
Contextual Filtering of CT Images Using
Markovian Wiener Filters With a Non Local Means

Approach for Statistical Estimation
Denis H. P. Salvadeo, Nelson D. A. Mascarenhas, Alexandre L. M. Levada

Computer Department
Federal University of São Carlos (UFSCar)

São Carlos, Brazil
Email: {denissalvadeo, nelson, alexandre}@dc.ufscar.br

Abstract—Recently, investigations on medical imaging have
been indicating a strong correlation between cases of cancers and
the increasing number of Computed Tomography (CT) exams,
mainly due to high radiation doses to which patients are exposed
during the data acquisition process. Thus, there is a need to
reduce the radiation doses whereas still keeping satisfactory
quality images for diagnosis. In this paper, we propose to filter
noise in CT images using contextual versions of Wiener Filter
such as Generalized Wiener Filter (GWF) and Non Local Means
approach for parameter estimation. Experiments show that the
proposed methods are promising, since they provide good results
with no significant increase in the computational cost.

Keywords-Wiener Filter; Fisher Information; Markov Random
Fields; Non Local Means Approach; Image Denoising; Computed
Tomography.

I. INTRODUCTION

Computed Tomography (CT) technology has been used in
several areas, especially in medical sciences for diagnosis
purposes, such as the detection of some kinds of cancer (e.
g., in the lungs). However, in the last years, due to the
excessive use of this technology, by the emission of high doses
of radiation, there has been an increase in cases of cancers
related to CT [1]. Thus, a reduction on the radiation doses
in CT imaging has become a fundamental concern among
radiologists worldwide. But, as a side effect, lowering radiation
doses causes a decrease in the signal-to-noise ratio (SNR).

On lower doses, low photon counting due to the short expo-
sure time to the tomograph rays degrades the CT projections
with Poisson noise [2], [3]. Although it is acknowledged that a
general model for the noise in the reconstructed image is still
lacking [4], [5], by invoking the Central Limit Theorem [3],
we adopt the simplified model of a Gaussian, white, additive
and signal independent noise. The good experimental results
that were obtained tend to justify this simplifying assumption.

Thus, in this paper, we propose denoising in CT image
domain. The images are first reconstructed from the CT
projections by using the FBP (Filtered Backprojection) algo-
rithm [2] or a POCS (Projections Onto Convex Sets) based
algorithm [6], [7], [8]. In the case of POCS, it is noteworthy
that a very low percentage of object pixels is subject to
the nonlinear constraints of non-negativity and finite support,

considered in this algorithm. Therefore, the arguments for
using the Central Limit Theorem are still valid.

Then, in the image domain, we assume an Additive White
Gaussian Noise (AWGN) model, and denoising is performed
by using a Wiener filter generalization that is based on Fisher
Information minimization, a concept that tries to maximize
the likelihood of contextual configuration patterns (patches),
relating the Pointwise Wiener Filtering (WF) and Gaussian-
Markov Random Fields (GMRF’s). The a priori statistics for
this bayesian approach is obtained by a prefiltered image
through a Non Local Means filter.

The paper is organized as follows: Section 2 briefly intro-
duces the basis of MRF theory. Section 3 presents the Wiener
Filter and Wiener Filter with Separable (SWF) and Isotropic
MRF’s (IWF) that are used for comparisons. Sections 4 and 5
explain the GWF method and the Non Local Means method,
respectively. Section 6 presents the proposed methodology.
Section 7 describes the experiments and shows the results,
respectively. Finally, Section 8 presents some conclusions and
future works.

II. MARKOV RANDOM FIELDS (MRF)

Markov Random Fields are defined on a neighborhood
system satisfying two conditions: the conditional probability
of a certain random variable in the field given all the others
depends exclusively of its neighbors and any realization of the
field has probability higher than zero [9], [10].

In practical terms, the most important result regarding
practical MRF applications is given by the Hammersley-
Clifford Theorem [9]. Basically, it establishes the equivalence
between MRF and Gibbs Random Fields (GRF), such that we
can obtain the joint distribution of the field from the local
conditional probabilities (and vice-versa). This implies that
the last can be given in terms of clique potentials [9] that
correspond to a function of the random variables of the field.
In this work, MRF will define a smoothness constraint in the
form of a priori knowledge.

