and,
therefore, the players. A representation of these players is
projected onto a tridimensional virtual plane that represents
the court using homography. To deal with possible projection
errors, the method characterizes the position of players in
court coordinates using a probabilistic representation. Such
representation is done by a bidirectional and multimodal
Gaussian function, whose output is the probability of a player
being found in a given position S(x, y) of the court. The
multimodal function is used with an appearance model to
strengthen the result, distinguishing close players on the court.
Finally, the proposed method uses this multimodal function in
conjunction with the appearance model to weight the particles
used to compute the trajectory in the court plane coordinates.

II. RELATED WORKS

In recent years, some researchers have turned their attention
to the detection and tracking of indoor soccer players. In [2]
and [1], the authors have presented an approach that deals
with the problem of visual tracking as a graph shortest path
problem. In the graph, the nodes represent the blobs detected
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during the analysis of the game videos. Each edge links a
blob to another blob of the next frame from the same video
sequence. Each blob is connected to every other blob on the
next frame. By determining which player in the first frame
must be tracked, the method finds the shortest path to a final
node and maps it to indoor soccer court coordinates.

Usually, tracking methods need an observation step which
consists in the detection of the tracked objects. Some studies
have used the separation of the background from the object of
interest. In [2], [1] the background is found by averaging the
frames of an excerpt of the video sequence and periodically
recalculated. In [3], the background model is represented by
a color histogram. Considering that the majority of the image
is occupied by the court, the predominant value in the color
histogram represents the area of interest that eliminates the
other regions and leaves the players as evidence. In [4], the
authors focus on the tracking of hockey players.

Detecting indoor soccer players is a similar problem to
the localization of people in images. Viola and Jones [5],
for instance, have presented an efficient method for detecting
objects with a focus on face detection. This approach is easily
adaptable to the localization of other objects. It is based on
machine learning and uses simple features such as Haar filters
arranged in a cascade. A sliding window runs through the
input image, searching for an object of interest. The cascade
is organized in order to quickly remove, in the early stages,
a window with low chance of containing an object. The
hypotheses maintained until the end are considered positive
detections.

In [6], Felzenszwalb et al. have proposed a method based
on a mixture of models in multi-scale deformable parts to
represent objects with high variability. The method is trained
using a discriminative procedure that requires only a set of
images containing rectangular markings for training. Each
part captures local appearance properties of an object, while
the deformable configuration connects the parts to the pairs.
Different from previous approaches, Khan and Shah [7] have
presented a method based on [8] to separate the background,
followed by homography to find the locations of people in a
3D scene.

Silhouette-based techniques have also been used. In [9],
a method was proposed to detect basketball players and
also track them based on the shortest distance between the
detections of adjacent frames. The method presented in [10]
aims at tracking soccer players in the field using stationary
cameras. Players are found in images using blob detection by
means of background separation, using a statistical model. The
authors use homography to map 2D positions in the image
plane onto 3D position in the plane of the (virtual) game
field, and then the tracking is performed by a Kalman filter.
However, detection of blobs does not separate objects very
close or partially occluded. At critical moments, in which there
are high proximity between the tracked objects, two or more
objects of interest can be detected as one. This can occur
as a result of occlusions caused by the camera perspective
or proximity of similar objects that cause failures in the

appearance model used. In addition, the Kalman filter works
only with Gaussian functions and therefore can not deal with
multiple hypotheses, resulting from players proximity. This
often happens in indoor games such as indoor soccer.

III. BASIC CONCEPTS

The problem of visual tracking consists of processing a
sequence of images to describe the movement of one or more
objects in a scene [11] or, also, generating inferences about
the movement of an object from a sequence of images [12].

To track an object, we must detect it on the image. Some
methods in the literature process the whole image to locate
the object [1], [10]. At each frame of a video sequence, all
existing blobs are detected prior to deciding which one will
be tracked. Most recent techniques use predictive filters that
use a model for the object motion called dynamics to estimate
the state of a tracked object in the next frame of a video
sequence. The prediction is adjusted by a local observation,
without taking into account all of the input images. Further
details about predictive filters can be found in [13].

