


descriptors are estimated from images alone, and they rarely

use other information such as geometry. As a consequence,

common issues concerning real scenes such as variation in

scene illumination and textureless objects may dramatically

decrease the performance of the texture-based descriptors.

Depth images, although with their increasing use, are less

popular and the geometrical nature of the data involves higher

complexity to define descriptors and usually have large am-

biguous regions which does not allow correspondence. To

define robust descriptors for geometrical data, large amount of

data is necessary to encompass enough information to avoid

ambiguities. Spin-Image [6], Fast Point Feature Histograms

(FPFH) [7], Normal Aligned Radial Feature (NARF) [8],

Point Feature Histograms (PFH) [9] are some examples of

such descriptors. Even though these descriptors can handle

textureless scene regions, where texture based descriptors fail,

their construction involves complex geometrical operations,

resulting high processing time and memory consumption.

The combination of appearance and three-dimensional

shape cues is still in its prelude. However, as far as accu-

racy is concerned, Lai et. al. [10] have already shown that

the combined use of intensity and depth outperforms view-

based distance learning using either intensity or depth alone.

Additionally, Zaharescu et. al [11] and Tombari et.al [12] have

shown that the use of features of differents domains is a very

promising approach to improve the quality in matching task

in the descriptor level.

With the recent introduction of fast and inexpensive RGB-D

sensors (where RGB implies trichromatic intensity information

and D stands for depth), the integration of synchronized

intensity (color) and depth has become feasible. RGB-D

systems output color images and the corresponding pixel

depth information, which enable the acquisition of both depth

and visual cues in real-time. These systems have opened

the opportunity to obtain 3D information with unprecedented

richness. One such system is the KinectTMsensor [13], a low

cost commercially available system that produces RGB-D data

in real-time for gaming applications. Given the technological

advances of RGB-D sensors and the use of large data sets, fast

and low memory consumption descriptors that efficiently use

the available information, play a central role in a myriad of

tasks, such as, 3D modeling, registration, surface reconstruc-

tion, object detection and recognition systems for mapping

tasks.

In this paper, we propose a novel RGB-D feature descriptor

called Binary Appearance and Shape Elements (BASE) that

efficiently combines intensity and shape information to im-

prove the discriminative power providing enhanced and faster

matching process. Experimental results demonstrate that the

proposed descriptor outperforms the state-of-the-art feature

descriptors and provides indoors 3D scene alignment with the

smallest error.

After discussing related works in the next section, in Section

III we present the proposed descriptor and then the RGB-D

point cloud registration process used in the work. Experiments

are presented in Section IV followed, in Section V, by the

conclusions we have reached with this investigation.

II. RELATED WORK

A great challenge for registering multiple depth maps is

related to the process of recovering the rigid affine transfor-

mation T to describe two depth maps into a single coordinate

system. To address this issue, descriptors have been applied

to find corresponding points from two depth maps in order to

constrain the search space for the transformation T . The work

proposed by Vieira et al. [14] uses a descriptor to propose

an iterative framework to address pair-wise alignment of a

sequence of depth maps while ensuring global coherence of

the registration for implicit reconstruction purpose. A global

alignment algorithm that does not use local feature descriptors

was presented by [15] using Extended Gaussian Images.

Independently of strategies used to pre-align depth maps,

a common requirement is that data have sufficient overlap in

order to establish correspondences and a graph defining which

pairs, among all depth maps, have such overlap. Most commer-

cial packages, such as [16], requires that users select manually

the pairs to be aligned. Furthermore, this pre-alignment is

generally refined by local minimization algorithms, such as the

classical Iterative Closest Point (ICP) [17] in order to achieve

the best alignment, given an initial guess of pre-alignment.

Non-rigid and scale invariant registration such as proposed

in [18] and [19] are most used for matching purpose rather than

reconstruction. A survey on range image registration has been

presented in [20], where different methods for pre-alignment

and fine registration are compared in terms of robustness and

efficiency.

