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Abstract—This work presents a fast method for motion esti-
mation by using low discrepancy sequences. The basic idea in
this proposal is one based on the reduction of the computational
effort involved in the matching of a given block with the reference
block. Instead of using a metric that employs all corresponding
pixels in both blocks, it uses one that selects a subset of pixels
for which the coordinates are determined by the so called low
discrepancy sequences. The proposed method is applied to the
New Three Step Search (NTSS), typically used as a technique
for motion estimation in video applications. The results show a
reduction in computational complexity of about 80% with regard
to the NTSS, with little degradation in the recovered frame. The
block matching of this present method can couple nicely with
virtually any motion estimation technique, requiring very little
change.

Keywords-motion estimation; low-discrepancy sequences; video
coding

I. INTRODUCTION

Block matching Motion Estimation (ME) provides a simple
and elegant way to identify and express movement and,
because of that, is widely adopted by video coding standards
such as MPEG-2, MPEG-4 and H.264/AVC [1]. In the motion
estimation, a video frame is divided up into non-overlapping
blocks of equal size and the best matching block in a refer-
ence frame is found within a predefined search window. In
general, this is performed by minimizing a block distortion
measure such as Mean Absolute Difference (MAD) between
this pair of blocks. The most straightforward technique is the
Full Search (FS), which exhaustively evaluates all possible
candidate blocks within the search window. However, the
computational complexity of FS is considered too high and
can consume up to 80% of the total computation of the video
encoding process [2]–[8].

Many computationally efficient search algorithms for ME
have been proposed to reduce the computational effort and
while maintaining high-coding efficiency. These methods em-
ploy different search point patterns to search for the best
matching block. The Three-Step Search (TSS) [9], the New
Three-Step Search (NTSS) [10], the Four-Step Search (4SS)
[11] and the Block-Based Gradient Descent Search (BBGDS)
[12] attempt to employ square-shaped pattern of different
sizes to search for the best-matching block within the search
window. The Unsymmetrical-cross Multi-Hexagon grid Search
(UMHexagonS) [13] consists of four steps: unsymmetrical

cross search, uneven multi-hexagon grid search, extended
hexagon based search and a small diamond search. The
UMHexagonS algorithm effectively reduces the number of
candidate blocks within a searching window, and has been
adopted in H.264/AVC JM reference software.

For any strategy of used search, part of the computational
complexity of ME concerns the adopted block distortion
measure. In this paper, we propose a method that reduce
the computational effort of block distortion measure used in
ME techniques. Instead of using a metric that employs all
corresponding pixels in both blocks, it uses one that selects
a subset of pixels for which the coordinates are determined
by the so called low discrepancy sequences. The advantages
of the proposed method are: (i) points coverage in the block
can be adjusted, (ii) the low discrepancy sequence needs to be
generated only once for a given block, (iii) can be applied to
any block distortion measure, therefore to all ME techniques.

II. MOTION ESTIMATION

Given a block of size M ×N and a search window of size
(2dm+1)× (2dm+1), where dm is the maximum displace-
ment, in pixels, for the vertical and horizontal coordinates of
the block. The translation between these blocks is called a
motion vector. To find the best match between the blocks one
can use the MAD, defined by.

MAD(i, j) =
1

MN

M∑
m=1

N∑
n=1

|sk(m,n)− sk−1(m+ i, n+ j)|,

(1)
where sk(m,n) represents the gray level of the reference
block, sk−1(m + i, n + j) is the gray level of the block in
previous frame, (m,n) gives the coordinates of the upper left
corner of the reference block in current frame and (i, j) is the
offset in the search window.

The goal is to find a motion vector (u, v) associated to the
minimum MAD(i, j), where i and j ∈ [−dm, dm]. In FS,
the equation (1) is calculated for all (2dm+ 1)

2 positions
of candidate blocks in the search window, and the block
with the lowest MAD (minimum distortion) is used for
prediction, i.e., the position of this block within the search
window corresponds to the motion vector. As was mentioned
before different methods have been propodes to attack the



computational high demand of FS method. The following three
traditional techniques for ME are described.

