
Efficient HPR-based Rendering of Point Clouds
Renan Machado e Silva, Claudio Esperança, Antonio Oliveira

Programa de Engenharia de Sistemas e Computação
COPPE / Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brazil

(a) (b) (c) (d) (e)

Fig. 1. A point cloud (a), small / large subsets of its visible points (b) / (c), and corresponding partial reconstructions (d) / (e).

Abstract—Recently, Katz et al. [1] have shown how visibility
information for a point cloud may be estimated by the so-
called HPR operator. In a nutshell, the operator consists of a
simple transformation of the cloud followed by a convex hull
computation. Since convex hulls take O(n logn) time to compute
in the worst case, this method has been considered impractical
for real-time rendering of medium to large point clouds. In this
paper, we describe a GPU implementation of an approximate
convex-hull algorithm that runs in O(n + k) time, where k is
a parameter of the method. Experiments show that the method
is suitable for real-time rendering and partial reconstruction of
point clouds with millions of points.

Keywords-point cloud visibility; point based rendering; surface
reconstruction

I. INTRODUCTION

Point-based representations have been proposed as an alter-
native to polygonal meshes, making it possible to describe
sampled surfaces without incurring in the cost of storing
mesh topology. Thus, objects with very complex and detailed
geometry may be represented more tersely with point clouds,
as is the case, for instance, of data acquired with 3D scanners.
In addition to a 3D position, each sample in a point cloud may
contain other attributes such as surface normal or color.

The notion of visibility is well defined for many surface
representation schemes such as meshes. The same cannot be
said for point clouds, since a point has no area and thus
cannot occlude another point. Thus, the related problem of
rendering a surface represented by point clouds is usually
solved using schemes such as splatting [2], or pyramid-based
algorithms [3]. Another option is to estimate a polygonal mesh
that interpolates the samples, a problem known as surface
reconstruction. It goes without saying that all approaches
rely on the point cloud being an ε-sampling of a surface,

i.e., it must be the case that any disk on the surface with
radius bigger than ε must contain at least one point. Some
approaches require that point samples are accompanied by
surface normals, while others try to estimate this information
by fitting a plane using nearby samples.

The HPR operator proposed by Katz et al. [1] is a simple
algorithm to determine visibility in point clouds without
estimating normals or reconstructing the surface. The oper-
ator consists of two steps. First, all points of the cloud are
transformed by an operation called spherical flipping. Then,
the convex hull of the set containing the viewpoint and the
transformed points is computed. A point is deemed visible
if its transformed version appears as a vertex in the convex
hull. Since the algorithm takes place in object space, it is not
influenced by screen resolution. Also, it gives good results
with dense or sparse clouds, although it does not cope well
with noisy data or high-curvature regions [4].

The main disadvantage of the HPR operator is its depen-
dence on a 3D convex hull algorithm, since the problem
has been shown to be Ω(n log n). Even with the aid of
the enhanced computing power of modern GPUs, this is a
substantial hindrance to its use for real time rendering of point
clouds, given that known algorithms are not well suited to the
parallel computing model of GPUs. The main contribution of
the present paper is to show how to obtain a "fine enough"
sampling of visible points from a point cloud using the HPR
operator at interactive rates. The idea is to use an approximate
convex hull algorithm suitable for implementation in GPU. In
this way, the level of approximation can be calibrated in order
to obtain a faithful rendering of the model for a given screen
resolution. Moreover, it is shown how a triangle mesh can be
computed for such a sampling, making it possible to employ



standard mesh techniques in the rendering of point clouds.

II. RELATED WORK

Determining the visibility of surfaces in a scene is an
intensely studied Computer Graphics problem. Several tech-
niques such as z-buffers and ray casting have been devel-
oped over the years, most of them requiring some means
of sampling the surface in a continuous way. In the case of
surfaces represented by point clouds, some ingenuity must be
used to effect such a sampling. For instance, one may sample
the surface using “thick” rays in the form of cylinders [5]
or cones [6], but these techniques are even more computing
intensive than the traditional ray-casting of meshes. Ray-
casting can also resort to fitting a primitive with positive area
– an ellipse, say – on the neighborhood being sampled [7].
A popular alternative is to use splatting methods [2], where
each point is rendered affecting a small region of the screen,
typically using a gaussian blot. The correct visibility is ensured
by traversing the point cloud from back to front or using the z-
buffer [8]. More recently, pyramid image reconstruction filters
were used for “filling out” the spaces between points [3].