In the field of image processing, SIFT [1], SURF [2]

are the most used algorithms for keypoint extraction and

descriptor creation. These methodologies build their feature

detectors and descriptors based on local gradients and specific

orientation to achieve rotational invariance. Inspired by the

idea of Local Binary Patterns (LBP) [21], works such as [3],

[4], [5], [22] presented a new family of descriptors that use

binary strings to build a descriptor. This approach for building

descriptors presents the advantage of small memory usage and

low processing time.

Feature extraction from 3D data has been successfully

obtained with the spin-image [6], which creates a 2D repre-

sentation of the surface patch surrounding a 3D point. Object

edges constitute an important challenge that has been tackled

by another descriptor for 3D point clouds known as NARF [8],

which identifies edges of objects based on transitions between

foreground and background. Others approaches proposed to

handle point clouds are [7], [9].

If on one hand texture information on an image can

usually provide better perception of object features, on the

other hand depth information produced by 3D sensors is less

sensitive to lighting conditions. Recently, several descriptors

have been proposed to combine multiple cues. Kanezaki et

al. [23] presented the Voxelized Shape and Color Histograms

(VOSCH) descriptor, which by combining depth and texture,

can increase the recognition rate in cluttered scenes with



(a) (b)

Fig. 2. Image (a) shows a surface where points x′ and y′ have normals
with displacement greater than 90 degree leading to bit value 1. In image
(b) is shown the normals of the points x and y that lead to bit 0 due to a
displacement less than 90 degree.

obstruction. However, different from our approach, VOSCH

is a global descriptor. In [11] the authors present the Mesh-

HOG descriptor. This descriptor uses texture information of

3D models as scalar functions defined over a 2D manifold.

Tombari et al. [12] proposed the descriptor called Color-SHOT

(CSHOT) based on an extension of their shape only descriptor

Signature of Histograms of Orientations (SHOT) [24] to incor-

porate texture. CSHOT descriptor combines two histograms,

one with the geometric features over the spherical support

around the keypoint and the other containing the sum of the

absolute differences between the RGB triples of the each of its

neighboring points. CSHOT is compared against MeshHOG

in [12] and the authors reported that CSHOT outperformed

MeshHOG in processing time and accuracy.

Similar to CSHOT and MeshHOG, our descriptor is a local

descriptor and brings forth the advantages of both texture

and depth. However, unlike these descriptors our approach

uses smaller memory space and is faster without losing the

discriminative power, as it will be shown in the experimental

results.

III. METHODOLOGY

In this section we detail the design of our novel feature

descriptor and also describe the method employed to perform

the registration of multiple indoor textured depth maps.

Unlike traditional approaches used in the last years that

employ only texture information as [1], [2], [25], [3] or shape

[6], [8], the keypoint descriptor developed in this work encodes

geometrical and appearance information simultaneously.

A. BASE Descriptor

In order to detail our descriptor, let M = {1, 2, . . . ,m},
N = {1, 2, . . . , n} and let us denote the output of a RGB-D

camera as a pair (I,D) where

I : M ×N → C

maps each image pixel x = (i, j) of our m × n image to an

intensity c = I(x) ∈ C where C = {0, . . . , 255} (we consider

only the intensity and not the color information), and

D : M ×N → R
+

maps each image pixel x to its depth value d = D(x) ∈ R
+.

For each spatial point defined by the depth map D, we

provide an estimation of its normal vector as a map

V : M ×N → R
3

where the vector v = V (x) ∈ R
3 is estimated using a small

neighborhood in the surface defined by the depth map.

The first step to compute the set of descriptors for an RGB-

D image (I,D) is the selection of a subset K ⊂ M × N

of keypoints k among the image pixels. We use an efficient

keypoint detector called CenSurE [26] to construct our set K.

