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Abstract—This paper proposes a new methodology for micro-
pattern analysis in digital images based on fuzzy numbers. A
micro-pattern is the structure of the gray-level pixels within
a neighborhood and can describe the spatial context of the
image, such as edge, line, spot, blob, corner, texture, and more
complex patterns. By treating a pixel neighborhood as a fuzzy
set and each pixel gray-level as a fuzzy number, we can evaluate
the membership degree of the central pixel to the others. We
have called this method the Local Fuzzy Pattern (LFP). Using
a sigmoid membership function, we proved that the proposed
methodology surpasses the Hit-rate of the Local Binary Pattern
(LBP), for texture classification. The LFP proved to be robust
to image rotation. Moreover, our proposed formulation for the
LFP is a generalization of previously published techniques, such
as Texture Unit, LBP, FUNED, and Census Transform.

Keywords-micro-pattern analysis; fuzzy numbers; texture anal-
ysis;

I. INTRODUCTION

An image’s spatial distribution plays an important role in
many computer vision tasks. Visual patterns, however, are
ambiguous by nature. Image characteristics are often cor-
rupted and distorted by the acquisition process. Descriptions
of objects in scenes are not always well-defined, and the
knowledge about the objects in the scene is described in vague
terms. The gray-level distribution in an image neighborhood
(3×3, 5×5, ...) can be defined as an image micro-pattern. This
structure can describe the spatial context of the image, such as
edge, line, spot, blob, corner, texture, and more complex pat-
terns. The topographical characteristics of micro-patterns are
more robust to shift, scale, and changes in illumination. In the
computer vision literature, some approaches were developed
to extract these characteristics. The Orientation Histogram
designs the micro-pattern as a directional line or edge and
calculates the histogram of each direction in the region [1] [2]
[3] [4]. The Scale Invariant Feature Transform (SIFT) [5] is
a method for micro-pattern analysis that extracts some points
called key features.

Another method is the design of a bank of filters to extract
the micro-structural features, and the regional characteristics
are computed from the filter response [6] [7]. The Local
Binary Pattern (LBP) [8] was first applied for texture analysis
[9] but was later extended to background modeling [10],
face detection [11], facial expression analysis [12] and face
recognition [13]. The image is first divided into small regions,
from which LBP histograms are extracted and concatenated
into a single feature histogram to represent the image.

Yang, Gong and Tang [14] have proposed a model-based
feature extraction approach, which uses a Markov Random
Field to model the micro-structure of the image and design
adaptive micro-patterns for feature extraction. The micro-
pattern representation was also extended to Gabor magnitude
features [15] and Gabor phase features [16] to increase the
discrimination capacity. Zhao, Gao and Zhang [17] have con-
ducted a comparative performance evaluation of micro-pattern
representations on four Gabor features (real part, imaginary
part, magnitude and phase) for face recognition.

However, in all these methods, the micro-patterns are de-
signed by user on the basis of experience, and they are
application oriented. Another problem is that in some cases, it
is difficult for the user to determine whether the micro-pattern
is appropriate, unless he refers to the experimental result.

Zhao, Wu, Liu and Chen [18] extend the LBP to the
Completed modeling of Local Binary Pattern (CLBP), which
is composed by the center gray level, sign components and
magnitude components. The authors concluded that the CLBP
has better texture feature extraction capabilities than standard
LBP.

The Fuzzy Local Binary Pattern (FLBP) extends the LBP
approach by incorporating fuzzy logic in the representation of
local patterns of texture [19] [20]. The fuzzification allows
the FLBP to contribute to more than a single bin in the
distribution of the LBP values used as a feature vector.
This methodology assumes that a local neighborhood can be
partially characterized by more than one binary pattern as a
result of noise-originated uncertainty in the pixel values. The
results show that the FLBP leads to improvement in texture
classification compared with the original LBP [21]. The Fuzzy
Local Texture Pattern - FLTP also incorporates fuzzy logic in
the local texture patterns’ representations by using fuzzy rules
in 3x3 neighborhoods to find a local texture descriptor [22].
The problem with using fuzzy logic is the computational cost.