III. CLASSICAL WIENER FILTERS

The Wiener filter is the optimum filter in the sense of the
Linear Minimum Mean Square Error (LMMSE) estimate of
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a target signal given an observed signal. There are several
approaches for Wiener filter based on different image forma-
tion models. In this Section, three approaches are considered:
Pointwise, Isotropic and Separable MRF Wiener filters.

The Pointwise Wiener Filter corresponds to a local LMMSE
estimate. Here, we use a version proposed by Kuan et al [11]
for additive, zero-mean noise that is represented by the fol-
lowing equation

f̂(i, j) = f̄(i, j)+
σ2
f (i, j)

σ2
f (i, j) + σ2

v(i, j)
(g(i, j)− ḡ(i, j)) , (1)

where f̂(i, j) is the estimated noise-free pixel, g(i, j) is a cur-
rent observed pixel, f̄(i, j) and ḡ(i, j) corresponds to the local
means of original and observed (noisy) image, respectively
and σ2

f (i, j) and σ2
v(i, j) are the local variances of original

image and noise, respectively. Local estimates for mean and
variance can be obtained in a window of W ×W size. Since
we are assuming zero mean additive noise, we consider that
ḡ(i, j) = f̄(i, j). In addition, since only the observed image is
available, to obtain an estimate of f̄(i, j) and σ2

f (i, j), a mean
filter is applied on the noisy image to obtain an approximation
of the original image. Also, as we consider noise-independent
signal, σ2

v(i, j) is constant over all pixels.
The other two filters embed Markov Random Fields in

the derivation of the LMMSE estimate that is based on the
Orthogonality Principle (OP) [12]. Assuming that the image
formation model is additive and that there is no correlation
between noise and image, we obtain the input and output
autocorrelations, denoted by Rff and Rgg , respectively. To
obtain the LMMSE estimate by OP, we must to solve the
following equation (in a matrix form) for each pixel in the
image:

Rggα = Rfg, (2)

where α is an unknown vector to be calculated and Rfg is
the cross-correlation between original and observed image,
denoted by f and g, respectively.

In addition, it is worth noting that each line in Rgg cor-
responds to the autocorrelation in g between each point and
all others regarding a window with size W by W pixels, thus
Rgg is a N by N matrix, where N = W ×W . On the other
hand, Rfg is a column vector with size N × 1 that represents
the crosscorrelation of f and g, between the central (current)
pixel and the others in the window.

With the α values defined, we can use it to obtain the
estimated pixel f̂i by the equation

f̂i =

N−1∑
n=0

αng[n], (3)

where g[0] . . . g[N − 1] is a window of N pixels centered
on the i-th pixel of observed image g in the lexicographic
form. Using this approach, it is possible to make explicit the
difference between Wiener Filter with Separable (SWF) and
Isotropic MRF (IWF) in the autocorrelation matrix design. The
idea is to define it based on an exponential decay model [13],
[14].

In SWF, for each pixel (i, j) to be estimated, the autocor-
relation matrix is defined as

Rgg =

{
σ2
f (i, j) + σ2

v(i, j), main diagonal

σ2
f (i, j)ρ

|i′−i′′|
V ρ

|j′−j′′|
H , remainder

(4)

Rff = (σ2
f (i, j)ρ

|i′−i|
V ρ

|j′−j|
H ) (5)

where ρV and ρH are vertical and horizontal correlation
coefficients that, for typical images, normally are chosen equal
to 0.95 and (i′, j′) and (i′′, j′′) corresponds to pixel positions
in a window.

In IWF, the autocorrelation matrix is defined as

Rgg =

{
σ2
f (i, j) + σ2

v(i, j), main diagonal

σ2
f (i, j)ρ

√
(i′−i′′)2+(j′−j′′)2 , remainder

(6)

Rff = (σ2
f (i, j)ρ

√
(i′−i)2+(j′−j)2) (7)

where ρ is a correlation coefficient normally equal to 0.95. In
this case, the influence of the central pixel circularly decays
around it.

In both SWF and IWF, the statistics of the original image
are computed as in the PWF.