Given an image keypoint k ∈ K, we consider an image

patch p with S × S pixels centered at k and define the map

pi : {1, . . . , S} × {1, . . . , S} → C

where pi(x) = I(k+x−s) and s is the central pixel of patch

p, to map a pixel from local coordinate system of p to global

coordinate system of the image and

pn : {1, . . . , S} × {1, . . . , S} → R
3

where pn(x) = N(k + x − s) to map a pixel from p to the

normal vector of its corresponding position on the image.

To construct our 256 bits feature descriptor we sample a

set P = {(xi, yi) , i = 1, . . . , 256} with 256 pairs of pixel

locations from the patch p. This set P is fixed and used

to construct descriptors for all keypoints sampled from all

images. Fig. 3 illustrates a patch where the set of pixel pairs is

indicated with line segments. We then evaluate, for each pair

(x, y) ∈ P , the function:

f(x,y) =

{

1 if pi(x) < pi(y) ∨ 〈pn(x), pn(y)〉 ≤ ρ

0 otherwise,
(1)

where 〈pn(x), pn(y)〉 is the dot product between the point

normals pn(x) and pn(y), which captures the normal displace-

ments, ranging from ρ = −1 to ρ = 1.

Fig. 3. Patch p with 48× 48 pixels indicating 256 sampled pairs of pixel
locations used to construct the binary feature.



Fig. 4. Creation Diagram of BASE Descriptor. A patch of size S × S

centered at the location of each keypoint in K. For all positions in a set of
(x,y)-locations is evaluated the intensity changes in image and degree among
the normal points inside of projected patch in the point cloud.

The function f(x,y) extracts the visual and geometrical

features and combines them in a unique vector which repre-

sents the signature of a keypoint. The visual feature extraction

is based on the direction of the gradient around a keypoint.

The idea behind this step is similar to the one used by the

Local Binary Patterns (LBP) [21]. The geometrical features

depend on normals surface displacement. Figure 2 illustrates

two possible cases of normal displacement from a pair (x,y).
The final descriptor to the patch p is encoded as a binary

string computed by:

b(p) =

256
∑

i=1

2i−1f(xi,yi). (2)

Figure 4 illustrates the whole process for constructing our

descriptor to encode geometrical and appearance information.

As suggested by Calonder et al. [3], we use an image patch

of size S = 48. After several experiments, we defined the

threshold ρ = 0 that lead to 90 degrees for the maximum

displacement of normals. As in [3], we pre-smooth the patch

with a Gaussian kernel with σ = 2 and window with 9 ×
9 pixels and, finally, the set of tests locations (xi,yi) were

sampled from an isotropic Gaussian distribution N (0, S2

25 ).

B. RGB-D Point Cloud Registration Approach

The main goal of the registration process is to find an

affine transformation T between two point clouds taken from

different view positions.

The approach used to register point clouds in this work

is divided in two steps: Coarse and fine alignment. In the

coarse alignment, we compute an initial estimation T of

the rigid motion between two clouds of 3D points using

correspondences provided by a feature descriptor. Then, in the

fine alignment, we employ the ICP algorithm to find a local

optimum solution based on the prior coarse alignment. The

ICP algorithm uses an initial estimate of the alignment and

then refine the transformation matrix T ∗ by minimizing the

distances between the closest points. The ICP was considered

due to its simplicity and low computational time.

The registration process is summarized in the Algorithm 1.

It has four main steps:

1) Keypoint Descriptors: The function

ExtractDescriptor receives point clouds source

and target, denoted by Ps and Pt, respectively, and

returns corresponding sets of keypoints with their

descriptors, denoted by Ks and Kt. The first step to

compute the set of descriptors for an image or, in our

case, a RGB-D point cloud, is to select a subset of

points, called keypoints. A judicious selection of points

with property like repeatability provides good detection

from multiple views and allows constrained search

space for features making the registration suitable to

online applications.