In contrast with the FLBP and FLTP that use fuzzy logic
for the Binary Pattern fuzzification, the objective of this paper
is to model the gray-level distribution of an image micro-
pattern as a fuzzy set, and based on membership function,
generate fuzzy-codes that represent the membership degree
of each neighborhood pixel to the central one. We call the
proposed methodology the Local Fuzzy Pattern (LFP).

The rest of this paper comprises four sections. Section II
presents the proposed LFP methodology. Section III describes
the application to texture analysis. Section IV refers to the



experimental evaluation and the classification results obtained.
The conclusions are provided in the last section.

II. METHODOLOGY

When considering gray-levels as fuzzy numbers, the inher-
ent variability of image gray values are incorporated, thus
providing a more powerful approach for the treatment of
digital images compared with the classic treatment that is
based on an analytic formulation.

A. Fuzzy Set and Fuzzy Numbers

A fuzzy set is a pair (U, µ) where U is a set and µ : U →
[0, 1]. For each x ∈ U , the value µ(x) is called the membership
degree of x in (U, µ). For a finite set U = {x1, x2, ..., xn}, the
fuzzy set (U, µ) is denoted by {µ(x1)|x1, ..., µ(xn)|xn}. x is
called a fuzzy member if 0 < µ(x) < 1. The function µ(x) is
called the membership function of the fuzzy set (U, µ).

A fuzzy number is a convex, normalized fuzzy set B ⊆ R
represented by a membership function, whose discourse uni-
verse is the real straight line. The concept of fuzzy numbers,
as fuzzy subsets of real numbers, is a powerful paradigm for
representing imprecision in numerical information. In many
aspects, fuzzy numbers depict the physical world more real-
istically than single-valued numbers. The concept takes into
account the fact that all phenomena in the physical universe
have a degree of inherent uncertainty.

B. Local Fuzzy Pattern

It is important to note that this fuzzy number representation
is quite compact. In addition, the definition of an appropriate
membership function is heuristic and, therefore, not unique.
Thus, the definitions of different membership functions may
be based on the properties of the micro-pattern neighborhood
W×W of a central pixel (i, j) in a digital image. The proposed
methodology assumes that each gray-level distribution within
this neighborhood is a Fuzzy Set composed of Fuzzy Numbers,
that is, because of image generation and preprocessing, there
is a degree of uncertainty in the pixel values. We propose
that the membership degree of the central pixel g(i, j) to the
micro-pattern defined by the neighborhood W ×W should be
determined by (1).

µ̂g(i,j) =

∑W
k=1

∑W
l=1(fg(i,j)P (k, l))∑W

k=1

∑W
l=1 P (k, l)

, (1)

where, fg(i,j) is the membership function and P (k, l) is a
weighting matrix for the neighborhood W ×W with the same
dimension.

Through (1), it is possible to derive some previously
published approaches for micro-pattern analysis. The Fuzzy
Number Edge Detector (FUNED) [23] [24] can be obtained
using the triangular symmetric membership function shown in
(2).

fg(i,j) = max(0, 1− |g(i, j)−A(k, l)
δ

), (2)

where, A(k, l) are the pixels in the W ×W neighborhood, δ
is the fuzzy number span, and the weighting matrix has the
central value equal to 0 and the other elements equal to 1.

The Local Binary Pattern can be derived from (1) using a
crisp function as the Heaviside Step Function shown in (3).

fg(i,j) = H[A(k, l)− g(i, j)], (3)

where,

H[A(k, l)− g(i, j)] =

{
0, if [A(k, l)− g(i, j)] < 0,
1, if [A(k, l)− g(i, j)] ≥ 0.