IV. GENERALIZED WIENER FILTER

The Generalized Wiener Filter was designed in [15] based
on Fisher Information minimization. The Fisher Information
represents the amount of information that a given observed
random variable conveys about an unknown parameter. An
observed Information Fisher can be estimated on a Gaussian
Markov Random Field (GMRF), with respect to a certain
neighborhood system [15]. In this particular case, the param-
eter of interest is the spatial dependency that controls the
structure of a GMRF. Essentially, the idea can be summarized
as follows: in a GMRF, contextual patterns (patches) that are
aligned to the global behavior have low value of observed
Fisher information (because they exhibit high local likelihood).
Therefore, modifying a given pixel in order to minimize the
local observed Fisher information has the effect of smoothing
image patches, since images typically show significant spatial
correlation (which reflects in large values for the MRF spatial
dependence parameter, guiding the global behavior).

Levada and Mascarenhas [15], through the Fisher Informa-
tion on a GMRF, proposed a generalization of the Pointwise
Wiener Filter, which is a particular case of proposed GWF
method. Estimates of the noise-free pixels in this method are
defined as [15], [16]

f̂(i, j) = f̄(i, j)

+
σ2
f (i, j)

σ2
f (i, j) + σ2

v(i, j)
[α(g(i, j)− ḡ(i, j))

+ (1− α)
∑

g(k,l)∈η(i,j)

(g(k, l)− ḡGMRF)(i, j)], (8)

where α ∈ [0, 1] represents a balance between the pointwise
filtering (α = 1) and the contextual filtering (α = 0), in other
words, between local MSE minimization and local observed



Fisher Information minimization [15]. In addition, as in the
Pointwise Wiener Filter we consider that under additive zero
mean noise ḡ(i, j) = f̄(i, j) (this statistics is calculated using
pre-smoothed version of the observed image or by a Non
Local Means approach). On the other hand, ḡGMRF is a simple
local average computed directly from the noisy observations.
Recent results in audio denoising have shown that, in presence
of AWGN, the use of GWF with α 6= 1 overperforms the
Pointwise Wiener Filter [16].

V. NON-LOCAL MEANS

The Non Local Means method was proposed by Buades et
al [17] based mainly on the redundancy of patches in images.
In this method, the noise-free estimated value of a pixel is
basically defined as a weighted mean of pixels in a certain
region. Regarding Additive White Gaussian Noise (AWGN),
these weights are calculated using a Euclidean distance to
measure the similarity between a central patch and neighboring
patches in a search window, where the central pixel of both
central patch and search window is the current pixel to be
estimated. This method can be represented by the following
equation [17]

f̂s =

∑
t∈W ω(s, t)gt∑
t∈W ω(s, t)

, (9)

where f̂s is a current noise-free estimated pixel of the image,
gt is a noisy pixel belong to a search window W and ω(s, t)
are the weight between the patches centralized in s and t and
defined by [17]

ω(s, t) = exp

(
− 1

h

∑
k∈P

|gs,k − gt,k|2
)
, (10)

where h controls the exponential decay, P are the patch indices
and gs,k and gt,k are the k-th pixel in the patches s and t,
respectively.

In this paper, we use a fast algorithm for Non Local Means
Method proposed by Deledalle et al [18], with performance
optimization based on convolution between a patch shape
and similarity measures calculated by Fast Fourier Transform
(FFT). Using patch shape beyond one classical square patch,
it can reduce the rare patch effect, such as halo.

VI. THE PROPOSED METHODOLOGY

The Non Local Means method is a state-of-art method
to denoise images corrupted by AWGN. However, despite
the high capacity to reduce the noise, this method does not
improve the contrast. In turn, the Wiener filter approaches
change the contrast level, but the noise reduction is usually
worse than in the NL Means.

Based on that, we investigate a way to join these methods
in order to obtain a best trade-off between noise reduction and
contrast improvement.

Thus, we propose to estimate the statistics as pre-estimated
mean and variance for Wiener approaches on an estimate of
the noise-free image given by the Non Local Means Method.

In order to evaluate the proposal, we use these contextual
methods based on Wiener Filter and Markov Random Field to
denoise CT images as described and discussed in next Section.

VII. EXPERIMENTS AND RESULTS

In this section, some experiments allowed us to compare
the different approaches of the Wiener Filter described in
this paper applied on CT images reconstructed by POCS
(Projection onto Convex Sets) [6], [7], [8] or FBP(Filtered
Backprojection) [2]. To measure quantitatively the perfor-
mance of the methods, we calculated the Peak Signal-to-
Noise Ratio (PSNR), a MSE based metric, and the Structural
Similarity Index (SSIM) [19], which presents more fidelity
with the human vision. Besides the denoising performance,
the processing time was also shown in the results.