In a nutshell, two filters widely used in the literature are the
Kalman and Particle filters. Kalman filters use Gaussian func-
tions to estimate the next state of a tracking. The advantage is
that the Gaussian function is a parametric function and has a
simple representation [14], [13]. Such filters can estimate past,
present or future states in a sequence or a function, which
gives them power to infer lost states or the ones that could
not be detected. This occurs, for example, when the tracked
object is occluded by another element of the scene causing an
occlusion. The problem with this approach is that the Gaussian
function is unimodal, which means the filter cannot represent
multiple hypotheses simultaneously.

Particle filters, such as those discussed in [15] and [16],
on the other hand, represent functions of probabilities in a
non-parametric form, using sets of weighted samples, called
particles. This type of representation allows multimodal and
unknown functions to be represented. Overall, each particle Xt

is associated with a weight Wt, that represents the function
value at the point determined by the particle. The higher the
number of particles, the better is the representation of the
desired function. This model of no parametric functions is used
to represent the probability function of the object occurs in the
next frame of the sequence, before the frame is observed. This
function is called a priori probability function and is used to
estimate the object state in the next frame.

In a particle filter, a state is the representation of the
object tracked in each frame of an observed sequence. A state
may contain any information considered relevant. Usually, we
represent the states in a vector form. For instance, if the task
is to track the position and velocity of an object, each state
can be composed by an array of two values that corresponds
to these informations.

The a priori probability function is an estimation of what
should happen in the next frame, based on the dynamics
of motion known. When the filter has access to the new
frame, we need to adjust or confirm the a priori function.



At this point, each particle passes through a phase of obser-
vation that verifies its representation in that frame. The new
weighted representation of the probability function represents
the probability of a particle Xt, given an observation Zt and is
denoted by P (Xt|Zt). This new function is called a posteriori
probability function.

The estimation for the next step is done by sorting particles
from the current set, allowing repetition and giving preference
to particles with higher weights. The new set of particles
has the same size as before, but there are repetitions that
can cause the system to collapse. Thus, the values of new
particles are adjusted, considering the known motion dynamics
and adding to each one a random error, representing the level
of uncertainty in the process. This step is called prediction
because, based on knowledge of the tracked object, it estimates
the next set of particles, adding a random error to ensure the
distinction among samples. The new function represented by
the new set of particles is an a priori function P (Xt+1|Zt)
for the new frame of the sequence.
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Fig. 1. Particle Filter steps. (1) a posteriori function t−1; (2) sampling; (3)
propagation, resulting in an a priori function P (Xt|Zt−1); (4) observation
in t; and (5) a posteriori function P (Xt|Zt) in t.

Figure 1 shows the steps of one cycle of the particle filter.
The first layer shows a set of particles represented by ellipses
of different sizes. In the drawing, the size of an ellipsis
represents the weight of the particle in the process. The second
layer shows a set of particles that are repeated; this is the
result of the sampling process. At this point, the weights of
the particles lose their meaning and must be measured again.
The third layer of the figure shows the result of the spread,
where the used dynamics and a random error are applied to the
sorted particles. At this point, the set of particles represents
an estimation for the next frame of the video sequence. In
the fourth layer, the measurement is represented as a function
where the height represents the weight of the measurement at
that point. After the measurement step, the set of particles of
the fifth layer represents the a posteriori probability function,
with the particles weighted and ready for a new iteration. This
process is repeated until the end of the video sequence is
reached.

IV. PROPOSED METHOD

In this paper, we discuss a method for tracking indoor soccer
players based on particle filters with a robust probabilistic
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Fig. 2. Diagram showing the model stages. In Stage #1, players are detected
in the image plane using, in each of the cameras, a detector trained to find
indoor soccer players. In Stage #2, the observations are projected onto a
virtual plane representing the court by homography. In Stage #3, the projected
data are combined in a two-dimensional and multimodal probability function,
which gives the probability of finding a player in a given position of the court.

observation model. The contribution is in the proposed ob-
servation model, which consists of the fusion of data found
in multiple camera coordinates projected onto a virtual plane
representing the court.

