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Abstract—The aim in this paper is to explore whether the surface can be recovered by surface integration. Moretheer,
Fisher-Rao metric can be used to characterise the shape chg@s orientation field is an intermediate representation in huma
due to gender difference. We work using a 2.5D representatio ;i ;4] perception, and is a component of the 2.5D sketch

based on facial surface normals (or facial needle-maps) fagender . . S .
classification. The needle-map is a shape representation wh can introduced by Marr [5]. This 2.5D representation is critifox

be acquired from 2D intensity images using shape-from-shadg Shape-processing, and can be derived from 2D retinal images
(SFS). Using the von-Mises Fisher distribution, we compute using shape-from-shading.

the elements of the Fisher information matrix, and use this One recent and powerful development in this area has been
compute geodesic distance between fields of surface normats to explore the use of techniques motivated by information

construct a shape-space. We embed the fields of facial surfac th di ticular t the Fisher-R tric t
normals into a low dimensional pattern space using a number eory, and in particular to use the Fisner-kao metric to-mea

of alternative methods including multidimensional scalirg, heat Sure the similarities of statistical shape models and coast
kernel embedding and commute time embedding. We present shape-spaces. In the literature Maybank [6] shows how to use
results on clustering the embedded faces using the Max Plakc Fisher information for line detection, Mio et al. [7] apply

and EAR database. non-parametric Fisher-Rao metrics for image segmentation
Keywords-Fisher-Rao metric; surface normal; shape-from- and Peter [8] has presented a unified framework for shape
shading. representation and deformation.

| INTRODUCTION In th_is paper we are particglgrly in_terest_ed in the use of
' these ideas to represent variations in facial shape, and to

Over the past decade there has been a considerable groyéfermine the modes of variation due to factors such as
in interest in the statistical theory of shape [1],[2]. Tfiédd of gender. The reported work is motivated in part by the fact
study has been the result of a synthesis of ideas from a num@gft faces have multiple shape properties, which can be used
of different areas including statistics, computer visipattern g categorize them according to different levels of speityfic
recognition and machine learning, and the realization tinat Examples include gender, ethnicity, age, expression tiigen
areas share a considerable common ground [3]. attractiveness and distinctiveness [4]. In particular, ave

Statistical theories of shape variation [4] have been showfterested in how such shape variations manifest themselve
to be powerful tools for image interpretation. One importaferms of changes in the field of surface normals. The reason fo
approach is to represent a shape by a set of landmark poipig is that we aim to fit statistical models of shape to 2Ddhci
on the boundary, and to capture shape variations using {hfages, and from these images recover information conegrni
covariance matrix for the Cartesian co-ordinates of thedangp shape. One natural way of doing this that captures feature
mark points [1], [2]. Often, Cartesian landmarks are not thg the human vision system is to employ shape from shading
most convenient shape representation. For certain clagsesg recover surface shape from variations in brightnesse fiter
shape, directional information is more convenient. Howeves more natural to represent the facial surface using fiefds o
if the statistical analysis of shapes is attempted with noggrface normals rather than surface height informatiorgesi
Cartesian data then the construction of shape-spaces ist®former are more directly linked to the physical process o
longer a straightforward problem. light reflectance.

Our aim is to construct a shape-space that can be used ts 3 result surface normal models are more suitable for
recognise instances of the same face from 2.5D images 3Rg purposes of fitting to image data. However, due to their
also, to construct a model for variations in facial shape dy@n-cartesian nature the statistical modeling of vantio
to changes in different gender using information providgd R syrface normal direction is more difficult than that for
facial needle-maps. A facial needle-map is the descripion |andmark positions. To overcome this problem, we make use of
the local orientation of a facial surface, from which theid4c the statistical representation developed by Smith and étdnc
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normal data in Cartesian form we construct a shape-space for
variations due to changes gender difference.