2) Matching Features: The function matchDescriptor
matches two set of descriptors, Ks and Kt, to return

a set M of correspondence pairs among source and

target point clouds. The distance metric used varies

with the type of feature descriptor used. The BASE

descriptor considers the Hamming distance metric. One

of the greatest advantages of using binary string as de-

scriptors, besides its simplicity, is its low computational

cost and memory consumption, whereas each descriptor

comparison can be performed using a small number of

instruction on modern processors. For instance, modern

architectures have only one instruction (POPCNT) to

count the number of bit sets in a bit vector [27].

3) Coarse Alignment with SAC: The function

coarseAlignmentSAC is used to provide an initial

transformation T using the matching set M. We

used a Sampled Consensus-Initial Alignment (SAC)

approach [28] to reduce the outliers in correspondences

(false correspondences). The initial transformation

T is usually not accurate but constrains to a local

search for the optimal transformation using a fine

alignment algorithm. We noted, as expected, that less

descriptive features provide smaller set of inliers than

Algorithm 1 Point Cloud Alignment(Ps, Pt)

1: (Ks,Kt)← ExtractDescriptor(Ps,Pt)
2: M← matchDescriptor(Ks,Kt)
3: R← coarseAlignmentSAC(M)
4: repeat

5: A ← closestPoints(Ps,R(Pt))
6: Find T solving:

7:

T← argmin
T∗

1

|A|

∑

(ps,pt)∈A

|ps − T ∗(pt)|
2

8: R← T× R
9: until MaxIter Reached or ErrorChange(T) ≤ θ
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Fig. 5. (a) Different sizes for the BASE descriptor; (b) Angular threshold for dot product test. On the average, the best choice is to use 45 degrees; (c) The
best binary operator to be used to fuse appearance and geometry was OR operator.

more descriptive features.

4) Fine Alignment: Finally, the function closestPoints
receives the pre-aligned sets Ps and Pt and, constructs

the set A of pairs. The set of pre-aligned pairs A is

then used to find a refined transformation in an iterative

process. We use a kd-tree for finding the closest point

and, differently from the work by Henry et al. [29]

which minimizes a non-linear error, we choose an ICP

variant that minimizes the error function point-to-point
∑

|ps−T(pt)|
2. This error function can be solved using

the Horn closed-form [30].

IV. EXPERIMENTS

To evaluate the performance of the proposed descriptor,

we initially perform a set of tests to evaluate the behavior

of our descriptor for matching tasks. Then, we examine its

performance, accuracy and robustness for the registration task.

In the experiments, we use the public dataset presented

in [31], which is available for download in1. This dataset

contains several real world sequences of RGB-D data captured

with a KinectTMsensor. The images were acquired at frame rate

of 30 Hz and resolution of 640× 480 pixels. Figure 7 shows

a frame of two sequences in Freiburg dataset. Each sequence

in the dataset provides the ground truth of the camera pose

estimated by a MoCap system.

Among the sequences in the dataset, we select two of them

to use in our experiments:

• freiburg2 xyz: In this sequence the Kinect is moving

individually along the x/y/z axes;

• freiburg2 rpy: The Kinect was rotated individually

around the three axes.

In each sequence, given an RGB-D image of the i-th frame,

we compute a set of keypoints Ki. All keypoints k ∈ Ki are

transformed to frame i + ∆ creating the second set Ki+∆,

using as the ground truth pose these frames (xi and xi+∆).

We compute a descriptor for each keypoint in both sets and

then match them.

1https://cvpr.in.tum.de/data/datasets/rgbd-dataset

RGB Image Point Cloud

Fig. 7. RGB Image and Point Cloud example of a frame from freiburg xyz
sequence used in matching experiments.

We use the same criterion presented in [32] and [33] to

evaluate the matching performance of the descriptors. First,

we detect a set of keypoints using STAR detector2. Then,

we match all pairs of keypoints from two different RGB-D

images. If the Euclidean (for SURF and SIFT), Correlation

(for spin-image), dot product (for CSHOT) or Hamming

(for BASE) distance between the descriptors falls below a

threshold t, a pair is considered a match. This threshold is

changed to create the recall versus 1-precision curves.