Rather than probing the point cloud directly, one may try
to obtain a more suitable surface representation such as a
polygonal mesh. If the point cloud was obtained from a 3D
scanner, then the surface is a height map and thus inherits
the regular grid topology used by the device [9], [10]. Some
methods do not require an a priori topology, but make use of
of the normal vectors which must be known for each point
sample [11]. In contrast, other methods such as [12] do not
require either topology or normal vectors.

The HPR operator described by Katz et al. [1], unlike other
point cloud techniques, tries to establish the visibility of each
point directly, i.e., independently of the rendering and without
reconstructing the surface. The method does not make use of
normal information nor does it require that the cloud be a
height map or conform to any known topology. It consists of
two steps: inversion and the determining of a convex hull.

The inversion step maps the points to a dual space. Let P
be a point sampling of surface S, and C denote the point of
view. Then, without loss of generality, P is first translated to a
coordinate system with origin in C. The inversion proper is a
function which maps a point pi ∈ P to some point p̂i along the
ray from C to pi in a monotonously decreasing fashion with
respect to ||pi||. This is equivalent to say that ||p̂i|| decreases
as ||pi|| increases and vice-versa. While many functions satisfy
this requirement, this work employs the spherical flipping
function, as suggested in [1].

Consider a d-dimensional sphere with radius R centered
at the origin C, such that it contains all points in P . Then,
spherical flipping reflects a point pi ∈ P with respect to the
sphere according to

p̂i = f(pi) = pi + 2(R− ||pi||)
pi
||pi||

. (1)

This inversion function maps every point inside the sphere to
a corresponding point outside the sphere as shown in Figure 2.

Fig. 2. The green polygon is the spherical flipping of the blue polygon. The
red polygon is the convex hull of the set of points in the flipped object plus
the center C of the circle.

Let P̂ = {p̂i = f(pi) | pi ∈ P} be the cloud of inverted
points. Then, the second step of the method consists of finding
the convex hull of set P̂ ∪{C} A point pi is considered to be
visible if p̂i lies on the convex hull (see Figure 2).

The HPR operator may be applied in point clouds in any
number of dimensions, although we are mainly interested in
points in R3. The inversion step is clearly O(n), regardlessly
of dimension, where n is the total number of points. The
convex hull may be computed O(n log n), for 2D and 3D point
clouds.

The method has been shown to be correct when the point
cloud is considered to contain all of the surface points. In
this case, every point which the method considers to be
visible is indeed visible. Note that some visible points may
be considered non-visible, i.e., the method may report false
negatives. The number of false negatives is diminished as R
grows. In the limit, when R tends to infinity, every visible point
will be correctly labeled as such. Larger values of R handle
high-curvature regions of the surface. In practice, however, the
input is a surface sampling, and thus the output may contain
false positives as well as false negatives. The authors deal
with this problem by using large R values for dense clouds
and smaller R values for sparse clouds.

In a related paper, Mehra et al. [4] show that the HPR
operator is very susceptible to noise, and propose a robust
variation which is then used to build a global reconstruction
of the surface.

III. APPROXIMATE CONVEX HULL

As discussed earlier, the HPR operator, though simple in
concept, relies on the computation of a convex hull, which
takes O(n log n) time for a cloud with n points in R3. In [1],
for instance, the authors employ the QuickHull [13] algorithm,
which computes the convex hull of points in 3D in O(n log n)
time for favorable inputs, but is quadratic in the worst case,
making it unsuitable for dealing with large point clouds.

One way of improving the speed of the technique is to use
an approximate convex hull algorithm. The fact that the HPR
operator is also approximate reinforces this idea, provided



that the errors introduced by one technique and the other are
independent. Another contributing thought is that, when used
for rendering, the operator could probably work on a sampling
that is good enough for the actual screen resolution.