For the observation of multiple cameras, players are de-
tected using an object detector trained specifically to locate
indoor soccer players. The positions found by the tracking
system in each camera are projected onto a virtual plane
representing the court plane coordinates (3D), with the aid of
a homography operation. The method keeps track of players
through a particle filter associated with each player, but with
an observation function shared by all filters. The observation
function used by the system consists of a multimodal and
bidirectional function used in conjunction with an appearance
model to map the probability of finding a player in a given
position of the court. In the following, we give more details
of each step of the method.

A. Particle Filter Motion Dynamics

As we described in Section III, each particle of a set is a
possible state that the object may or may not take. In our case,
the tracked object is a player in the game and its state consists
of its S(x, y) position in court coordinates. To describe how
the object moves, we adopt a uniform motion dynamics as
described in Equation 1 and 2. In this motion dynamics, the
time variation is equivalent to the frequency of the video used
(30 frames per second in this article).

St = St−1 + V∆(t) (1)

St =

1 0 1/30 0
0 1 0 1/30
0 0 1 0
0 0 0 1

 ∗
 x
y
vx
vy


t−1

(2)

Besides the dynamics of the system, we need to weight
the particles. For this, we use a multimodal and bidirectional
function that gives the probability of finding a player in a given
position on the court. Section IV-B describes this observation
function.

B. Observation Function

The observation function attached to the particle filter
contains three stages, showing in Figure 2:



1) Stage #1 – Detection of the players in image coordi-
nates. In this paper, we use the detector proposed by
Viola and Jones [5].

2) Stage #2 - Projection of detections onto court coordi-
nates. The data found by the detector are projected onto
court coordinates using homography.

3) Stage #3 – Fusion of multi-camera data. The 3D projec-
tions are combined into a multimodal function composed
by a bidirectional Gaussian with known covariance. The
resulting function gives the probability of detecting a
player in a given position of the court.

1) Stage #2 — Projection of Detections onto Court
Coordinates: The objects of interest move on the plane of the
court and are situated on a plane in a 3D world. We can use
the homography of specific points (e.g., feet of the players) to
find their locations in court coordinates. Each player found by
the detector is represented by a rectangle in the image plane.
In our work, we consider the middle basis of this rectangle as
a good representation of the location of the player’s foot in
the image plane.

To perform homography, we can use points of the court
whose coordinates we know a priori. The points already
known, such as the penalty mark and court corners, serve to
find a mapping function between points in image plane and
points in court coordinates. For this, we can find a matrix H
that maps points of the plane a to their counterparts in a plane
b, starting from a known set of matches. Using the image as
the plane a, we find the matches to known points described
in the plane b (in this case, the plane of the court). These
matches are obtained using a frame of the captured video to
mark the correspondences between points and, consequently,
to find the transformation matrix for the camera before the
video processing.

2) Stage #3 — Multi-Camera Data Fusion: After the
projection, we have a global set of detections described in
world coordinates. Due to possible errors accumulated by
both the detection and the projection, these points are only
an estimation for the location of each player and not its actual
position. Considering the projected points as regions with
potential to match the location of a player, we can replace
each point by a function (e.g., Gaussian 2D). In our work,
we represent the plane of the court with a single multimodal
function, consisting of a mixture of Gaussians corresponding
to the projected points by multiple cameras. Each Gaussian
represents the uncertainty in projecting the corresponding
point and has mean (mean error of the projection) and co-
variance that vary with each camera.

We can calculate the parameters of the Gaussian from a
small set of training videos where the player positions are
manually annotated in the court plane coordinates. By knowing
the actual positions of each player in training videos, we can
compare each detection with its correspondent in the annotated
set. The correspondence is given by the shortest distance.
However, there are cases where multiple players are close,
leading to confusion. We consider a correspondence valid for
the purpose of training only the ones whose nearest annotated

point is less than two meters (L1) and the second closest is
more than three meters (L2). From the correspondences, we
can calculate the mean error of projection in x and y directions
and covariance of error in each camera. In this way, we replace
each point by a Gaussian whose mean and covariance are
calculated for the camera that generated the point.