Fields of surface normals can be viewed as distributions
of points residing on a unit sphere and may be specified
in terms of the elevation and azimuth angles. It is natural
to parameterise such statistical variations in directisma
the von-Mises Fisher (vMF) distribution, which is specifiad
terms of a mean surface normal direction and a concentration
parameter. Our goal in this paper is to explore how to use the
vMF distribution for shape representation, and in partictb
recognise variations in facial shape due to gender diffaxren

Working in the surface normal domain, we show how to u
the vMF distribution to represent unstructured surfacemadr A distribution of spherical directional data , . .. ,nx € R?
data without landmarks. To measure the similarity betweean be characterised using the mean directign = ‘—fq
tv_vo )‘leIQS of surface normals pe}rameterlzed using thg VMBherenn — % Zfil n; [10]. If we consider the distribution
distribution we make use of the Fisher-Rao metric. In thig Ways \nit vectors as a distribution of points on a spherical
facial similarity is measured by the geodesic distance &etw 1,4nifold ni,....ng € S2, where®(n;,) = ny, it is clear

the shapes on a statistical manifold. that the mean direction is dependent on the embedding

The remainder of the paper is organized as follows. SectigR( s theextrinsic mearof a distribution of spherical data:
Il describes how to use the PGA method to construct the, — arg min KL ®m) - () |2

statistical model for face needle-maps. Section Il déswi nes? o

how the Fisher-Rao metric can be used to measure thdf we define the projectionr : R® — §? asw(n) =
similarity of facial needle-maps. Section IlI-C discuséesv arg min||®(n) — n||*, We may show that the mean direction
mult|Q|men§|onaI scaling can be used to eml_oed faceg mtqsﬁtehe extrinsic mean:

low-dimensional pattern space based on the Fisher-Radcmetr

Section IV provides some experiments on gender discrimina- K

tion using Max Planck dataset. Finz_:tlly, _Section VI offermso pe =7(0) =7 1 Z ®(n;) 1)
conclusions and suggests some directions for future refsear

Fig. 1. The exponential map.

% Spherical Medians and Variance

i=1

Il. CARTESIAN REPRESENTATION OFVECTORFIELDS In other words, the extrinsic mean is the Euclidian av-
] ) ) ) ) erage (or centre of mass) of the distribution of points in

In this section, we explain how directional data can bgs “nrojected back onto the closest point on the sphere. A
converted into a Cartesian form using the exponential MaR, e natural definition of the average of a distribution of
from a manifold to a tangent space. S points on the unit sphere uses arc length as the choice of

A unit vectorn € R? may be considered as a point lying ofyjistance measure. Since a 2-sphere is a Riemannian manifold
a spherical manifold: € S2, whereS? is the unit 2-sphere. gang great circles are geodesics, arc length is the Riemannia
The two are related by = ©(n) where® : 5% — R is distancei(., .) between a pair of points and hendép, n,) =
ar;vggnbedd'_ng- Likewise, a field af surfgce normaldJ € arccos (®(n1) - ®(n2)). Using this definition of distance, we
fmani?glzcl;lbemg??]\?)uia]gﬁﬁn;%.be considered as a point Py define théntrinsic mean y = aige;rznn K d(n,ny).
For spherical data, this is known as thpherical median
A. The Log and Exponential Maps [11]. This point cannot be found analytically, but can be
solved for iteratively using the gradient descent method of
Pennec [12]. We initialise our estimate as the Euclidianmmea
of distribution, i.e.p o) = pe. The current estimate is then
éjpdated iteratively as follows:

If v € T,,S? is a vector on the tangent plane$6 atn € S?
andv # 0, the exponential mapdenoted Exp, of v is the
point on.S? along the geodesic in the directionwht distance
lv]] from n. Geometrically, this is equivalent to marking out
length equal td|v|| along the geodesic that passes through LK
in the direction ofv. The point onS? thus obtained is denoted o 1 .

Exp’. This is illustrated in Fig. 1. K1) = BXB, (K Z} LGy, (m)) )

The inverse of the exponential map is tbg map denoted
Log,,. Therefore, the equality LggExp, (v)) = v holds. The  To find the intrinsic mearu € S%(N) of a sample of
geodesic distance between two pointsc S? andn, € S K fields of N surface normalsly,...,Ux € S*(N), we
can be expressed in terms of the log map, d@1,n2) = replace the exponential and log maps in Equation 2 with the
|Log,, (n2)||. The exponential and log maps for the space abrresponding maps for the spag&V'). We can use the log
a field of N surface normalsS?(IV), are simply the direct map and intrinsic mean to define the sample variance of a
products of N copies of the maps fo$? given above. distribution of points on the sphere:



Suppose there ar& example facial needle-maps, each

5 1 K 5 1 S 9 having N pixel locations. The surface normal at the pixel
T 7K Zd(“’"i) - K Z ILog, ()] ©) Jocation for Kt needle-map isv;,;. The intrinsic meany
=t =t _ of the surface normalsy,, ..., ny; at each pixel locatior is

Suppose that each of the training examples is a rangecajculated. The surface normal, is then represented by its
image which consists of an array of depth data each con@inig, mapped positiony; = logny in the tangent plan@), 52,

N = Xies X Yres pixels. For the pixel indexe@ in the ku,  The process is illustrate in Figure 2.

training sample the depth is;’;. Using the range data we
estimate the surface normal directions, and the surfacaalor
at the pixel locatiorp for the &, training image im’;.