Several approaches for computing approximate convex hulls
have been proposed in the past. The central idea initially
described by Bentley et al. [14] is to obtain a subsampling of
the original set and then compute an exact hull for the smaller
set. Most of the various proposed algorithms concentrate on
heuristics for obtaining this reduced set. The main concern is
to reduce the error by choosing “good” candidates, i.e., points
which are likely to lie on the convex hull of the set (see [15]
for a survey).

Intuitively, a point pi ∈ P is in the convex hull if it is an
extreme point for some given direction ~d. In other words, if q
is an origin point, then (pi− q) · ~d is maximum over all points
in the cloud. Kavan[16] explores this property in an algorithm
that computes an approximate convex hull for a set of points.
While the method is described for two dimensions, it can be
generalized to any number of dimensions. The algorithm is
divided into three steps:

1) First, an origin point q inside the hull is selected at cost
O(n). This can be easily done by choosing the centroid
of the cloud or the center of a bounding box containing
the cloud.

2) The plane is divided into k equally spaced sectors
centered at q, each covering an angle of 2π

k . All points
in the cloud are then assigned to the sector that contains
them. For each sector i, establish a direction ~di aligned
with the bisector of the sector angle, and choose pi
among the points assigned to the sector such that it
maximizes (pi−q)·~di. The idea is that the selected pi is a
good estimate of the point which is extreme for direction
di and, thus, probably a point on the hull. Clearly, this
step can be computed in O(n).

3) Finally, refine the estimate for each sector i by compar-
ing each originally selected pi with the points selected
for all the other sectors. If another point pj , j 6= i is
found which is a better estimate for direction di, then
pi is updated accordingly. Note that this procedure may
remove but not add points to the approximate convex
hull. This step takes time O(k2), since each selected
point must be compared with every other selected point.

The extension of this algorithm to three dimensions is
straightforward although some care must be taken in order
to partition the cloud into sectors of approximately equal size.
One can use, for instance, an icosahedron as a reference shape
and partition each triangular face into four identical triangles
until the desired number of sectors is reached. Another option
is to use the algorithm described by Leopardi [17], which
partitions a hypersphere into any given number of sectors
having the same Lebesgue measure – e.g., perimeter in 2D,
or area in 3D. An important observation is that, although the
approximate algorithm of Kavan et al. aims at producing a full
polytope, in our application there is only need to select points

(a) (b)

Fig. 3. In (a) candidate p2j is a replacement for both p1j and pi, while in
(b) p2j is a replacement for pi but not p1j ; in this case, however, pi will be
replaced by p1j .

of the cloud which are believed to lie on the hull.
Unfortunately, the algorithm takes O(n + k2) time, which

makes it advantageous over optimal exact algorithms only if
k ∈ o(

√
n log n). Note, however, that point clouds obtained

with 3D scanners only contain points from the surface of the
model. If the model is convex or even if it has relatively few
concavities, one may expect that roughly half of the point
cloud may be visible. It follows that using the just described
algorithm may result in too coarse a sampling, given that a
small enough value of k is chosen to make the algorithm
suitably fast.

IV. FAST HPR OPERATOR

The algorithm described in the previous section is a start-
ing point from which the HPR operator can be computed
efficiently. One important observation is that it uses simple
data structures which can be traversed simultaneously using a
parallel computation model, such as GPU programming. Thus,
if the work is split evenly among m processors, steps (1)
and (2) can be expected to take O(n/m) time. Another key
observation is that step (3) can be computed more efficiently
by examining a limited neighborhood of each sector instead of
all k sectors. The idea is that the best estimate for each sector
can be achieved using a scheme for propagating candidate
points. Thus, step (3) can be rewritten as:

3) Refine the estimate for each sector i by comparing each
originally selected pi with the points pj selected for all
neighbor sectors j ∈ N (i). If any original estimate is
changed by this step, repeat it until no better estimate is
found for any sector.

The rationale for this modification is that the selected candi-
date point pi for a given sector i with bisector di is more likely
to be replaced by the candidate pj corresponding to direction
dj if the angle between di and dj is small. Moreover, suppose
that candidate p2

j for a sector j2 which is not an immediate
neighbor of sector i is found to be a replacement for pi. Then
there is a sector j1 which is a neighbor of i such that (1) p2

j

is also a replacement for p1
j , or (2) p2

j is not a replacement
for p1

j , but, in this case, p1
j is a better replacement for pi (see

Figure 3).