Each Gaussian N (x|µk,Σk) is considered one component
of a mixture to form a complex function representing the court
plane. A linear combination of Gaussians can give rise to very
complex densities [17]. In our case, we have a set of detections
with the same importance to find players on the court plane.
Therefore, initially, we consider a Gaussian mixture model
with equal combination coefficients πk respecting the condi-
tion

∑
pk = 1 and πk = 1

K considering a superposition of K
Gaussians. The model is given by

P (x) =

K∑
k=1

1

K
N (x|µk,Σk). (3)

Finally, we can represent all the projected points by a
multimodal function, consisting of a mixture of Gaussians
whose parameters are calculated as described above. The
function is a representation of the plane of the court in which
we can measure the probability of finding a player at a given
point and can be used directly in the observation step of the
particle filter. Figure 3 depicts a representation of the system
observations for an analyzed game.

Fig. 3. Observation of the tracking system in one of the cycles of the particle
filter. The multi-camera projections are replaced by Gaussian functions with
previously trained parameters. As a result, there is a 2D function that returns
the probability of finding a player in a given region.

3) Stage #1 — Player Detection In Image Coordinates:
The first step is finding the players in image coordinates
independently in each camera. In this paper, we use the
standard Viola and Jones [5] model, trained to detect indoor
soccer players. Other detectors as [6] could be used as well.

C. Appearance Model to Strengthen the Multimodal Function

The multimodal function discussed in the previous section
gives us the potential of finding a player in a real-world
coordinate, but not distinguishing the players because all
Gaussians have the same weight in the mixture.

Each Gaussian is a result of one detection in camera
coordinates and corresponds to one rectangle detected in a
camera point-of-view. This rectangle can be used to compute
the appearance of a player detected and then is compared
with an appearance model in that camera. The comparison



results in a similarity value between the detect appearance
and the expected appearance given by a known model for
the correspondent camera. The similarity value can be used
as the coefficient πk in Equation 3 for the corresponding
Gaussian. Therefore, the most similar detection with respect
to the appearance model in the correspondent camera yields a
Gaussian with higher importance in the mixture.

To calculate the appearance of a detected player, we use
color information for distinguishing players of different teams
and gradient information to represent details of specific play-
ers. We know that the shape of a player does not have
large changes between consecutive frames in a video. Hence,
histograms of gradients will be very similar in this situation
and can be a good representation of line distribution in the
rectangle detection.

The histogram of gradients are computed by four steps:
1) We apply the Sobel algorithm on the sub-image of

interest to find derivatives in x and y directions, dx and
dy. This requires filtering the intensity sub-image using
the kernels [−1, 0, 1] and [−1, 0, 1]

T .
2) Use dx and dy to calculate one gradient magnitude

image Gr and one gradient orientation image A.
3) Summarize the sub-region information into two 15-bin

histograms: one for Gr and another for A. Additionally,
compute one 255-bin histogram for each color channel
of the sub-image considered. Finally we normalize all
histograms.

Figure 4 depicts an appearance of a player considering a
set of histograms. We divide the sub-image that contains the
player in 3 regions: top, middle and bottom. Each region
results in five histograms: one for the Gradient’s magnitude,
one for the Gradient’s orientations and one to each color
channel of the image considering the HSV color-space.

H S V Gr A

Fig. 4. Appearance model for one observed player. Each image sub-region is
converted to HSV color-space and divided into three regions: top, middle and
bottom. Each region is characterized with five histograms: one histogram per
color channel (H , S and V ), one for gradient’s magnitudes (Gr) and other
for gradient orientations (A).

We use histogram correlation to compare two appearance
models S(AP1, AP2). Considering one appearance model as
a list of 15 histograms (five per region, with three regions)
and AP i as i-th histogram on the list, we have:

S (AP1, AP2) =

15∏
i

CORR(AP i
1, AP

i
2). (4)

According to this model, each detected player has an
appearance model that needs to be compared to others in

the corresponding camera view to obtain the πk coefficient.
This coefficient will be the importance of such Gaussian to
represent the position of the corresponding detected player. In
this work, the appearance model in the camera view is the
set of good appearances previously found. Therefore, πk can
be the maximal similarity comparing the detected appearance
(APd) in the current frame with all appearances on the model
(APm) as in the Equation 5:

πk = max {S(APd, APm)}. (5)