A. The Three-Step Search

The Three-Step Search (TSS) [10] reduces the number of
candidate blocks within a searching window. In each step nine
points are established, forming a 3 by 3 grid, as shown in Fig.
1 (filled circles). The motion vector is determined when the
minimum MAD is found at a distance of one pixel. TSS
became the most popular one for low bit-rate video appli-
cation (including videophone and videoconferencing), owing
this to its simplicity and effectiveness. However, TSS uses a
uniformly allocated search pattern in its first step, which is not
very efficient to catch small motions appearing in stationary
or quasi-stationary blocks. To remedy this problem, the new
three step search technique has been proposed.

B. The New Three-Step Search

The New Three-Step Search (NTSS) differs from TSS by (1)
assuming a center-biased checking point pattern in its first step
and (2) incorporating a halfway-stop technique for stationary
or quasi-stationary blocks. The steps are given below:

1) In the first step, in addition to the original checking
points used in TSS, eight extra points are added, which
are the eight neighbors of the search window center, as
shown in Fig. 1.

2) A halfway-stop technique is used for stationary and
quasi-stationary block in order to fast identify and then
estimate the motions for these blocks:

a) If the minimum MAD in the first step occurs at
the search window center, stop the search. (This is
called the first-step-stop.)

b) If the minimum MAD point in the first step is one
of the eight neighbors of the window center, the
search in the second step will be performed only
for eight neighboring points of the minimum1 and
then stop the search. (This is called the second-
step-stop.)

C. The Four-Step Search

For maximum motion displacements of ±7, the Four-Step
Search (4SS) algorithm utilizes a center-biased search pattern
with nine checking points on a 5× 5 window in the first step
instead of a 9×9 window in the 3SS. The center of the search
window is then shifted to the point with minimum MAD.
The search window size of the next two steps depends on
the location of the minimum MAD points. If the minimum
MAD point is found at the center of the search window, the
search will go to the final step (Step 4) with 3 x 3 search
window. Otherwise, the search window size is maintained in
5×5 for step 2 or step 3. In the final step, the search window
is reduced to 3 × 3 and the search stops at this small search
window. The 4SS algorithm is summarized as follows [11]:

1Notice that some of these eight points have already been checked in the
first step.

Fig. 1. Filled circles are the checking points in the first step of TSS, square
are the 8 extra points added in the first step of NTSS, and triangles explain
how the second step is performed if the minimum MAD in the first step is at
one the 8 neighbors of the window center.

1) A minimum MAD point is found from a nine-checking
points pattern on a 5 × 5 window located at the center
of the 15 × 15 searching area as shown in Fig. 2(a). If
the minimum MAD point is found at the center of the
search window, go to Step 4; otherwise go to Step 2.

2) The search window size is maintained in 5×5. However,
the search pattern will depend on the position of the
previous minimum MAD point.

a) If the previous minimum MAD point is located
at the corner of the previous search window, five
additional checking points are used, as shown in
Fig. 2(b).

b) If the previous minimum MAD point is located
at the middle of a horizontal or vertical axis of
the previous search window, then three additional
checking points are used as shown in Fig. 2(c).
If the minimum MAD point is found at the center
of the search window, go to Step 4; otherwise go
to Step 3.

3) The searching pattern strategy is the same as Step 2, but
at the and it will go to Step 4.

4) The search window is reduced to 3×3 as shown in Fig.
2(d) and the direction of the overall motion vector is
considered as the minimum MAD point among these
nine searching points.

In the next section, the low discrepancy sequences are
defined and the relationship with the block matching for ME
is then exploited. This implies a faster evaluation of the
MAD and therefore an acceleration of block matching motion
estimation algorithms.

III. LOW-DISCREPANCY SEQUENCES

Monte Carlo methods form a class of algorithms that use
pseudo-random numbers in tasks that usually involve numeri-
cal processing of a large amount of data [14]. These methods
have been applied to a great variety of numerical problems
such as in the iterated integral estimate, and usually present



Fig. 2. Search patterns of the 4SS. (a) First step, (b) second/third step, (c)
second/third step, and (d) fourth step.

great advantages over the traditional approaches of partition
intervals such as Simpson’s and the like.