Taking into account the basic LBP with a neighborhood of
pixels, the weighting matrix will be:

P (k, l) =
1 2 4

128 0 8
64 32 16

The LBPcode (values between 0 and 255) will be obtained
by (4):

LBPcode = µ̂g(i,j)

W∑
k=1

W∑
l=1

P (k, l). (4)

The LBPcode, thus, is a particular case of the LFP approach.
The Census Transform (CT) proposed by Zabih and Wood-

fill [25] differs from the LBP by the order of the bit string.
Similarly, the CT [26] can be inferred from the LFP using the
appropriate weighting matrix:

P (k, l) =
1 2 4
8 0 16
32 64 128

The Texture Unit proposed by He and Wang [27] can also
be derived from the LFP. The membership function must be
as in (5).

fg(i,j) = 1 + sgn[A(i, k)− g(i, j)], (5)

where,

sgn(x) =


−1, if x < 0,

0, if x = 0,

1, if x > 0.

and

P (k, l) =
1 3 9

2187 0 27
729 243 81

Using the right membership function, our proposed method-
ology could extract specific features from the image, based on
the micro-pattern processing.

For texture analysis in this work, we propose a smooth
approximation to the step function by a logistic function or a



logistic curve, a common sigmoid curve membership function,
as in (6).

fg(i,j) =
1

1 + e
−[A(k,l)−g(i,j)]

β

, (6)

where β is the curve slope.
Sigmoid functions, whose graphs are “S-shaped” curves,

appear in a great variety of contexts, such as the transfer func-
tions in many neural networks. Their ubiquity is no accident:
these curves are among the simplest non-linear curves, striking
a graceful balance between linear and non-linear behavior.

Because the LBP method uses the “crisp version of the
sigmoid curve” for texture analysis, we have performed a
comparative performance evaluation of our approach.

III. TEXTURE ANALYSIS USING THE LFP

For the performance evaluation of our method, we used
two texture databases fully employed by computer vision
researchers: Brodatz’s album and the Outex texture database.

Among several classifiers used to compute goodness of
fit between two histograms, such as log-likelihood ratio and
histogram intersection, we choose the Chi-square distance
[28], the same metric used by [29], as the classifier (Equation
7).

χ2(Pi, Qi) =
1

2

255∑
i=0

(Pi −Qi)
2

(Pi +Qi)
, (7)

where, Qi are the gray-level frequencies of the query sample
and Pi are the gray-level’s frequencies of the compared sample
from the set.

A. Brodatz’s album

For the performance assessment, the proposed approach
was tested using 111 images of synthetic and natural textures
from Brodatz’s album [30]. Brodatz’s photo album is a well-
known benchmark database for evaluating texture recognition
algorithms. Each texture image is considered to be a class,
with a dimension of 640×640 pixels. We randomly extracted
ten samples with a size of 50 × 50 pixels from each class,
totalizing 1110 samples.

To analyze the LFP approach performance, the 1110 random
samples were compared with the LBP descriptor. We generated
the histogram (with the LFP codes) from each sample and
used the Chi-square distance for histogram comparison, as
illustrated in Fig. 1.

We applied the LFP approach proposed in (1), considering
the sigmoid function of (6). Fig. 2 shows the sigmoid’s curve
slope (β) performance for Brodatz’s album.

We choose β = 1.005 as the best-trained value, and the
weighting matrix as:

P (k, l) =
1 1 1
1 1 1
1 1 1

Fig. 1. Discrimination method

Fig. 2. Slope of sigmoid curve

This weighting matrix represents the non prevalence posi-
tion for any pixel. The intention is to become the LFP, which
is rotation invariant.

For each sample, we generated its LFP histogram with
the membership degree ranging in the 0-1 interval. Aiming
to generate gray level images and histograms from each
sample processed by the LFP descriptor, we have performed
a conversion to an 8-bit gray level scheme by multiplying
each membership degree value by 255 and rounding the result.
Fig. 3 shows the LFP code generation. Therefore, each image
sample histogram has 256 bins (integer values from 0 to 255),
the same as the original LBP approach.

By leave-one-out cross-validation, we compared the his-
tograms from each sample with the rest of those from the
sample set (1109 samples) using the Chi-square distance.

One query sample is correctly classified if it has the lowest
distance value to one of the 9 samples of the same class.