With this, re-writing Equation 3, we have:

P (x) =

K∑
k=1

πkN (x|µk,Σk). (6)

This model is constantly updated to maintain a good repre-
sentation of the object. This is done replacing the appearance
of a candidate to get out (CO) by a new good appearance
detected, considered a candidate to get in (CI). In each
comparison between the model and any other appearance, the
model updates a history of utilization to signal the last used ap-
pearance. This appearance is considered the CO. One observed
appearance is considered a good CI when it generates the
best similarity with the current model. As long as the model
maintains information about the appearances use, the system
knows what region of interest results the highest weight during
the observation step and uses the corresponding appearance as
a candidate to get in. In case of one CI appearance receives
similarity greater than a threshold, this appearance CI will
replace the appearance CO in that model. This information is
maintained by the particle filter observation step.

At each new iteration of the filter, a set of particles must be
weighted. For this reason, the Gaussian mixture corresponding
to the function is weighted using the appearance model of
their corresponding cutouts. The appearance of the sub-image
of each Gaussian is compared to the appearance model of
the corresponding camera, maintained by the tracker. Thus,
the observation model used by the filter has N appearance
models for the observed object, one for each camera. The
result is a multimodal function with the highest peaks in the
regions corresponding to the object tracked and therefore able
to identify the proximity of players, but with emphasis on the
correct object.

V. EXPERIMENTS AND VALIDATION

A. Data

For validation, we use videos of indoor soccer games
recorded by a set of four stationary cameras positioned around
the court (See Figs. 5 and 6).

We have a collection of seven games in Full-HD recorded
using four cameras, each at 30 frames per second. Each game
has two periods. For simplicity, we consider each period as
a game, with a total of 14 games recorded by four cameras.
This collection was recorded during the 2009 Female South
American Indoor Soccer Championship.



Fig. 6. Examples of corresponding frames in a game recorded by different cameras.

Fig. 5. Positioning of cameras around the court. Four cameras were
positioned around the court with overlapping fields of view. Each camera
observes one of the halves of the court so that a player is observed by at least
two cameras.

B. Training and Calibration of Parameters

As we already discussed, the particle filter observation
method requires two training stages: one for the player detector
in image coordinates and the other to calibrate the parameters
needed for the construction of the multimodal function that
represents the plane of the court. For this, we used one period
of the games (one period of a game with four camera footage).
The remaining 13 games are used for testing.

To train the player detector in image coordinates, we use a
set of 16,000 positive samples and another with approximately
18,000 negative samples. A positive sample is a small rectan-
gle containing one player, while a negative sample contains
the background. In the parameter training for the multimodal
function, we compared the detections of the plane of images
projected onto the plane of the court with the real markings
(manual annotation). Then, we calculate the average projection
errors and their covariances for each camera, in order to
calibrate the parameters used in the multimodal function
representing the plane of court, as discussed in Section IV-B2.

We have performed the two training steps using an entire
annotated video. For testing, we consider only the first two
minutes of each game. This limitation is due to the difficulty
of annotating by hand the positions of players on the plane of
court coordinates for ground-truth.

For the correct operation of the particle filter, we need to
start the set of particles from the initial positions of the players
who we want to track. For this, we need to mark the position
of the players of interest in the first frame of each video. In
our case, we are interested in the 10 players on the court and
also the two referees. For each object of interest, we initiate
a filter with a set of 500 particles.

C. Experiments of tracking without the appearance model
During the tests, most of the obtained trajectories were

successful. However, there are cases in which there are confu-
sions between players who have approached each other during
tracking. In general, the referees are positioned on the side of
the court and have simplified motion, leading to successful
tracking trajectories.

Figure 7 shows the mean errors found in some successful
trajectories and Figure 9 shows their trajectories found by
the tracking approach, plotted with the manual markings. The
measurement error represents the difference between position
estimates and the manually annotated positions.

We note, by observing the successful cases, that the average
accumulated error in each trajectory is below one meter in
most cases and 0.4 meters in the best case. When we analyze
all trajectories together, we find a global average error of 0.73
meters. This is an interesting value, considering the dimen-
sions of the court (20m × 40m). This result is encouraging,
since it is obtained automatically after a simple training from
a single video. Table I shows errors and standard deviations
found by analyzing the collection of successful trajectories.