In addition, several parameters values are used. To obtain
an estimate of the noise-free image by the mean filter, we use
kernel sizes (K) 3 × 3 or 5 × 5, whereas to obtain a Non
Local Means pre-smoothing window search size (S) 10× 10
and patch size (P ) 3×3 were used. The window sizes (W ) to
estimate local variance and mean were 3× 3, 5× 5 and 7× 7.
Finally, for GWF values of alpha parameter between 0 (only
context) and 0.9 with step size equal 0.1 and first (V = 1)
and second (V = 2) order Markovian neighborhoods (define
the patch) are tested.

Two phantoms are considered in these experiments. For
each phantom, CT images were acquired with two different
exposure times, 20 and 3 seconds, the first being considered
the original image and the second the noisy image (lower
dose), respectively.

The first phantom corresponds to the classical Shepp-Logan
phantom to simulate the acquisition of head image [20]. This
phantom is composed of homogeneous areas of different tonal-
ities, sizes and shapes. The image reconstructed dimensions
for this phantom were 128×128 pixels and the noise variance
estimated in a homogeneous area was 0.0052 and 0.0094 for
reconstructed image by POCS and FBP, respectively. The best
results in terms of SSIM and PSNR for each method regarding
this phantom are shown in Tables I and II, as well its denoised
images in Figs. 1 and 2.

For this phantom reconstructed by POCS (Table I and
Fig. 1), the best result in terms of both SSIM and PSNR is
obtained by Non Local Means Method. Visually, there was
a higher noise reduction by Non Local Means, but the best
result obtained by GWF presents a suitable contrast.

For this phantom reconstructed by FBP (Table II and Fig. 2),
the best result in terms of PSNR is obtained by GWF with
first order neighborhood (4 nearest neighbors), a high level of
contextual information (α = 0.1), W = 3 × 3 and statistics
obtained from Non Local Means approach. This result is about
8.7 dB higher than the result obtained by Non Local Means
method. In turn, the best result in terms of SSIM is obtained by
SWF with W = 5 × 5 and statistics also obtained from Non
Local Means approach. Visually, we can note that a better
trade-off between noise reduction and contrast was obtained



TABLE I
RESULTS FOR SHEPP-LOGAN PHANTOM RECONSTRUCTED BY POCS. THE SYMBOL * INDICATES THAT THE PRE-ESTIMATED STATISTICS ARE OBTAINED

FROM THE NL MEANS RESULT (THE TIME FOR THESE RESULTS INCLUDE THE STATISTICS ESTIMATION TIME).

Methods PSNR SSIM Time(s)
Noisy Image 22.44 0.53 -
NL Means (S = 10× 10, P = 3× 3) 24.30 0.75 0.79
PWF (W = 7× 7, K = 3× 3) 21.79 0.67 1.33
PWF (W = 5× 5, K = 3× 3) 21.74 0.67 1.32
PWF (W = 5× 5)* 21.90 0.71 1.92
PWF (W = 3× 3)* 21.53 0.72 1.91
IWF (W = 7× 7, K = 3× 3) 20.60 0.68 32.06
IWF (W = 7× 7)* 20.47 0.70 34.41
SWF (W = 7× 7, K = 3× 3) 20.94 0.52 42.10
SWF (W = 5× 5, K = 3× 3) 19.81 0.66 13.68
SWF (W = 7× 7)* 19.85 0.47 47.33
SWF (W = 3× 3)* 19.57 0.69 6.08
GWF (α = 0.7, V = 1, W = 5× 5, K = 3× 3) 22.32 0.63 1.69
GWF (α = 0.9, V = 2, W = 5× 5, K = 3× 3) 22.08 0.68 1.67
GWF (α = 0.8, V = 1, W = 5× 5)* 22.93 0.72 2.27

TABLE II
RESULTS FOR SHEPP-LOGAN PHANTOM RECONSTRUCTED BY FBP. THE SYMBOL * INDICATES THAT THE PRE-ESTIMATED STATISTICS ARE OBTAINED

FROM THE NL MEANS RESULT (THE TIME FOR THESE RESULTS INCLUDE THE STATISTICS ESTIMATION TIME).