To compute the recall and 1-precision, we count the number

of correct matches, termed true positive, and the number of

incorrect matches, called false positive. The recall values are

determined by:

recall =
#truepositive

#correspondences
,

where #correspondences is the number of existing correspon-

dences in both images. The 1-precision values express the

number of false detections relative to the total number of

detection and it is computed using:

1-precision =
#falsepositive

#truepositive+#falsepositive
.

2STAR detector is a implementation of Center Surrounded Extrema [26] in
OpenCV 2.3.1.
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Fig. 6. Precision-Recall curves for (a) freiburg2 xyz, (b) freiburg2 rpy. The keypoints were detected using STAR detector [26]. The BASE descriptor
outperforms all others approaches, including the state-of-the-art CSHOT, which combined visual and shape information.

A. Parameter Analysis

We analyze experimentally the best values for the param-

eters: i) angular threshold; ii) descriptor size and iii) binary

operator. We can see in the plots shown in Figure 5 that the

best option is the combination of a angular threshold of 45
degrees and the OR operator. Furthermore, we chose the size

of 32 bytes as default size since the accuracy for 32 bytes and

64 bytes are similar.

Despite the high quality of matching when using OR binary

operator, the fusion using this operator may create ambiguity

in the final descriptor. Thus, bits set to 1 due to variation in

the normal or intensity may be not distinguishable. However,

there exists a small probability of such ambiguity, as described

as follows.

Consider strings L and R, and their bits li and ri (i =
1, . . . , 256) to be compared, and an uniform distribution of

the pairs. We have four cases from which only one leads to

ambiguity:

• li = 0 and ri = 0: there is no ambiguity because neither

the intensity nor the normal varies.

• li = 0 and ri = 1: there is no ambiguity because there

was no variation on the left patch and there was some

(intensity or normal variation) on the right patch.

• li = 1 and ri = 0: there is no ambiguity because there

was no variation on the right patch and there was some

variation on the left patch.

• li = 1 and ri = 1: ambiguity may exist. There are nine

different situations that can lead to this configuration.

Among them, only two can actually generate ambiguity.

Hence, there is only (1/4)*(2/9) = 0.05 (5%) probability of

ambiguity per bit.

B. Matching Performance

To analyze the capability of the BASE descriptor in the

matching task, the performance of our descriptor was com-

pared with the standard approaches for two-dimensional image

description, SIFT [1] and SURF [2], with the geometric

descriptor spin-images [34], and the state-of-the-art descriptor

in fusing texture and shape information CSHOT [12].

Figure 6 shows the recall vs. 1-precision curves for each

algorithm. We can readly see that, for both sequences, BASE

descriptor outperformed all the others approaches, including

the state-of-the-art CSHOT.

C. Time and Memory Consumption

We have recorded the creation time for each descriptor. The

experiments were executed in an Intel Core i5 2.53GHz (using

only one core). The values were averaged over 300 runs and all

keypoints were detected by the STAR detector. We clearly see

in Figures 9 and 8 that BASE outperforms the other descriptors

in the processing time and memory consumption. Our descrip-

tor presents the lowest memory consumption with 32 bytes for

keypoint descriptors, while the state-of-the-art CSHOT, which

combines appearance and geometry, has descriptors of 5.25
kBytes in size (Figure 8).

D. Registration Results

Finally, we examine the performance of our descriptor to

the registration task for several images of a research laboratory

collected with a Kinect sensor (see Figure 10 and the teaser).

We create five challenging sets with different views:

1) Lab180: point cloud with holes (regions not seen by the

sensor);

2) Boxes: scene with three object (boxes) with similar

geometry;

3) Robots: scene with three robots with the same geometry

and texture;

4) Wall: scene rich with textureless regions and

5) Teaser (Figure 1): a set of point clouds acquired from a

partially illuminated scene.