Situations in which the trajectories of two or more players
cross may lead to confusions and must be addressed. Such
confusions are made by the proximity of the trajectories
and are solved by the prediction filter, based on the object
motion dynamics. However, when the trajectories of two or
more players tend to be coincident for a moment, we have
a total confusion situation. This can occur, for example, in
a ball dispute or celebration. In such cases, the players are
very close to each other and move in the same direction.
This configuration makes the filter rely on the observation
stage for correction. Sometimes, the observation does not
distinguish between detected players. This is due to the particle
measurement that observes only the likelihood given by the
observation function. Nearby peaks with similar motion cause
the division in the set of particles and, in this case, the
prediction system cannot deal with the confusion.

This problem can be solved by strengthening the observation
model with adaptive appearance models, coupled to the parti-
cles. With this approach, the particle find the probability of a
player being in a given position, and can check the probability
of a player given its appearance model. To maintain the
representativeness, the model needs to be updated throughout
the whole process, since there are variations of light, rotation
and scale of the observed objects. This improvement is what
we show in the next section.
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Fig. 7. Mean of accumulated errors found in successful trajectories
considering the tracking without the appearance model. The figure shows
the curves found for the trajectories of maximum, minimum, and mean error.

TABLE I
ERRORS AND STANDARD DEVIATIONS FOR THE COMPLETE TRAJECTORIES

FOUND BY THE TRACKER WITHOUT THE APPEARANCE MODEL.

Track µ σ

BoliviaxColombia-T1-player-10.trj 0.60 0.11
BoliviaxColombia-T2-player-10.trj 0.82 0.27
BrazilxColombia-T2-player-11.trj 0.54 0.12
BrazilxColombia-T2-player-12.trj 0.73 0.36
BrazilxPeru-T1-player-09.trj 0.69 0.17
BrazilxVenezuela-T1-player-11.trj 0.59 0.17
ColombiaxUruguay-T1-player-09.trj 0.40 0.08
ColombiaxUruguay-T1-player-11.trj 1.36 2.79
ColombiaxUruguay-T2-player-10.trj 0.53 0.06
PeruxBolivia-T1-player-10.trj 0.66 0.22
PeruxBolivia-T1-player-11.trj 0.61 0.35
PeruxBolivia-T2-player-10.trj 1.20 0.24
Global 0.73 0.48

D. Experiments Using the Appearance Model

When the tracker works just with de observation model
presented in Section IV-B without the appearance model
presented in Section IV-C, we can observe problems in some
cases of confusions. Using the appearance model, we can find
trajectories with errors and covariances less than the ones
found without the appearance model. Figure 10 shows the best
trajectory found using the system.

The results show us the improvement provided by the use
of the appearance model that can be observed comparing
Figures 7 and 8. This improvement reflects on the global
values of error and covariance as the Table II shows. In the
first test case (Table I) without the appearance model, we
found 0.73 meters of accumulated average error while with
an appearance model (Table II) we found 0.60 meters with a
small covariance.

Using an appearance model, the tracker can solve some of
problems discussed in the previous section. For instance, when
two players are close in a dispute for the ball, their motion is
similar and their positions are very close, but their appearance
models are different. In this case, the observation part of the
particle filter will analyze two different objects and can get
the correct probabilities for the particles. Another situation
happens when one player passes close to another. Without
the appearance model, the tracker will be confused and will
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Fig. 8. Mean of accumulated errors found in successful trajectories
considering the tracking with the appearance model. The figure shows the
curves found for the trajectories of maximum, minimum, and mean error.

TABLE II
ERRORS AND STANDARD DEVIATIONS FOR THE COMPLETE TRAJECTORIES

FOUND BY THE TRACKER USING APPEARANCE MODEL.