We calculate the spherical mediap of the distribution of
surface normals., ..., n/ at each pixel locatiop using (2).
The surface norma:h’; is represented by its position on the
tangent pland,, S* given by the log mapo) = Log,, (nf) €
R2. .

A field of surface normals projected to the tangent plane to (@) (b)

their local spherical median may be represented as the lo o . )
P y P Frllg 2. Projection of surface normals on the unit sphereqgadints on the

vectpr:v’“ = [Uf7 S vi]” o tangent plane at the mean (b) [9].

With the intrinsic mean of the distribution to hand, we can
transform each field of surface normals representing alfaciapn the right are thdog mapped positions of the points
surface to a distribution of 2-dimensional points in a Cgi#le  with the mean as the center of the projection. For ke
space using the log map. These projected points retain theiining needle-map, we concatenate the-coordinates of

variance with respect to the average direction and provideugl at the N pixel locations, and form the N dimensional
convenient representation with which to work. log mapped long vectot, = [uk1z, Uk1y,

T
s 7uszvukNy]

i 2
C. Principal Geodesic Analysis for facial Needle-maps in the tangent pIané“,LS (V). The K" long vectors form the
column-wise data matri&’ = [u4]| ... |uk], and the covariance

In this sectiqn, we explain how to apply PGA to a SShatrix is ¥ = +UUT. BecauseN, the dimensionality of
of gxample facial need_le-maps for the purpose of I.ear_nlngtﬁe facial needle-maps, is usually too large to make the
statistical model Of_ fgmql shape..PGA IS a generallzatlbp fhanipulation ofs. feasible, the numerically efficient snap-shot
PCA from data residing in a Euclidean space to data residifguhoqg of Sirovich [13] is used to compute the eigenvectors
on a Riemmanian manifold. The goal of PCA is to find a Ilnea({f 5. Accordingly, we construct the matri% = LUTU. and
. H - K )

subspace of the space in which the data lies, and maximjge. e jts eigenvalues and eigenvectors. Ttieeigenvector
the variance of the projected data in the subspace. In P@A, th ¢ s> .an pe computed from the” eigenvectoré; of
% (3

notion of a linear subspace is replaced by that of a geOdei'Cusing e; = Ué. The ith eigenvalue); of ¥ equals
manifold. The geodesics that traverse the submanifold afe, ;en eiglenvalue)li- of 5 wheni < K. Wheni > K

referred to as principal geodesics. They are analogouseto th _ 0. The K — 1 leading eigenvectors oF. form the

principal axes in PCA, expect that each principal axis in Pc&zalumns of the eigenvector matrix (projection matrii) —

is a straight line. In the spherical case, a principal geiode?€1|62| ...|ex—1), where K is the number of sample facial
corresponds to a great circle. To project a peiptc S? onto needle-maps. Given a facial needle-map, lthemapped long
a great circleC' is to find the point orC' that is nearest ta, VeCtor u = [u1g, ty, - . -, tnas tny)? iS computed, then the

in terms of geodesic distance. The Eroject‘@nz §* = C'is  corresponding PGA feature vectortis= 7. From the PGA

defined asw(n;1) = arg g;nnd(nl,n) whered(n1,n) isthe  faatire vectorh — [b1,...bx_1]7, the needle-map can be
ne . .

geodesic distance between andn on the spherical manifold. generated usingy, = exp,,, ((®b);) at each locatior.