Methods PSNR SSIM Time(s)
Noisy Image 12.18 0.13 -
NL Means (S = 10× 10, P = 3× 3) 12.67 0.35 1.01
PWF (W = 5× 5, K = 5× 5) 17.23 0.52 1.88
PWF (W = 3× 3)* 20.47 0.62 2.60
IWF (W = 7× 7, K = 3× 3) 17.94 0.58 51.42
IWF (W = 7× 7, K = 5× 5) 17.13 0.59 51.35
IWF (W = 3× 3)* 19.74 0.65 6.86
IWF (W = 5× 5)* 18.58 0.69 17.77
SWF (W = 5× 5, K = 3× 3) 17.16 0.47 18.07
SWF (W = 7× 7, K = 5× 5) 16.77 0.55 56.60
SWF (W = 3× 3)* 19.86 0.66 6.67
SWF (W = 5× 5)* 19.36 0.71 17.87
GWF (α = 0.3, V = 1, W = 3× 3, K = 3× 3) 17.72 0.38 2.28
GWF (α = 0.9, V = 2, W = 5× 5, K = 5× 5) 17.06 0.51 2.32
GWF (α = 0.1, V = 1, W = 3× 3)* 21.41 0.66 3.05
GWF (α = 0.7, V = 2, W = 3× 3)* 20.59 0.66 3.05

by the contextual approaches with statistics obtained from Non
Local Means approach.

The other phantom is composed of cylindrical structure of
plexiglass with ten air filled holes of different diameters, ar-
ranged asymmetrically. Here, this phantom is called Asymmet-
ric. The major motivation to use this phantom is to evaluate the
capacity of the methods to preserve the resolution. The image
reconstructed dimensions for this phantom were 100 × 100
pixels and the noise variance estimated in a homogeneous
area was 0.0037 and 0.0126 for reconstructed image by POCS
and FBP, respectively. The best results in terms of SSIM and
PSNR for each method regarding this phantom are displayed
in Tables III and IV, as well its denoised images in Figs. 3
and 4.

For this phantom reconstructed by POCS (Table III and
Fig. 3), the best result in terms of both PSNR and SSIM was
obtained by GWF with second order neighborhood (8 nearest
neighbors), a low level of contextual information (α = 0.8),
W = 3 × 3 and statistics obtained from Non Local Means
approach. This result is about 3.7 dB higher than the result
obtained by Non Locals Means method. Visually, we can note
that a good noise reduction and a better contrast was obtained

by the best results. Besides, the results obtained by other
contextual approaches (IWF and SWF) can be considered very
good too.

For this phantom reconstructed by FBP (Table IV and
Fig. 4), the best result in terms of PSNR is obtained by
GWF with first order neighborhood (4 nearest neighbors), a
low level of contextual information (α = 0.7), W = 5 × 5,
K = 3× 3 and statistics obtained from pre-smoothed version
of the observed image. This result is about 3.1 dB higher
than the result obtained by Non Local Means method. In turn,
the best result in terms of SSIM is obtained by IWF with
W = 3×3, SWF with W = 3×3 and GWF with second order
neighborhood (8 nearest neighbors), a low level of contextual
information (α = 0.7), all of them with statistics obtained
from Non Local Means approach. Visually, we can note that a
better trade-off between noise reduction and contrast was also
obtained by the contextual approaches with statistics obtained
from Non Local Means approach.

Regarding the processing time, all methods are mainly
dependent of the window size (W ), being the IWF and SWF
more affected by this parameter. However, all methods are
easily parallelizable. In general, the GWF method was faster



TABLE III
RESULTS FOR ASYMMETRIC PHANTOM RECONSTRUCTED BY POCS. THE SYMBOL * INDICATES THAT THE PRE-ESTIMATED STATISTICS ARE OBTAINED

FROM THE NL MEANS RESULT (THE TIME FOR THESE RESULTS INCLUDE THE STATISTICS ESTIMATION TIME).