B. Outex database

The Outex TC 00010 (TC10) test case [31] has 24 classes
of textures digitized under incandescent illumination in nine
rotation angles (0o, 5o, 10o, 15o, 30o, 45o, 60o, 75o, 90o). For



Fig. 3. The LFP code

each angle, there are 20 non-overlapping samples with 128×
128 pixels, in a total of 4320 samples. Fig. 4 shows some of
these texture samples.

Fig. 4. Texture samples from the Outex database

We built the training set with 480 samples from the 20
non-overlapping images at 0o of the 24 classes, and we built
the test set with the remaining 3.840 samples from the other
eight rotation angles. To remove the effect of global first-
and-second order grayscale properties in intensity images,
each intensity image was individually normalized to have an
average intensity of 128 and a standard deviation of 20.

We applied the LFP methodology considering the sigmoid
function of (6) and the same curve slope trained for Brodatz’s
album (β = 1.005). The histogram dissimilarity was compared
using the Chi-square distance.

We compared the LFP with the original LBP which is
not rotation invariant due to the weighting matrix having
different values for each pixel position, and the two rotation
invariant derived methods [29], the LBP ri

8,1 which rotates the
pixel neighborhood aiming the lowest LBPcode value, and the
LBP riu2

8,1 where a uniformity measure was introduced [32] in
order to reduce the number of LBP codes.

We have published two works about using fuzzy sets
for texture analysis. In the first one [33] we have used a
triangular membership function and we have tested in forty
texture images. In the second one [34], we have compared
the performance of two membership functions, triangular and
sigmoid. Both have been tested only over the Brodatz’s album.

IV. RESULTS

For the two set of images (Brodatz and Outex), we generated
confusion matrices with True Positives (TP), or the number of
correctly classified samples, and False Negatives (FN), or the
wrongly classified samples, for all of the query samples. The
Hit-rate or Sensitivity was calculated as (8).

S =
TP

TP + FN
. (8)

We also performed an analysis of the computational effort,
comparing our approach with the LBP method.

A. Brodatz’s album

The LFP performance was first evaluated for texture anal-
ysis using the 1110 samples from Brodatz’s images. The
Hit-rate is shown in Table I, considering the two compared
methodologies. The LFP surpassed the original LBP by nearly
5%. Most likely, this occurs because the LBP is a crisp version
of the LFP, and thus, some texture was better represented as
a micro-pattern by our methodology.

TABLE I
RESULT COMPARISON FOR BRODATZ’S ALBUM

Method Hit-rate
LFP 85.05%
LBP 80.18%

By analyzing the confusion matrix, we verified that some
samples were much better classified by the LFP than by the
LBP. The number of True Positives for some of those images
showed a superior performance for our approach, as observed
in Fig. 5. For these samples, the LFP surpassed the LBP by 6
correct classifications. Otherwise, when the LBP has a better
performance than the LFP, as shown in Fig. 6, the number
of correct classifications is not higher than 2. That is, the
performance comparison showed that some types of texture
were very well evaluated with the LFP approach, and some
others can be analyzed either by the LBP or LFP.

Fig. 5. Better performance for the LFP

Fig. 6. Better performance for the LBP



Table II and the graph in Fig. 7 show the amount of success
considering the 10 samples classified by the two compared
methodologies. Of all the 111 classes, 48 of them are from the
LFP, and 49 are from the LBP with the 10 samples correctly
classified. However, the LFP methodology surpasses the LBP
approach in classifying 8 correct samples for 17 classes, while
the LBP approach only achieves 8 hits in 7 classes. Another
result is that the LFP do not have less than 3 hits for a class.
For some classes, the LBP performs poorly. It classifies no
samples for one class, one sample for two classes and two
samples for one class (the last three lines of the Table II).
Our recent investigations have shown that if a texture has
high frequencies, the best membership function could be the
triangular shape [34].