The time complexity for the modified step (3) in sequential
computers depends on the number of iterations necessary for
the propagation to cease, say, k′. If each sector has a constant
number of neighbors, then the total cost will be O(kk′). In
the worst case, k′ ≈ k, yielding the same time complexity of
the original algorithm. Notice, however, that a large k′ means
that candidate points are assigned to large angular intervals,
causing the hull to have correspondingly large faces. It is
reasonable to assume that this will be a rare occurrence when
dealing with dense point clouds such as those obtained with 3D
scanners, leading us to expect that k′ is significantly smaller
than k. Moreover, the propagation scheme just discussed can
be easily implemented in parallel architectures, thus enhancing
the performance of the process as a whole.

V. FAST HPR-BASED RENDERING OF POINT CLOUDS

This section discusses in detail an implementation of the
algorithm outlined in the previous section, as well as the
extensions required to obtain a partial reconstruction of the
surface which can then be used for rendering. Our prototype
uses the CUDA toolkit [18] for executing most of the work in
parallel in a GPU.

A. Defining the sectors

The first step consists of establishing an appropriate coor-
dinate system for defining the sectors where the points of the
cloud will be distributed. For this purpose, an enclosing sphere
for the cloud is computed having center at Ce and radius r.
In our implementation, Ce is the centroid of the cloud and
r is the distance from Ce to the furthest point in the cloud.
Then, a coordinate system is built where the origin is at C,
the position of the observer, with the x axis passing through
Ce (see Figure 4).

Fig. 4. Coordinate system for defining the sectors. View point C lies at the
origin, with the x axis passing through Ce, the center of the enclosing sphere
of the point cloud.

The sectors are defined by dividing the horizontal and
vertical angles of the viewing frustum regularly in a grid-like
manner. The region of the frustum containing the enclosing
sphere will be symmetrical, covering an angle ∆φ given by

∆φ = 2 sin−1 r

|C − Ce|
.

Using spherical coordinates, the frustum will then correspond
to ranges in ϕ and θ given by

ϕ ∈ [−∆φ
2 ,+∆φ

2 ],

θ ∈ [π2 −
∆φ
2 , π2 + ∆φ

2 ].

In order to produce k sectors, these angular ranges are reg-
ularly sampled

√
k times in each direction. The sectors thus

formed will have a pyramid shape and the directions ~di to be
minimized will be aligned with the ϕ and θ bisectors. Notice
that sectors will not be identical due to the fact that any given
angle interval in the ϕ coordinate will correspond to smaller
sections closer to the poles, i.e., for θ near 0 or π. Thus, this
particular way of defining sectors is only adequate when the
view point is far from the cloud so as to yield a relatively
narrow frustum. Whereas there are methods which do not
impose this restriction and yet yield more uniform sectors –
see Section III for some suggestions –, this scheme has the
advantage of making it easy to visit the up to 8 neighbors of a
given sector, which is necessary for the candidate propagation
step (see Section V-C).

This step of the algorithm is implemented by two CUDA
kernels which process all points in the cloud. The first kernel
computes the centroid Ce, while the second computes r. These
two are implemented as parallel prefix scans [19] which take
O(n/m+ log n) time each, using m processors.

B. Computing sector candidate points

Once Ce and r are known, and k is established by some
means, the angular interval ∆φ can be computed, thus defining
the geometry of all sectors. At this point, another kernel
performs a simple parallel scan of all points in the cloud with
the following goals:

1) applying an affine transformation to the cloud so as to
move the view point to the origin of the coordinate
system and Ce to some point on the x axis,

2) computing the spherical flip of each point, storing it in
an array P of size n, and

3) assigning a sector number for each point, storing it in
an array SECTOR of size n.

The sector number of a point is an integer number between 0
and k−1 which can be determined by computing its spherical
coordinates and finding the proper angular interval in ϕ and
θ where it lies. For instance, if a point lies in the i’th interval
in the ϕ direction and the j’th interval in the θ direction, then
its sector number is i

√
k + j. Notice that all computation in

this kernel is done independently for each point and thus the
kernel runs in O(n/m) time.