Methods PSNR SSIM Time(s)
Noisy Image 22.17 0.64 -
NL Means (S = 10× 10, P = 3× 3) 23.90 0.81 0.67
PWF (W = 3× 3, K = 5× 5) 25.63 0.79 0.81
PWF (W = 3× 3)* 24.14 0.81 1.36
IWF (W = 3× 3, K = 3× 3) 24.23 0.77 2.27
IWF (W = 5× 5, K = 3× 3) 22.87 0.77 6.01
IWF (W = 3× 3)* 23.71 0.80 3.01
SWF (W = 3× 3, K = 3× 3) 24.34 0.77 3.08
SWF (W = 5× 5, K = 3× 3) 24.12 0.77 8.50
SWF (W = 3× 3)* 23.80 0.80 3.96
GWF (α = 0.9, V = 2, W = 3× 3, K = 5× 5) 26.83 0.79 1.00
GWF (α = 0.8, V = 2, W = 3× 3)* 27.58 0.81 1.55

TABLE IV
RESULTS FOR ASYMMETRIC PHANTOM RECONSTRUCTED BY FBP. THE SYMBOL * INDICATES THAT THE PRE-ESTIMATED STATISTICS ARE OBTAINED

FROM THE NL MEANS RESULT (THE TIME FOR THESE RESULTS INCLUDE THE STATISTICS ESTIMATION TIME).

Methods PSNR SSIM Time(s)
Noisy Image 16.32 0.28 -
NL Means (S = 10× 10, P = 3× 3) 17.86 0.38 1.31
PWF (W = 3× 3, K = 3× 3) 20.31 0.44 1.20
PWF (W = 3× 3, K = 5× 5) 16.85 0.45 0.81
PWF (W = 3× 3)* 18.11 0.46 1.99
IWF (W = 3× 3, K = 3× 3) 18.12 0.44 2.69
IWF (W = 7× 7, K = 3× 3) 16.84 0.45 22.63
IWF (W = 7× 7)* 16.66 0.45 23.91
IWF (W = 3× 3)* 16.21 0.47 3.86
SWF (W = 3× 3, K = 3× 3) 18.13 0.44 2.64
SWF (W = 7× 7, K = 3× 3) 17.90 0.45 34.61
SWF (W = 7× 7)* 17.59 0.45 27.69
SWF (W = 3× 3)* 16.21 0.47 3.91
GWF (α = 0.7, V = 1, W = 5× 5, K = 3× 3) 20.96 0.44 1.43
GWF (α = 0.9, V = 1, W = 3× 3, K = 5× 5) 16.84 0.45 1.39
GWF (α = 0.5, V = 1, W = 5× 5)* 20.49 0.45 2.57
GWF (α = 0.7, V = 2, W = 3× 3)* 16.74 0.47 2.63

than the other contextual Wiener filters.

VIII. CONCLUSIONS

In this paper, we proposed contextual denoising of CT
images reconstructed by POCS or FBP using Markovian
Wiener Filters and its parameter estimation based on Non Lo-
cal Means approach. Experiments were performed regarding
two phantoms acquired with different exposure times, high
and low dose. The results showed that combination of Non
Local Means approach, Wiener Filter and contextual modeling
by Markov Random Fields produce a good balance between
noise reduction and contrast level. Therefore, this proposal is
suitable to denoise CT images.

Besides, the Generalized Wiener Filter with Non Local
Means has shown the best performance in terms both quantita-
tive and qualitative, outperforming the state-of-art Non Local
Means method in some cases.

Future works include a detailed analysis of the noise pre-
sented in the image domain to check conditions such as signal-
dependent behavior of the noise, an adaptive windowing tech-
nique for controlling the windows size (W ) and an adaptive
definition for the parameter α in the GWF.
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Fig. 1. Denoised images for Shepp-Logan phantom reconstructed by POCS: (a) original image, (b) noisy image, (c) NL Means result, (d)-(g) PWF results,
(h)-(i) IWF results, (j)-(m) SWF results and (n)-(p) GWF results in the same order of Table I.
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Fig. 2. Denoised images for Shepp-Logan phantom reconstructed by FBP: (a) original image, (b) noisy image, (c) NL Means result, (d)-(e) PWF results,
(f)-(i) IWF results, (j)-(m) SWF results and (n)-(q) GWF results in the same order of Table II.
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Fig. 3. Denoised images for Asymmetric phantom reconstructed by POCS: (a) original image, (b) noisy image, (c) NL Means result, (d)-(e) PWF results,
(f)-(h) IWF results, (i)-(k) SWF results and (l)-(m) GWF results in the same order of Table III.
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Fig. 4. Denoised images for Asymmetric phantom reconstructed by FBP: (a) original image, (b) noisy image, (c) NL Means result, (d)-(f) PWF results,
(g)-(j) IWF results, (k)-(n) SWF results and (o)-(r) GWF results in the same order of Table IV.