Among the pseudo-random sequences, the so called low
discrepancy sequences have been the object of major research,
given its apparent superiority with respect to space uniform
cover and the convergence performance in the integral esti-
mates.

We call discrepancy the measure of uniformity of a given
sequence2. More formally:

Definition 1 (Discrepancy). Let ω = {x1, x2, · · · , xn,
xn+1, · · · } an infinite sequence of real numbers in the interval
[0, 1] and let I ⊆ [0, 1] one sub-interval. We define A(I;n) the
amount of points of the subsequence x1, x2, · · · , xn belonging
to I , i.e, A(I;n) = |I ∩ {x1, x2, · · · , xn}|. In a uniform
sequence, the amount of points A(I;n) is proportional to I’s
measure, i.e, A([α,β);n)

n = β − α considering that I = [α, β).
The measure of the deviation

Dn = Dn(ω) = sup
0≤α<β≤1

∣∣∣∣A([α, β);n)n
− (β − α)

∣∣∣∣
is called Discrepancy of the first n points of the sequence ω.

The computation of D can be quite complicate. An associate
measure of a somewhat simpler computation is the so called
star-discrepancy expressed by:

D∗
n = D∗

n(ω) = sup
0<β≤1

∣∣∣∣A([0, β);n)n
− β

∣∣∣∣ .
A well established result relates both measures through the

inequality
D∗

n ≤ Dn ≤ 2D∗
n.

Considering sequences in the interval [0, 1], if the discrep-
ancy of the sequence is zero, then the cover of the sequence
is completely uniform and if it is near 1 then the sequence
will be poorly uniform, leaving empty chunks in the interval.
Some sequences may be regarded as a low discrepancy, i.e.,
near zero discrepancy, when considered as a whole, however

2The definitions and notation that follow are the same as in [15].

they may present high discrepancy behavior during their early
stages of construction. For instance, consider a total of 256
points for a given low discrepancy sequence, but it is possible
that, if we take an intermediate phase of its construction, en-
compassing 64 points for example, this sequence may present
a poorly uniform cover, which is a high discrepancy behavior.
Other sequences possess the property of behaving like a low
discrepancy sequence in all of its construction phases, such as
Van der Corput-Halton’s. In this paper, we will utilize Van der
Corput-Halton’s sequences [15]–[17], defined as follows:

Definition 2 (Van der Corput-Halton’s Sequence (VDH)). Let
b > 1 a positive integer number. The sequence V DHb =
{x1, x2, · · · } for which the term xi is defined by

xi =
s∑

j=0

aj
bj+1

,

where
∑s

j=0 ajb
j is the expansion in the numerical base b of

the number i− 1 is called Van der Corput-Halton’s Sequence
in the base b.

Note that the first points of the VDH sequence in
base 2 are: 0, 1

2 ,
1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 , · · · . It can be shown that

limn→∞Dn(V DHb) = 0 and in fact it is not hard to show
that Dn(V DHb) ≤ ln(n+1)

n , making the VDH sequence one
of the lowest known discrepancy sequences.

A. Low-Discrepancy Sequences and Block-Matching

Let X and Y blocks of size M × N in the current
frame and the search window of in the previous frame,
respectively. Let P = {p1, p2, · · · , pk} be the subset of
{1, 2, · · · ,M} × {1, 2, · · · , N}, i.e, a subset of all possible
coordinates of blocks X e Y . We define the mean absolute
difference induced by P as:

MADP (X,Y ) =
1

k

k∑
l=1

|X(pl)− Y (pl)|. (2)

Notice that if P = {1, 2, · · · ,M} × {1, 2, · · · , N} then
Equation (2) corresponds to Equation (1) for fixed positions
(m,n) and (i, j). Because summations and integrations are
related operations, the use of Monte Carlo techniques for
the evaluation of the summations, just like it is done with
integrations, is suggested in this work. In particular, the use
of low discrepancy sequences in the fast evaluation of the
summations involved in the computation of the MAD, as will
be seen briefly, presented very encouraging results.