Fig. 7. General comparison of LFP x LBP

TABLE II
GENERAL COMPARISON OF LFP X LBP

Number of correctly classified samples Number of classes
LFP LBP

10 48 49
9 18 18
8 17 7
7 13 11
6 9 8
5 2 3
4 2 6
3 2 5
2 0 1
1 0 2
0 0 1

Total of classes 111 111

B. Outex database

This collection of image textures was used to measure the
robustness of the LFP considering rotation. For the LFP versus
LBP comparison using the Outex database, we also measured
the sensitivity or Hit-rate, that is, the proportion of True
Positives. The results obtained for each method are shown
in Table III.

The original LBP is not rotation invariant because the
weighting matrix has different values for each pixel position.
This limitation was surpassed by the LBP ri

8,1 that rotates the

TABLE III
RESULT COMPARISON FOR THE OUTEX DATABESE

Method Hit-rate
Basic LBP 50.21%
LBP ri

8,1 78.80%
LBP riu2

8,1 84.82%
LFP 92.94%

pixel neighborhood while aiming at the lowest value. The
LBP riu2

8,1 , where a uniformity measure was introduced in order
to reduce the number of LBP codes, performs better, with
84.82% sensitivity.

The LFP results show that our approach is rotation invariant
and that the Hit-rate has been raised to 92.94%, surpassing all
other methodologies.

C. Computational effort analysis

In order to verify the computational effort required by our
approach, we measured the execution time for the LFP and
LBP code generation.

We choose the Outex TC 00010 due to it is a more
comprehensive image test suite than the Brodat’z album; it has
more image samples and enables the use of rotation invariant
versions. The tests were performed on a 2.00 GHz Intel Core2
Duo P7350 computer with 4.00 GB of RAM.

Both LBP and LFP operators were implemented in Mat-
lab R11, and the LBP reference code was downloaded from
Outex site (http://www.outex.oulu.fi). The test ran 10 times,
and the average times are presented in Table IV.

TABLE IV
AVERAGE TIMES FOR OUTEX TC 00010

Method Average time (code generation)
Basic LBP 8.99s
LBP ri

8,1 21.33s
LBP ri2

8,1 20.90s
LFP 27.56s

The basic LBP uses a simple crisp function, and it performs
faster than LFP, that uses a sigmoid function. However, the
rotation invariant derivatives for the LBP code, show execution
times similar to the LFP approach.

We believe that by optimizing the LFP algorithm and by
reducing the number of histogram bins (less than 256), we
could increase the time performance of our method.

V. CONCLUSIONS

In this paper, we have shown a new methodology for micro-
pattern analysis. We have formulated a new equation based on
membership functions of fuzzy numbers. We have assumed
that the neighborhood of a pixel in digital images should be
modeled as a fuzzy set, taking in account the pixel’s gray
levels. The Local Fuzzy Pattern (LFP) has been defined, and
it has been proven that it is a generalization of some previously
published methods. Using a sigmoid function for calculating
the membership degree of a central pixel of a neighborhood,
we have applied our approach for texture analysis. Brodatz’s



album with 111 classes was randomly sampled, generating
10 samples of each class. After processing these images by
the LFP and LBP approaches, we have compared the Hit-
rate reached using the Chi-square distance. Our results showed
that the LFP surpasses the LBP by 5% in terms of correct
classifications. This result is justified because the LBP is a
particular case the LFP; that is, if we adopt a crisp membership
function for the LFP formulation, we obtain the LBP approach.

To test the LFP robustness for textures rotated at different
angles, we have taken the Outex database and have applied
the same methodology to Brodatz’s album. The Hit-rate for the
LFP has reached 92.94% correct classifications when using the
images without rotation (0o) as the query images, searching
for similarity within the rest of the 3.840 image samples for
8 different angles.

The proposed methodology is a robust method for micro-
pattern analysis. Using the correct membership function, it is
possible to codify and to note the representative feature of the
analyzed pixel neighborhood. Therefore, micro-patterns, such
as texture, edges, and corners, should be better extracted by
the LFP.

However, as concluded by [35], to achieve the best perfor-
mance in image pattern classification, it is necessary to use
a combination of several descriptors together with a classifier
that can make effective use of diverse types of information
contained in them.
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