For a geodesi© passing through the intrinsic mean this

projection can be approximated linearly in the tangent spa

7,52

QI. GEODESICDISTANCES BETWEENFIELDS OF SURFACE
NORMALS USING THEFISHER-RAO METRIC

The construction of shape-spaces is an emerging and ex-
citing area of statistics, offering many fresh challengés](
log,,(¢c (m)) =~ Z vi-log,, (m1), (4)  [15]). The development of a rigorous statistical theorytuise
=1 began with the work by Kendall [16] which describes the shape
wherewvs, ....,vq is an orthonormal basis chHSQ, and can formed by a set of random points under Brownian motion,
be obtained using standard PCA. Then, the principal geodeand has been used in the statistical analysis of shape in both
for the S? space are obtained under the exponential mapchaeology and astronomy. Bookstein [17] and Ziezold,[18]
exp,,(v1),i = 1...d. This approximation enables us to computen the other hand, have developed methods for analysing the
the principal geodesics by applying PCA in the tangent planariations in biological forms. In the image analysis ktenre
7,52 there are numerous examples of the use of Kendall's shape



spaces [19] and [20]. Recent developments in statisticghesh B. Fisher Information Matrix

theory due to Small ([21]) suggest that improved shape spaceThe Fisher information matrix is a Riemannian metric which
can be obtained by representing objects as points on a highn pe defined on a smooth statistical manifold, i.e., a smoot
dimensional surface (a manifold) in such a way that differefanifold whose points are probability measures defined on a
views of a given object correspond to a single point on theymmon probability space [23],[24],[7].

manifold. The aim in this paper is to explore whether the | et | = [0,1], | for Bessel function and p: k ®F — R+,
Fis_her—Rao met_ric can be us_ed to measure different fapetS()@’fQ) — p(x:0), a k-dimensional family of positive probability
facial shape estimated from fields of surface normals usiag tgensity functions parameterized by the vector of paramseter
von-Mises Fisher (vMF) distribution.In particular we aim t g — (01, ....,0,)T € R*. In classical information geometry the
characterise the shape changes due to differences in genggfmannian structure of the parameter spittds defined by
We make use of the vMF distribution since we are dealinge Fisher information matrix with elements:

with surface normal data over the sphété

0 0
A. The von-Mises Fisher distribution (VMF) 9i5(8) = /p@'@ 96, @@6_9]- logp(z|)dz.  (7)

A d-dimensional unit random vectar (i.e., z ) is said to The notationdy, is used for the partiall derivative with
have multi-variate von Mises-Fisher (vMF) distributionit§ €SPect to the componert of ¢, where§ is a vector of
probability density function is given by: parameters assc_>C|ate_d yvnh the densptyTh(_e Fisher-Rao

metric tensor (7) is an intrinsic measure, allowing us tdywea

a finite, k-dimensional statistical manifold M without cdahs

eXp(,ng) (5) ering how M resides in aR?**1 space. In our case, we have 4

—1(k) - parameters an@l = (k, ui1, 2, 13)”, whereu = (1, po, pu3)®

is the density parameter vector with= &, 11, o, 13-
where z is a p dimensional vector residing on the hyper- For simplicity, we concatenate the components of the mean
sphereS?~! submersed ift?, and/; () is the modified Bessel gyrface normal. and writef = (, 7)” and perform vector-
function of the first kind of ordet. The densityf(z(x, %) is  differentiation with respect tp to simplify our calculations. In
parameterized by the mean directipnand the concentration the following sections we detail how to compute the element
parameters, so called because it characterizes how strongf Fisher Rao information matrix for the von-Mises Fisher
the unit vectors draw room tg (z|u, ) are concentrated gistribution.
about the mean direction. Larger values of: imply stronger 1) Computingg,. .. We commence by computing
concentration around the mean direction. In particularrwhe
k = 0, f(z|u, ) reduces to the uniform density of*~*, b b
and ask — oo , f(x|u, ) tends to a point density. Mardia 9x.x = /fp(g,ﬂ,g)&bg fp(z,f@,g)&log fo(z, 5, p)dz.
et.al [10] give details of the vMF distribution. The distition £ (8)
is unimodal and rotationally symmetric around the direttio Substituting for the vMF distribution, we have
u. Finally, the vMF distribution is uniform over the hyper-

-1

[N/

.fp(£7 K ’i) =

NS

(2m)2 1

le:w

sphere forx = 0. The maximum likelihood estimators for the @2m)3 1 (K)ef,{ﬁtg
two parameters are obtained as follows. Suppose we have g = / 31
. . . s 21
samples of the unit vectar, i.e.,z,, ....z,,. The estimator of z K2
the mean direction is given by 0 kel ot 2d
S ) ©)
L= mSm (6)
= Izl