In order to employ low discrepancy sequences making use
of the concept of induced MAD, we need to transform the
sequence V DHb of real numbers in the interval [0, 1) into a
sequence P of integers lying in the set3 {1, 2, · · · ,m× n}.

One approach consists of taking P as the ordering of
{1, 2, · · · ,m × n} induced by the indexing of V DHb, i.e.,

3in fact, the sequence P in the definition of induced metric is a subset
of {1, 2, · · · ,m} × {1, 2, · · · , n}. By using the standard linearization of a
matrix, it is enough to consider P as a subset of {1, 2, · · · ,m× n}



pi = j if and only if xi is the j-th element in the or-
dered list of V DHb’s elements. For instance, the sequence
A = {0.8, 0.2, 0.7, 0.4} induces, through this mechanism,
the sequence B = {4, 1, 3, 2}, meaning that in the ordered
listing of A its original elements hold respectively the fourth,
first, third and second positions. Through this approach the
repetitions are avoided but the convergence is preserved.

B. Low-Discrepancy Sequences Applied to the NTSS

Consider the sequence of k points of 2-dimensional VDH-
low-discrepancy type in bases 2 and 3, that is, a sequence
{Pl}l=1···k = {(al, bl)}l=1···k where a1, a2, · · · , ak is the
VDH sequence in the base 2 and b1, b2, · · · , bk is the
VDH sequence in the base 3. Normalizing the sequences
a1, a2, · · · , ak for the interval [1,M ] and b1, b2, · · · , bk for
the interval [1, N ] we obtain a scan of the whole block by a
sequence denoted by Pl.

We emphasize that no matter which approach is used for the
transformation, or how complex the sequence generation is,
only one sequence needs to be generated for each block size.
This sequence can then be used to produce any estimation
of block distortion measure (MAD) as a function of the
number of sampled points in the sequence. Therefore, the
NTSS algorithm, Equation (1) can be replaced by Equation
(2). This implies an acceleration the original NTSS, since only
a percentage of the total points of the block is being used in the
calculation of MAD. It should be clear that, whenever k varies
from 1 to m× n, in the scheme that avoids repetitions in the
generation of P ’s points, MADP approaches and eventually
equals the value of MAD. The proposed algorithm is shown
in Fig. 3. The set V contains the 17 points as shown in Fig.
1. Note the use of Equation 2 as block distortion measure.

C. Computational Complexity

In the following, we compare the computation complexity
of the TSS, NTSS, 4SS and our method (NTSS+VDH) con-
cerning the maximum number of block matches. For a search
window of size 15× 15, the FS requires 225 block matches.

The TSS checks nine points in its first step, and then eight
points in the two subsequent steps. Thus the TSS algorithm
checks 25 points in the worst case.

The NTSS uses nine checking points of TSS plus eight
center-biased points in its first step to favor blocks with small
motion. In the worst case, the NTSS algorithm requires 33
block matches. Although NTSS uses more checking points
in its first step as compared to TSS, the first-step-stop and
second-step-stop can reduce computation significantly.

From the 4SS algorithm, we can find that the intermediate
steps may be skipped and then jumped to the final step if at
any time the minimum MAD point is located at the center of
the search window. The worst case computational requirement
of the 4SS is 27 block matches.

For a coverage of 50 points in the VDH sequence, the
NTSS+VDH algorithm requires 33×0.2 = 6.6 block matches,
since for each checking point only 20% of the pixels of the
block were used to calculate the MAD. Thus, the worst case

g e n e r a t e k p o i n t s i n t h e VDH s e q u e n c e
dmin = maximum
vmin = ( 0 , 0 )
f i n d vmin i n V wi th t h e l o w e s t MAD P
i f ( vmin = = ( 0 , 0 ) )

r e t u r n vmin
end
e l s e i f ( abs ( vmin )==1)

( cx , cy ) = vmin ;
/ / 3 o r 5 c h e c k i n g p o i n t s
/ / w i th c e n t e r ( cx , cy )
i f ( vmin == ( cx , cy ) )

r e t u r n vmin
end

end
i f ( abs ( vmin )==4)

p = 2
w h i l e ( p >= 1)

f o r i = −p t o p , s t e p p
f o r j = −p t o p , s t e p de p

d = MAD P
se d < dmin

dmin = d
w = ( i , j )

end
end

end
vmin = vmin + w
p = p − 1

end
end

Fig. 3. The NTSS+VDH algorithm.

computational requirement of the NTSS+VDH is 80% smaller
than the traditional NTSS. Note that this approach can also be
applied to TSS or 4SS algorithms.