Track µ σ

BoliviaxColombia-T1-player-10.trj 0.57 0.11
BoliviaxColombia-T1-player-11.trj 0.68 0.16
BoliviaxColombia-T2-player-10.trj 0.80 0.29
BrazilxArgentina-T1-player-09.trj 0.58 0.07
BrazilxColombia-T2-player-11.trj 0.52 0.09
BrazilxColombia-T2-player-12.trj 0.72 0.33
BrazilxPeru-T1-player-09.trj 0.64 0.21
BrazilxVenezuela-T1-player-10.trj 0.30 0.11
BrazilxVenezuela-T1-player-11.trj 0.61 0.21
ColombiaxUruguay-T1-player-09.trj 0.36 0.04
ColombiaxUruguay-T2-player-10.trj 0.63 0.07
PeruxBolivia-T1-player-09.trj 0.81 0.29
PeruxBolivia-T1-player-10.trj 0.61 0.21
PeruxBolivia-T1-player-12.trj 0.58 0.18
PeruxBolivia-T2-player-09.trj 0.61 0.23
Global 0.60 0.19

perceive just one player in this location. If the players are
moving slowly, the observation model without the appearance
model can merge trajectories. The appearance model helps
the observation model to distinguish these players generating
different values to different players. With this, the system can
continue tracking the correct player finding good trajectories.

However, the use of appearance models does not solve
all problems. In cases of celebration, the players are found
very close for a long time and the detector on the image
plane cannot detect all players involved in the celebration. In
these cases, the tracker loses the specific information about
the player tracked and fails. Basically, there are still two
confusion situations: the first one occurs when two or more
players appear together on image plane. During the game, it is
common to find players of the same team together celebrating
a goal. In this case, two or more players are merged into
just one on the multimodal function, their appearances are
very close and their dynamics are the same. The result of this
situation is the fusion of the trajectories. The second confusion
type occurs when the detector loses a player that is close to
another one with the same appearance and the same motion
dynamics. In these cases, the multimodal function loses one
peak and causes the fusion of the corresponding trajectories.



Fig. 9. Trajectory calculated by the tracker without appearance model
(red) and the corresponding manual ground truth (blue). The trajectory in
red correspond to the mean error in Figure 7.

VI. CONCLUSION

This paper discussed a method to retrieve trajectories of
indoor soccer players during the game, using a predictive
filter to model the motion dynamics of objects of interest and
a multi-camera observation system. The observation model
consists of a multimodal function composed of a mixture of
Gaussians and an appearance model used to weight Gaus-
sians and strengthen the observation. The system uses a set
of stationary cameras strategically placed around the court.
Detections found in the images are combined, resulting in one
multimodal probability function to represent the observation
at the plane of court.

The main advantage of the proposed method is its automa-
tion, saving skilled labor during all the process, while most
approaches are partially automated or assisted. Our method
requires intervention only in the training phase, initialization
and the homography matrices calculation, which are performed
only once and from a single video sequence. On the other
hand, it still does not represent a final solution towards indoor
soccer player tracking given that there are still some situations
in which the observation model is not able to deal with long
and close coincident trajectories.

Moments of confusion occur when trajectories intersect
or when they are coincident. In the first case, the proposed
prediction system can successfully separate the trajectories and
the tracking is not affected. In the second case, the trajectories
merge into a single object, since their motion is similar, and
this affects the prediction system. For this problem, we use
adaptive appearance models to strengthen the observation.

In our tests, we can observe that the use of appearance
models in conjunction with the multimodal function allows the
particle filter to solve important confusion situations among
players, mainly in cases with players of different teams. The
method solves other situations when players of the same team
are involved, but we still observe problems during celebrations.
In these moments, some players of the same team appear
together, and share the same or very similar motion dynamics
leading the detector to fail and the tracker to lose the players
involved.

As future work, we intend to focus on the problem of
confusions to make an observation model that can deal with
this problem. With a model that can be able to solve these
situations we will have a completely automatic method to track

Fig. 10. Trajectory calculated by the tracker using the appearance model
(red) and the corresponding manual ground truth (blue). The appearance in
red corresponds to the minimum error in the Figure 8.

indoor soccer players and then use trajectories to gather some
important informations to the tactical and training staff of a
team. Another possible extension is to detect situations rele-
vant to the training staff based on ball tracking. As an example,
we can mention the moments of passing and receiving the ball,
right and wrong pass counting and shots on goal.
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