Performing the partial derivative with respectdpwe have:
There is no closed form estimator for the concentration

parameters. Instead, it is the solution of the transcendental (277)512_1(/@)@*“55
equation: Ire = / 7
z k2
P_q rptz
L® 1 & = )ets p E
Ijl(%) :EIIZ&-II (27r)%1%,1(n)(ﬁ—) (2m)%
27 =1
Iy 1(k)(§ — D2
In practice we solve this equation using the Newton- Ip_4(k)2
Raphson method [22]. It is worth noting that Jupp and Mardia 19 gff 7 7
[10] have developed some non-iterative approximationgkvhi _ ( K2~ (g (k) + 5(r) ﬂ d
apply under small and large values f For p=3, the distri- Iy _y(K)? B

bution is referred to as the vMF distribution. (20)



Moving terms that do not depend anintegral, we have:

r_q
_ R etz 1
Ior = am)i s 1<>/e‘ (n2>

{liux + 2a(kp'z) + aQ]dg
(11)

(3-DIp_ (-5 (Ip_(0)+1p,)
IT" 1("{)
where we can défine as:

a =

1
I = —5 (m < cosb,, >2 42ak < cosf, > +a )
K
(12)

Where, < cos,, >= fg yeVdy wheny = ku’x
< cosl, >= fq yeYdy wheny = kp’x

In the above we can set= 3 since we are dealing with a

vMF distribution over a 2D field of surface normals.
2) Computingg, ,: We commence by computing

aen= [ v <X|o>a1ogp<X|9>—logp<X|9> (13)

Again, substituting for the vMF d|str|but|on, we have:

5-1(%) —rp'z

[%((2 )

(14)

Perfoming the partial derivatives with respect#oand
and collecting terms together:

wis| R

[2(§ — 1)1z _y(k) = w(Ig_a(k) — I%(n))}

e T 25 (R
/ ()
(2m) 21z 1 (k) T
Since
Sy B (eu'eygdy = Sy Fola, s, p)zda

@emirp_ i)

is just the meary(z, x, u) we have:

3) Computingg, ,: Finally, we compute:

s = [ plalt)5- ~ loxp(ald) 5 0 logp(alo)iz(17)

Again, substituting for the vMF distribution and performin
the partial derivative with respect o

=(r)pp” (19)

Substituting for the elements of the metric tengpk., g...
andg, ., the (4<4) Fisher information matrix (M) are:

M geiV | ghti® :< a(k) | B(r)u” )
gBxD ‘ gff’ﬁg) Br)p | v(r)up™

;L K
We make use of the Fisher-Rao metric to compute the
geodesic distance between the two parametric densitigs. Co
sider two corresponding 4x4 image regions for which the
estimated parameter vectors a# = (kq,,p, )T and
—CQk

oo = (“bkvﬂb )T and the mean concentration parameter and
mean vector aré = —(Hak + kp,) and i = %(Hak + pn,,)-

For small changes in parameters the geodesic distance
between parameter vectors is:

dszk,bk = a(/\)(ﬁak - K;bk)2
+ 25("%)/1:?(’{&1@ - I{bk)(ﬁak _ku)
- T A ~T
+ VR, ) R (e,

_ ku),

Now, to discover the desired geodesic between two paramet-
ric densities, we can use the Fisher-Rao metric (7) to catleul
the distance between the faces.

(20)

— p2)[2B(~) (k1 — k2)
(21)

ds* = a(k)(K1—K2)? +u" (m
+ (@) (= p2)]

To compute the total facial dissimilarity, we sum the
geodesic distances over all 4x4 non-overlapping imagekbloc
The total dissimilarity is given by

ll b - z dsak,bk

(22)



C. Embedding Techniques data, and projecting these onto a fronto-parallel planeréfésr

To visualise the distribution of geodesic distances we usd%t€ fields of surface normals obtained as facial needlesma

number of manifold embedding techniques to embed the factyf @lign the needle-maps obtained from the different range

shapes into a two-dimensional pattern space. The meth‘Hd'm""ges to give the maximum ove_rlap (correlation)._ Each
studied is multi-dimensional scaling (MDS) [25]. We corrrparf'eld of surface normals is tessellated into non-overlaggixd

the results with the other two embeddings systems: hddpcks. For each pair of blocks, we estimate the mean surface
kernel [26] and commute time [27]. MDS is a family 0fnormal direction and the concentration parameter. For each

methods that maps measurements of similarity or dissiityilarP&" Of facial needle-maps be compute the Fisher-Rao metric

among pairs of feature items, into distances between feat@f @ block-by-block basis, and then compute the dissirtylari
points with given coordinates in a low-dimensional spacQ.y summing over the blocks. For the set mffaces under