IV. RESULTS AND DISCUSSION

The simulations were performed with the use of luminance
components for the first 300 frames in the video sequences
Akiyo, Coastguard, Container, Foreman, Mobile e News. The
utilized frame size was 352× 288 (CIF format) with an 8-bit-
per-pixel quantization. It was established the maximum shift of
±7 pixels in both horizontal and vertical directions for 16×16-
size blocks.

For all six sequences, simulations were carried out between
the algorithms FS, NTSS and our method (NTSS+VDH). In
the FS and NTSS algorithms, for each point inside the search
window, all the 256 pixels of a block are used in the MAD
measure computation. In this proposed algorithm, for each
block, in order to estimate the motion vectors, we used covers
by 50, 75, 100 and 125 points in the VDH sequence in bases
2 and 3, normalized to the region [1, 16] × [1, 16], that is,
the motion vectors were estimated by using respectively about
20%, 30%, 40% and 50% of the block’s total amount of points,
leading to reductions in computational effort of about 80%,
70%, 60% and 50% with respect to NTSS.

The Fig. 4 presents the MSE values between the original
and the estimated frames for two covers (50 and 125) of
points in the VDH sequence. Notice that the performance of
the NTSS with low discrepancy sequence (NTSS+VDH) is



similar to the traditional NTSS, but with the computational
effort severely reduced. In the case where 125 points are used,
the result is the closest to the pure NTSS. The reduction in
the amount of points in the VDH sequence naturaly means an
inferior approximation, however the behavior along the video
sequence is basically maintained. The Fig. 5, illustrate the
method performance for video sequence Foreman.

Fig. 4. MSE Value between the original and the estimated frame for the
Akiyo video sequence’s first 300 frames.

Fig. 5. MSE Value between the original and the estimated frame for the
Foreman video sequence’s first 300 frames.

Table I presents the MSE mean values between the original
and estimated frames by the FS, NTSS and NTSS+VDH
algorithms. Note, for a coverage of 125 points, the difference is
very small. Fig. 6 shows the efficiency of the proposed method
with respect to the visual quality of the recovered frame for
the Akiyo video sequence. The Fig. 6(a) and Fig. 6(b) present
the 300th recovered by NTSS and NTSS+VDH algorithms. It
can be noticed the good quality in the motion compensation
the NTSS+VDH when compared to the NTSS.

TABLE I
MSE MEAN VALUES FOR ALL SEQUENCES

MSE mean for VDH
Sequence FS NTSS 50 75 100 125

Akiyo 4.99 5.11 5.24 5.18 5.16 5.14
Coastguard 82.03 86.52 90.21 88.43 87.83 87.51
Container 13.28 13.52 13.65 13.58 13.56 13.54
Foreman 93.25 104.54 109.73 107.68 106.43 105.95
Mobile 301.43 305.48 318.50 312.26 310.01 308.58
News 29.24 31.98 33.96 33.14 32.72 32.52

(a) NTSS (b) NTSS+VDH

Fig. 6. The 300th estimated frames for the Akiyo sequence.

V. CONCLUSION

This paper presented a method that allows an acceleration
in the techniques for block matching motion estimation us-
ing low-discrepancy sequences. To a certain block size, the
sequence needs only be generated once and can be applied
as a good estimate for the block distortion measure adopted,
such as MAD, in motion estimation. The proposed method
was applied to the NTSS algorithm, allowing a reduction of
computational complexity by up to 80% with little degradation
in the recovered frames.

Future directions in this research include the use of this
technique in the choice of the points inside the search window,
with or without a combination with the choice of the points
inside each block. We also expect to test the efficiency of this
technique with the use of other low discrepancy sequences and
with the VDH sequence in other bases.
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