The direction ~di pointing to the center of each sector must
also be computed by means of a kernel which builds an
array of size k called DIR in O(k/m) time. Once this is
done, another kernel is fired to compute the projection of
each spherically flipped point on its sector central direction. In
short, an array called DIST of size n is computed by a parallel
scan of all points such that

DIST[i] = P [i] ·DIR[SECTOR[i]].



Finally, a candidate extreme point for each sector must be
computed by examining only the points assigned to the sector.
This requires reordering the array P containing the inverted
cloud so that points assigned to the same sector are contiguous
in memory. This is accomplished by means of a parallel
sort operation which uses the values in SECTOR as keys.
Our prototype uses the GPU-optimized radix sort algorithm
described by Merrill and Grimshaw [20] as implemented in the
Thrust [21] library. Although no explicit complexity bounds
are mentioned by the authors, optimal parallel sort algorithms
are believed to run in O((n log n)/m) time. Once P is sorted,
sector candidate points are computed with a segmented scan
kernel [22] taking O(n/m + log n) time. The result of this
computation is stored in an array called MAX of size k which
contains the indices of the candidate points.

C. Candidate point propagation

In this step, the candidate initially considered as extreme
point for a given sector may be replaced by a candidate
assigned to one of the up to eight sectors sharing an edge
or a vertex in the angular grid. This is a critical phase of the
algorithm since it must be repeated a number of times until
no sector candidates are replaced.

Unfortunately, counting the number of candidate replace-
ments is complicated by the occurrence of empty sectors,
i.e., sectors for which no candidates have been estimated in
the previous iterations. Empty sectors can be attributed to
two causes, namely, (1) the sector corresponds to a region
outside the object projection, or (2) the sector is inside the
object projection, but no point of the cloud lies inside it (see
Figure 5). Clearly, the propagation process must ignore sectors
in the first case, but not those in the second case. Thus, the
propagation algorithm makes use of an auxiliary array named
EMPTY, of size k such that EMPTY[i] is true if sector i is
empty, and likely to be of type (1). This array is populated
along with the initial candidate points in the previous step.
In order to be reasonably sure that it does not contain empty
sectors of type (2), we observe that empty sectors of this type
become more likely as k increases. In consequence, if k/n
is above a given threshold – we use 25% in our experiments
– EMPTY is computed for a coarser angular grid. Thus, for
instance, if the EMPTY array has k/4 elements, each of its
elements will be false only if no point of the cloud falls on a
2× 2 sector neighborhood of the finer grid with k elements.

Each propagation step is computed by a simple parallel scan
in O(k/m) time. A global variable CHANGED is set to true if
any candidate replacement is done on a sector not marked as
empty. Notice that there is no need for using atomic operations
to ensure non-simultaneous write access to that variable, since
any access to CHANGED is enough to guarantee that another
propagation step must be conducted.

Another important consideration is whether a gather or a
scatter strategy is more adequate for this step. In a gather
strategy, the thread examining sector s visits its neighbors
looking for a replacement for its current candidate, whereas in
a scatter strategy the candidate at s is considered as a replace-

Fig. 5. Sectors lying outside the object projection such as (a) will have no
candidates and need not be visited in the propagation process. Sectors such
as (b) are enclosed in the object projection but have no samples inside the
cloud must be visited in the propagation. Sectors such as (c) correspond to a
borderline case.

ment for each of its neighbors. In the former approach, each
thread may alter a single sector, while in the latter, concurrent
modifications may take place. In our GPU implementation, for
simplicity, only the gather strategy is used. However, a CPU
implementation developed as a means for comparison, uses a
scatter strategy, so that each successive iteration visits only
sectors which had their candidates changed in the previous
iteration. This reduces considerably the number of sectors
visited in each step, especially when many propagation steps
are necessary due to a very high k.

D. Partial view-dependent reconstruction

In [1], a “quick and dirty” view-dependent reconstruction
of the visible surface is displayed by rendering not only the
vertices but also the faces (triangles) of the convex hull. In
their case, this can be done at no extra cost since the topology
of the hull (triangulation) is always computed by the quickhull
algorithm. In our method, however, the hull is never computed
per se, but a triangulation may still be inferred by visiting
the angular grid and generating up to 2 triangles for each
2× 2 sector neighborhood. Thus, while visiting sector i, four
points may be used to form two triangles, namely, the points
whose indices are MAX[i], MAX[i+1], MAX[i+

√
k], and

MAX[i+
√
k+ 1] (see Figure 6a). Notice, however, that the

propagation process may have assigned the same candidate
to several neighboring sectors. Invalid triangles are trivially
eliminated by requiring all three points of each triangle to be
distinct. In Figure 6b, for instance, no triangles are generated
while visiting sector 6, while only one triangle is generated
for sector 2.