The first step is to compute the squared distance matfi@nsideration we construct:ax n dissimilarity matrix. We
DS = [D? b)]a b = 1,...n. This matrix is subjected to then apply embedding technique (MDS) to the dissimilarity

the eigendécompositiorlDS — ©pADL where Ap is the matrix to obtain embedding co-ordinates for thdaces.

di . o . . We use MDS, heat kernel and commute time embedding
iagonal eigenvalue matrix with the eigenvalues ordered in

decreasing size along the leading diagonal. The embeddtﬁ hnique to analyze the experiments (details about those

co-ordinate matrixYp = Ap®L has the vectors of em te hniques 11I-C are described in the Section IlI-C). Also,
- D = IS - . X X )
bedding co-ordinates of the daél—points as columns. BothV€ assess the quality of the resulting low-dimensional data

the heat kernel embedding and the commute time embeddrﬁgeresentanon b)_/ evalgatlng to what ext_ent_the local struc
. : ure of the data is retained. The evaluation is performed by

commence from the Laplacian matrix. LBf = exp[—kDS] ing the Classificati fa 1-N ¢ Neiahb

be the matrix with elementsV(a,b) — exp[—kDS(a, b)] measuring the Classification error of a 1-Nearest Neighbour

where k is a scaling constant. The Laplacian matrixis= (1-NN) classifier that is trained on the low-dimensionaladat

D — W whereD is the diagonal degree matrix with elementgepresentation. Here an object is simply assigned to thes cla
D(a,a) = S, Wi(a,b). The eigendecomposition of theOf its nearest neighbour.In addition, we use the Rand Index t
9 - b=1 ) .

L : =L . assess the degree of agreement between two partitions of the
aplacian matrix isl, = ® A, ;. From the elgendecompo-same set of objects. Based on extensive empirical compariso
sition it is straightforward to compute the co-ordinate rcats ) ' P pa

of both the Laplacian eigenmag, — +/A,®7 and the heat- of several such measures, Milligan and Coooper, 1986 [29]
kernel embeddings — exp|—A {7 TheLcommute time recommends the Rand Index as the measure of agreement
= — T -

between nodes and b is the expected number of steps fofven when comparing partitions having different numbers of
- - clusters.
a discrete-time random walk to reach nobldrom « and

then return again. The embedding which preserves commute Gender Discrimination

time as Euclidean distance between nodes has co-ordiantsve experiment on two sets of data. One is the ground-

H Vol N i

matrix Yo = T(ﬂ where Vol = 5, D(a,a) is the truth needle-maps calculated from the Max Planck data set.
volume andA_ and ®_ are matrices obtained by deletingrhe Max-Planck Face Database [30] [31] comprises 200 (100
the rows and columns corresponding to zero elements of faénales and 100 males) laser scanned (Cyberware TM) human
Laplacian eigenvalue matrix. We assess the quality of th@ads without hair. The facial needle-maps are obtained by
resulting low-dimensional data representation by evalgab  first orthographically projecting the facial range scansoon
what extent the local structure of the data is retained. Taefrontaj view plane, and then a”gning the plane according
evaluation is performed by measuring the generalizatioorer o the eye centers, and cropping the plane 142x124 pixels to
of a 1-nearest neighbour (1-NN) classifier that is trainethen maintain only the inner part of the face. Finally, the suefac
low-dimensional data representation. Here an object iplgim normal at each pixel position is computed using gradients of
assigned to the class of its nearest neighbour [28],In @udit {he processed range image.
we use the Rand Index to assess the degree of agreemefigures 3 and 4, show MDS embedding of the pattern of
between two partitions of the same set of objects. Basgftances into a 2-dimensional space for, respectivelyx Ma
on extensive empirical comparison of several such measurBfnck data set and EAR data set.
(Milligan and Coooper, 1986) recommended the Rand IndexThese MDS embedding show the best results achieved using
as the measure of agreement even when comparing partitiqQu§N classifier. The blue markers are used to denote male
having different numbers of clusters [29], subjects, and the red ones female subjects. We can draw
the following conclusions from these plots. First, turniogr
attention to the embedding, using the Fisher-Rao metric the

Our experiments are concerned with assessing shape vadiatribution of male and female markers are concentrated
tion in fields of surface normals due gender difference. Wdifferently. In particular the female markers are more é@ns
aim to explore if the techniques described can be used doncentrated. This would suggest that probabilistic ssjmar
distinguish the gender of different subjects. may be feasible, and the unambiguous male subjects sepa-