TABLE I
THIS TABLE SHOWS MEAN VALUES OF THE ICP ERROR, NUMBER OF INLIERS RETAINED BY SAC IN THE COARSE ALIGNMENT AND TIME SPENT TO

REGISTER TWO CLOUDS. IN ALL EXPERIMENTS, THE USE OF OUR DESCRIPTOR (BASE) SPENT LESS TIME AND PROVIDED SMALLER ERROR OF ICP
(WHICH INDICATES A BETTER ALIGNMENT) THAN OTHER DESCRIPTORS.

Robots (41 frames) Boxes (58 frames) Lab180 (67 frames) Wall (131 frames)

Descriptor Score #Inliers Time (s) Score #Inliers Time (s) Score #Inliers Time (s) Score #Inliers Time (s)

BASE 0.0025 116.95 0.30 0.0002 108.96 0.27 0.0041 53.00 0.68 0.0001 70.96 0.71

SURF 0.0035 96.59 0.69 0.0002 58.39 0.31 0.0070 82.09 2.40 0.0004 46.47 0.97

SIFT 0.0058 152.10 1.28 0.0042 99.52 1.24 0.0281 129.23 6.29 0.0021 69.66 2.09

SPIN 0.0046 155.05 2.56 0.0017 71.30 1.70 0.0356 176.82 8.13 0.0205 181.60 9.18

CSHOT 0.0043 143.49 2.29 0.0002 53.54 1.30 0.0095 113.52 2.60 0.0013 66.29 2.40
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Fig. 8. Comparison between descriptors usin the memory consumption in
kbytes of each descriptor. BASE uses only 32 bytes of memory, while SURF
and Spin-Image use 256 bytes, SIFT uses 512 bytes and CSHOT 5376 bytes.
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Fig. 9. Comparison between descriptors regarding the processing time to
create a keypoint descriptor.

The experiments were performed on a computer running

Linux on an Intel core i5 with 4 Gb of RAM. For each final

alignment we evaluated the alignment error returned by ICP,

the number of inliers retained in the coarse alignment and the

time spent for fine and coarse alignment.

Table I shows the registration results. We note that the

alignment with the BASE descriptor provides the smaller

error despite of its low computational. Figure 10 shows visual

results of the alignment achieved using BASE.

As the BASE descriptor considers shape information and

the RGB-D camera has its own illumination, we were able

to register point clouds even with sparsely illuminated en-

vironments. To test the proposed approach, an experiment

was performed in a poorly illuminated room. We collected 77

frames of the scene with images ranging from well illuminated

to complete lack of light. The final alignment is shown in the

teaser (Figure 1), making clear that, even with some regions

without illumination, it was possible to align the clouds.

V. CONCLUSIONS

We have proposed a novel lightweight RGB-D descriptor

that efficiently combines intensity and shape information to

substantially improve discriminative power enabling enhanced

and faster matching process. This approach was compared

with other descriptors for images, geometry and with the

state-of-the-art approach that combine geometry and intensity.

Experimental results showed that our approach outperforms

all these techniques, in terms of accuracy, CPU time and

matching quality. The experiments have demonstrated also that

our approach is robust to register scenes with poor illumination

and sparsely textured.

The results presented in this work extends the conclusion

of [10] and [29] that the arrangement of intensity and shape

information is advantageous not only in perception tasks, but

it is useful to improve the quality in registration process.

Shape and intensity information enable higher performance

than using either information alone.

The main constraint of our methodology are the bumpy

surfaces. Since the geometrical features are extracted using

a threshold for the displacement between normals, the small

regularities of these surfaces can be confused with noise.

Another important drawback in our methodology is due to

RGB-D camera limitations. While laser scanners have field of

view (FOV) of about 180 degrees, RGB-D sensors have FOV

of 60 degrees. And the maximum distance typically less than

5m for RGB-D. Morevover, the currently RGB-D sensors are

confined to indoor scenes.
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