As pointed out by [1], some triangles must be filtered out
since their vertices are not likely to be contiguous in a “real”
surface reconstruction. They suggest removing triangles hav-
ing edges longer than a certain threshold. A similar procedure
is adopted in our prototype.



(a) (b)
Fig. 6. In (a) the extreme point of each sector lies within the sector, while in
(b) the candidates of sectors 6 and 10 lie within sector 7. The shaded triangle
is generated while visiting sector 5.

VI. RESULTS

In order to assess the correctness and usefulness of the
techniques just described, a series of experiments were con-
ducted. The first batch of experiments aim at showing that the
proposed approximate convex hull algorithm yields equivalent
visual results when compared with the HPR operator using an
exact convex hull. The second batch of experiments demon-
strate the performance gains obtained by using a GPU-based
and a conventional (i.e., CPU only) implementation of our
algorithm with respect to an implementation employing a fast
implementation of the well-known QuickHull algorithm [13].

All experiments were conducted on a workstation equipped
an Intel i7 CPU running at 2.4 GHz and 8Gb memory.
The graphics board uses an NVidia GTX 470 GPU with
1Gb memory. All software prototypes were written in C++
and OpenGL. Exact convex hulls are computed using the
Qhull [23] library. GPU algorithms were written using C for
CUDA, under CUDA 4.0 and the Thrust [21] library.

As a reference, Table I shows relevant information about the
various models used in the experiments. Notice that although
the original models are meshes, only the vertices are used as
input point clouds for the HPR algorithm.

TABLE I
MODELS USED IN THE EXPERIMENTS

Model name Vertices Faces Example
Bimba 74,764 149,524 Figure 1

Armadillo 172,974 345,944 Figure 7
Happy Buddha 543,652 1,087,716 Figure 7

Buddha 719,560 1,500,000 Figure 7
Asian Dragon 3,609,455 7,218,906 Figure 8

A. Visual Experiments

Figure 7 shows sample renderings obtained with the method
described in Section V-D. As with the original HPR method,
best results were obtained by choosing an optimal value for
the spherical flipping parameter R. Rather than performing the
costly procedure suggested in [1], a “good” value for R was
determined by mere visual inspection. On the other hand, the
values for parameter k were calibrated so as to yield a number
of visible points within 95% of that obtained by the exact HPR
algorithm (see Section VI-B).

Since the proposed algorithm depends on the number of
sectors, it is useful to conduct a visual inspection of the
results obtained for different values of k. Figure 1a shows
the point rendering of the original Bimba model containing
74,764 points. In Figures 1b and 1d the visible point set and
partial reconstruction are rendered with k = 10,000. Similar
renderings are shown in Figures 1c and 1e for k = 850,000.
These last results are indistinguishable from what was obtained
with the exact HPR algorithm. Indeed, for the model and pose
shown in Figure 1, the renderings for k = 850,000 classify
26,598 points as visible, while the original HPR yields 27,351
visible points for the same value of R.

An important property of the HPR operator is that it tends to
produce better results for denser point clouds. Thus, while the
operator is able to produce detailed renderings of point clouds
with millions of points, computing an exact convex hull with
millions of vertices is costly both in time and memory. Our
method based on approximate convex hulls, however, scales
well for dense clouds. The reason for this is that it uses an
angular grid for obtaining a subsampling of the cloud which
can be tuned to the desired screen resolution and viewing
angle. As an example, in Figure 8 it is shown a rendering
of the Asian Dragon model composed of 3,609,455 vertices
using the proposed method with k = 820,000. This rendering
is obtained by our GPU prototype at 11 FPS. Although the
rendering uses only 98,097 visible points, very little visual
detail is lost when compared with the rendering of the full
mesh.