The procedure adopted is as follows. We estimate fieldsted from the female ones. Second, it is worth noting that
of surface normals by computing the derivatives of the heigattempting to discriminate male and females faces on this bas

IV. EXPERIMENTAL RESULTS



TABLE I

CLASSIFICATION ERROR OFRAND INDEX
Embedding | Max Planck data se{ EAR data set
. MDS 0.1450 0.3200
: Heat Kernel 0.1200 0.1950
. &’j Commute Time 0.4900 0.4900
° o0 SodtE
i;::ogg%jfg TABLE Il
o & GENDERIDENTIFICATION PERFORMANCE
vvvvvvvvvvvvvvvv Related Works | Gender Identification Performance
Lu Xiaoguang et al. [33] 97%
Wen Yi Zhao et al. [34] 93%
Fig. 3. Gender difference - Max Planck data set. Zing Wu [32] 97%
Ziyi Xu et al. [35] 92, 38%
Volker Blanz et al. [36] 84,75%

difference. Also, we can compare our results with the work by
Wu [32], which developed statistical methods to find gender
discriminating features from facial needle-maps. The wo@th
constructs a gender sensitive weight maps to quantify the
non-uniform distribution, and develop three novel varsaot
PGA, namely, weighted PGA, supervised weighted PGA, and
supervised PGA. The weight map used in weighted PGA is
a straightforward difference between the mean faces of the
men and women. The best classification accuracy achieved
using supervised weighted PGA is 82.5%. This accuracy
of shape alone is a difficult task, and human observers magenot only higher than that achieved using standard PGA
numerous additional cues such as hair-style. (87.5%), but also higher than the accuracy8#.5% achieved

Table | shows the results using 1-NN classifier training fatsing linear discriminant analysis. To improve this weight
MDS, Heat Kernel and Commute Time. The results achievégap construction in supervised weighted PGA by learning the
in MDS gives the best result achieved so far. We hag® weight map from all the labeled data. Unlike the above two
of recognition using Max Plank data set a9ith using EAR methods, the weight map in supervised PGA describes the
data set. Using the other two embedding we got an avergeairwise relationship between labeled data. The weightsmap
of 60% of recognition. are incorporated into the construction of gender discrétiing

See Table Il, we analyse that using Rand Index classifigodels, and these models are used to extract gender discrimi
training we achieved the best results using heat kernel enating features. For this method the classification acguirac
bedding technique, the average for both data sei0i% of the work is 0f97%. Also, Lu Xiaoguang et al. [33] proposed
recognition. a multimodal facial gender and ethnicity identification. ofw

We observe in Table | that the performance from the 1-Npifferent modalities of human faces, range and intensigy ar
classifier gave the best result using MDS embedding tecknicgxplored. The range information, containing 3D shape of the
for both Data sets. Table Il shows that, using Rand Indéxce object, is utilized for ethnicity identification; Weni Y
technique, the best result for both data sets is heat kerdélao et al. [34] proposed a method based on shape-from-
embedding. Also, commute time is not a good classifier fshading (SFS) which improves the performance of a face
both Classification errors technique. recognition system in handling variations due to pose and
illumination via image symsthesis. In the Table Ill, we can
observe a comparative with the related works. Ziyi Xu et al.
[35] proposed a novel hybrid face coding method by fusing

,,,,,,,,,,,,,,,,,,

Fig. 4. Gender difference - EAR data set.

TABLE |
CLASSIFICATION ERROR OF1-NN CLASSIFIER

Embedding | Max Planck data se{ EAR data set appearance features and geometric features. Volker Blanz e
MDS
Heat Kernel 0.4697 0.3333

0.0455 0.028 al. [36] presented a method for face recognition acros®larg
0.4091 changes in viewpoint. The method is based on a Morphable
method of 3D faces that represents face-specific informatio
extracted from a dataset of 3D scans.
V. GENDERIDENTIFICATION PERFORMANCE Analyzing the Table IlI, our research compared to related
Compared to the results from Section IV-A, it is cleaworks achieved the best performance. We achie¥a@0%
that using Fisher-Rao metric to classify gender differenesing EAR data set with classification error 1-NN. Also, we
provide best results. Recognising gender difference is have a success using classification error of Rand Index with
advance of the research in the field to recognise gend&% of identification using Max Plank data set.

Commute Time 0.4242



VI. CONCLUSIONS ANDFUTURE WORK [13] L. Sirovich, “Turbulence and the dynamics of coheretuctures,”
. . . Quarterly of Applied Mathematicwol. XLV(3), pp. 561-590, 1987.
In this paper we are able to show a notion of distancg4] D. Cremers, N. Sochen, and C. Schnorr, “Towards retingrbased

using Fisher-Rao metric, between fields of surface normals Vvariational segmentation using shape priors and dynanhielitey,” in

on a shape manifold. The immediate next step is to construct g‘oggog'p'”gégfnibg’cale Space Theory Computer Visiaul. 2695,

individual shape-spaces for each class of object. Another | [15] A. Srivastava, S. Joshi, W. Mio, and X. Liu, “Statisficzhape analysis:
of investigation will be to revisit the problem of computing  Clustering, learning, and testingEEE Transactions on Pattern Analysis

. . _ . . and Machine Intelligencevol. 27, no. 4, pp. 590-602, 2005.
geodesic distance between needle-maps, in a way that ex E W. S. Kendall, “The diffusion of shapeAdvances in Applied Probabil-

itly accounts for the shape of manifold on which they reside. " ity, vol. 3, pp. 428-430, 1977.
The overall goal of this paper was to use statistical shag&l F. Bookstein, “The measurement of biological shape strape change,’

. . Lecture Notes in Biomathematicsol. 24, 1978, berlin: Springer.
analySIS to construct shape-spaces that span gendee{mﬁer [18] H. Ziezold, “On expected figures and a strong law of largenbers

by facial needle-maps, and use the resulting shape-model for random elements in quasi-metric spacéans. 7th Prague Conf.
to perform face recognition under varying expression and Information Theory, Stat. Dec. Func, Random Processeb A, pp.

: ) : 491-510, 1977.
gender. Facial needle-maps describe the local orlentaﬂon[lg] D. Kendall, “Shape manifolds, procrustean metricsd @omplex pro-

facial surfaces, which on one hand reveal the facial shape jective spacesBulletin of the London Mathematical Societyol. 16,
information, and on the other hand can be recovered from no. 2, pp. 81-121, 1984,

. . ) _ . [20] A. Torsello and E. Hancock, “Graph embedding using &eg-union,”
2D Images using shape from Shadmg' Pattern Recogn.vol. 40, no. 5, pp. 1393-1405, 2007.

There are clearly a number of ways in which this work1] c. G. Small and H. Le, “The statistical analysis of dyfaurves and
may be extended. We have concentrated on frontal view facial sections,"Pattern Recognitionvol. 25, pp. 1597-1609, 2002.

; ; P. DeuflhardNewton Methods for nonlinear problems. Affine Invariance
surfaces and we can Only recover facial shapes from ima and Adaptive Algoritms Series Computational Mathematics, Springer,

with the same viewpoint. We calculate the four distances 2004, vol. 35.

(Section 1) and Fisher-Rao metric (Section IIl) using 2.5[#3] S. (Ij\/lf;l]ybank, “Detection of image structures using thl?e‘isnfordmatiorr:
. and the rao metric,[JEEE Transactions on Pattern Analysis and Machine
frontal images from Max-Planck face database [30] and Notre Intelligence vol. 26, no. 2, pp. 1579-1589, 2004.

Dame biometric database [37]. Even though the ability td dga4] A. Peter and A. Rangarajan, “A new closed-form inforimatmetric for

with varying pose is almost always claimed to be a benefit P2f5 | SHhafe an(fléSiéMngl"![\L\I?t%-“gopp' 2|49—2|_56, 2f00_?é _—
. . - . Le an . G omall, ultaimensional scaling ofr sirap shapes,
3D face capture, this prObIem could be solved by Incorpogati Pattern Recognitionvol. 32, no. 9, pp. 1601-1613, September 1999.

our methods into a set of view-based models similar to thoge] x. Bai, R. Wilson, and E. R. Hancock, “Manifold embedginf graphs
proposed by Pentland et al. [38] and Reisfeld et al. [39] whic using heat kernel,Mathematics of Surface XVol. 3604, no. 417, pp.

. . 34-39, 2005.
proposed that a set of separate submanifolds can be obta@g]dq Huaijun and E. R. Hancock, “Clustering and embeddising com-

by applying PGA to facial needle-maps of each viewpoint. mute time,”IEEE Trans. on Pattern Analysis and Machine Intelligence
vol. 29, no. 11, pp. 1873-1890, 2007.
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