B. Performance Experiments

Clearly, the accuracy of the proposed method hinges on
the size of the angular grid as given by parameter k. As
k increases, more visible points are detected, at a cost of
increased processing time. A crucial question then is how
dense a grid should be used in order to produce roughly the
same number of visible points as the exact algorithm. The
chart shown in Figure 9 plots the number of visible points as
a function of k for the Happy Buddha model, which contains
543,652 points. For the particular pose used in the experiment,
the maximum number of visible points is roughly 96,000,
reached for k near 4,000,000 which means that increasing k
above that value is ineffectual. In practice, one might either
establish a value for k as small multiple of the total number
of points in the cloud, or probe for a “good enough” value by
increasing k until the number of visible points levels off.

Finally, in order to compare the speedup obtained with
the proposed algorithm with respect to the original HPR
formulation, tests were conducted for clouds of different sizes.
The results are shown in Table II. In order to provide a fair
comparison, the values used for k in these experiments were
established so as to yield roughly the same number of visible
points as the exact implementation – thus, the number of
visible points shown in the table are only approximate. Clearly,
when dealing with denser clouds, the proposed method be-
comes less competitive, since it has to deal with a large number
of empty cells. In particular, the CPU implementation performs



(a) (b) (c)
Fig. 7. Example renderings of partial view-dependent reconstructions: (a) Armadillo, (b) Buddha, (c) Happy Buddha.

Fig. 8. Renderings of the Asian Dragon model: Original mesh (top) and
HPR with k = 820,000 (bottom).

worse than the exact method for the Buddha model since, in
that case, less than 5% of the sectors are occupied with distinct
candidate points.

It must be emphasized that the results of Table II were
obtained with k values which are unnecessarily large for most
applications. For instance, in the case of the Buddha model,
it is possible to obtain renderings which are almost identical
to Figure 7b at 20 frames per second using k = 450,000 and

Fig. 9. Number of visible points as a function of k for the Happy Buddha.

TABLE II
PERFORMANCE COMPARISON

Model name Total Visible FPS FPS Approx.
Points Points Exact CPU GPU

Bimba 74,764 ∼ 27,000 2 5 50
Armadillo 172,974 ∼ 63,000 1 2 25
Buddha 719,560 ∼ 250,000 0.3 0.18 1.7

only 115,000 visible points.

C. Limitations

One of the main strengths of the proposed technique is the
possibility of calibrating the amount of visual detail simply by
choosing an appropriate value for k which, in turn, controls
how well the convex hull is approximated. This dependency
of the method on the fineness of the angular grid is also the
source of its main limitation. As k increases, sectors become
less and less occupied, i.e., more empty sectors of both type (1)
and (2) are generated (see Section V-C). Since empty sectors
are also represented in the data structures, this leads to a waste
of memory, which is especially scarce in the case of our GPU
implementation. A chart demonstrating this behavior is shown
in Figure 10.



Fig. 10. Sector occupancy rate as a function of k for the Happy Buddha
model.

In our experiments, this limitation was not important for
models with up to a million points, such as those used in
the performance comparison (Table II), since the number of
visible points obtained by our prototype are comparable to
those obtained by the exact HPR. For a larger model such
as the Asian Dragon shown in Figure 8, however, the exact
HPR returns over a million visible points, while the best
rendering we were able to obtain with our prototype detected
only about half as many. It should be noted, nevertheless, that
the exact HPR takes over 16s to render a single frame, while
our prototype does half as good a job at 2 frames per second.

VII. CONCLUSION

The use of an approximate convex hull algorithm makes
it possible to turn the HPR operator into a more practical
tool for interactively rendering point clouds. By setting an
appropriate value for the parameter k, it is possible to favor
either the speed of the rendering or the quality of the result.
Also, due to its simplicity, the convex hull algorithm described
in Section IV, can be easily implemented in GPU for an
additional performance boost.

Two extensions to the method are planned to be tackled
in the near future. First, the EMPTY array should make it
possible to implement a more efficient memory management
where only non-empty sectors need to be stored and processed.
Second, more intelligence should be incorporated into our
prototype so as to yield as good as possible renderings without
having to fiddle with parameters k and R.

ACKNOWLEDGEMENTS

To Diego Nehab, for educating us in GPU programming.
The models Bimba, Happy Buddha, Armadillo and Asian
Dragon are courtesy of the Stanford 3D Scanning Repository.
The model Buddha is courtesy of the AIM@SHAPE Shape
Repository.

REFERENCES

[1] S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” in
SIGGRAPH ’07: ACM SIGGRAPH 2007 papers. New York, NY, USA:
ACM, 2007, p. 24.

[2] M. Sainz and R. Pajarola, “Point-based rendering techniques,” vol. 28,
2004, pp. 869–879.

[3] R. Marroquim, M. Kraus, and P. R. Cavalcanti, “Efficient point-based
rendering using image reconstruction,” in Symposium on Point-Based
Graphics 2007, Prague-Czech Republic, September 2007.

[4] R. Mehra, P. Tripathi, A. Sheffer, and N. J. Mitra, “Visibility of noisy
point cloud data,” Computers and Graphics, vol. 34, no. 3, pp. 219–230,
2010.

[5] G. Schaufler and H. W. Jensen, “Ray tracing point sampled geometry,”
in Proceedings of the Eurographics Workshop on Rendering Techniques
2000. London, UK: Springer-Verlag, 2000, pp. 319–328. [Online].
Available: http://portal.acm.org/citation.cfm?id=647652.732143

[6] M. Wand and W. Straßer, “Multi-resolution point-sample raytracing,” in
Graphics Interface 2003 Conference Proceedings, 2003.

[7] I. Wald and H.-P. Seidel, “Interactive Ray Tracing of Point Based
Models,” in Proceedings of 2005 Symposium on Point Based Graphics,
2005.

[8] D. Tavares and J. Comba, “Efficient approximate visibility of point sets
on the GPU,” in Graphics, Patterns and Images (SIBGRAPI), 2010 23rd
SIBGRAPI Conference on, 30 2010-sept. 3 2010, pp. 239 –246.

[9] G. Turk and M. Levoy, “Zippered polygon meshes from range images,”
in SIGGRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques. New York, NY, USA:
ACM, 1994, pp. 311–318.

[10] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in SIGGRAPH ’96: Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM, 1996, pp. 303–312.

[11] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” in SGP ’06: Proceedings of the fourth Eurographics symposium
on Geometry processing. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2006, pp. 61–70.

[12] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” in SIGGRAPH ’92:
Proceedings of the 19th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM, 1992, pp. 71–78.

[13] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm
for convex hulls,” ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469–483,
1996.

[14] J. L. Bentley, F. P. Preparata, and M. G. Faust, “Approximation algo-
rithms for convex hulls,” Commun. ACM, vol. 25, no. 1, pp. 64–68,
1982.

[15] C. E. Kim and I. Stojmenović, “Sequential and parallel approximate
convex hull algorithms,” Computers and Artificial Intelligence, vol. 14,
no. 6, pp. 597–610, 1995.

[16] L. Kavan, I. Kolingerova, and J. Zara, “Fast approximation of convex
hull,” in Proceedings of the 2nd IASTED international conference on
Advances in computer science and technology. Anaheim, CA, USA:
ACTA Press, 2006, pp. 101–104.

[17] P. Leopardi, “A partition of the unit sphere into regions of equal area
and small diameter,” in Electronic Transactions on Numerical Analysis,
vol. 25, 2006, pp. 309–327.

[18] “CUDA,” version 4.0. [Online]. Available: http://www.nvidia.com/
object/cuda_home_new.html

[19] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan
primitives for GPU computing,” in Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
ser. GH ’07. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2007, pp. 97–106.

[20] D. Merrill and A. Grimshaw, “High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for GPU
computing,” Parallel Processing Letters, vol. 21, no. 02, pp. 245–272,
2011.

[21] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010,
version 1.4.0. [Online]. Available: http://www.meganewtons.com/

[22] S. Sengupta, M. Harris, M. Garland, and J. D. Owens, “Efficient parallel
scan algorithms for many-core GPUs,” in Scientific Computing with
Multicore and Accelerators. Taylor & Francis, 2011, ch. 19, pp. 413–
442.

[23] “Qhull code for convex hull, delaunay triangulation, voronoi diagram,
and halfspace intersection about a point.” [Online]. Available:
http://www.qhull.org/


