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(a) Flow on a layer surface (b) Flow near a producer well

Fig. 1: Visualization of a 3D oil flow of a black-oil reservoir model.

Abstract—In the oil industry, clear and unambiguous 3D flow
visualization techniques are very important to inspect the results
of numerical simulation of black-oil reservoir models. In this
paper, we revisit the use of line integral convolution (LIC) for
imaging 3D vector fields on arbitrary surfaces and apply it to
reservoir visualization. We use a GPU-based method to image
the tangential component using the conventional 2D LIC in
projected screen space and propose the use of color to encode
the normal component. To attach the flow imaging to the 3D
surfaces, avoiding image flickering while manipulating the model,
we propose a simple scheme based on randomly generated texture
coordinate, avoiding the use of a solid 3D texture noise. For
animation, we adjust the use of filters to ensure that the animation
speed varies in accordance to the field magnitude. We also explore
the visualization of multiphase (oil, gas, and water) flow.

Keywords-line integral convolution; 3D flow visualization;
black-oil reservoir visualization.

I. INTRODUCTION

Oil companies extract petroleum from porous rock struc-
tures called black-oil fields or reservoirs. The extraction pro-
cess is done by drilling wells into the reservoir. The oil is
brought to the surface by natural underground pressure or

by induced pressure (e.g. injecting water). Soil properties and
the placement of the wells along the reservoir determine the
extraction rate and the lifetime of the oil field.

Planning an oil field exploration consists in assessing sets
of wells to maximize oil recovery. Oil companies make use
of reservoir numerical simulation to plan oil field exploration.
Traditionally, finite difference simulators are employed, rep-
resenting the model by a discrete three-dimensional mesh of
hexahedral cells. The numerical simulator outputs a large set
of data representing cell properties along a simulation time
line. Among the generated data are 3D vector fields, specially
flow of oil, gas, and water, that must be analyzed by means
of computer graphics visualization techniques.

However, to achieve clear and unambiguous 3D flow visu-
alization is challenging. Vector field visualization techniques
appear in different flavors [1], [2]. Direct flow visualization
samples arrow glyphs throughout the domain and allows im-
mediate view of the overall flow, but is hard to be interpreted in
3D. Streamline extraction and rendering falls into the category
of geometric flow visualization and faces the challenge of
correctly placing seeds in order to avoid missing important fea-



tures of the flow. Texture-based dense visualization techniques
combine the previous approaches and use the directional flow
information to sample textures, covering the whole model
domain. Lastly, feature-based visualization techniques try to
extract important features from the data and show only what
is interesting to the user, which may vary depending on data
and intended application.

In the oil industry, streamlines are traditionally used to
reveal flow behavior, but the resulting images show a sparse
representation of the flow and are hard to be interpreted
without ambiguity in 3D. That is particularly true for reservoir
models in which the flow may become quite complex around
dense set of wells. We then focus on the use of dense texture-
based techniques to visualize flows from a black-oil reservoir
simulation. A natural choice would be the use of 3D line
integral convolution (3D LIC) [3], [4]. However, once the
3D image is achieved, it must be visualized using volume
rendering algorithms, which brings us to the difficult task
of choosing an appropriate transfer function to reveal all the
important features of the data. Another disadvantage of 3D
LIC is related to the 3D image resolution: to achieve good
image quality, it requires large memory consumption and high
computational time to generate the LIC image.

In this paper, we propose the use of LIC applied on surfaces
in 3D [5] for reservoir flow visualization. We believe that
using surfaces as the geometric support for visualizing 3D
flows in a reservoir model is an adequate strategy. Cells of
a black-oil reservoir model lay on a 3D topological grid,
being identified by the triple (i, j, k). All cells of a given k
constitute a layer, which resembles an irregular terrain, with
discontinuities; similarly, cells of a given i or j constitute a
section. Reservoir models are usually inspected using “ex-
ploded” views, separating the model into layers, section, or
a combination of both [6].

We revisit the use of line integral convolution (LIC) for
imaging 3D vector fields on arbitrary surfaces. We present
a GPU-based method to image the tangential component
using the conventional 2D LIC in projected screen space.
However, while performing the LIC in screen space to render
3D objects we need to ensure that the image of the flow is
attached to the object instead of the screen; otherwise, the
image would change during user interaction (navigation or
model manipulation) resulting in annoying image flickering.
We solve that by proposing the use of fixed texture coordinates
associated to the vertices, randomly generated, and making
use of mipmapping for white noise representation. Although
simple, this solution is general, avoid the use of a solid 3D
texture, and has showed to be quite effective. We also explore
colors both to infer a three-dimensional understanding of the
3D flow represented on the surfaces, encoding the normal
component, and to allow multi-phase flow visualization in a
single image. For animation, we adjust the use of filters to
ensure in-phase motion to represent flow direction, varying
animation speed in accordance to the field magnitude.

The rest of this paper is organized as follows. Section II
reviews dense flow visualization techniques, especially on 3D

surfaces. Section III presents our approach to apply LIC on
surfaces. Section IV discusses different uses of color and
animation to effectively reveal 3D information. The imple-
mentation of our algorithm is presented in Section V. Finally,
Section VI analyses achieved results and Section VII draws
concluding remarks.

II. RELATED WORK

Cabral and Leedom [3] introduced line integral convolution
(LIC) for imaging two-dimensional vector fields. The basic
idea is to convolute a white noise image along streamlines
computed from the vector field. For a dense regular representa-
tion of a 2D vector field, the algorithm uses two aligned images
as input: an image representing the vector field, named velocity

image, and the white noise. For each pixel, a streamline
is computed in the negative and positive directions of the
vector field. Then, the white noise is convoluted considering
all the pixels traversed by the computed streamline. As a
result, streamlines covering the entire domain of the vector
field are revealed in the resulting image. This works because
neighboring pixels along a same streamline will likely have
similar streamlines themselves, except for the extremes, and,
therefore, will output pixels with similar resulting luminance.
On the other hand, neighboring pixels that belongs to different
(in general, parallel) streamlines, consider a completely differ-
ent set of pixels for the convolution, producing different lu-
minance. As a result, distinguishable streamlines are revealed
in the final image. Cabral and Leedom [3] also showed that
an extension to 3D vector visualization was straightforward,
which was later explored by Interrante and Grosch [4].

The computational cost of LIC is proportional to the length
of the streamlines, and relatively long streamlines are needed
to achieve good image quality. For that reason, following
researches tried to improve the performance of the original
LIC algorithm ([7], [8], [9], [10]). Later, van Wijk [11]
proposed a different technique for two-dimensional flow vi-
sualization, named Image Based Flow Visualization (IBFV),
which presented much better performance if compared to
the traditional LIC. Today, the computational cost of the
original LIC algorithm is alleviated by the current graphics
card programming capabilities [12]. Recently, Hlawatsch et
al. [13] have proposed the use of hierarchical line integration
to speed up LIC computation; their proposal was also designed
to take advantage of modern GPUs.

Different techniques were also presented for visualizing
flow on 3D surfaces [5]. The achieved results resemble the
visualization of a wind tunnel test using surface oil flow [14].
Both Teitzel et al. [15] and Battke et al. [16] extended LIC
to visualize flow on arbitrary surfaces tessellated in triangles,
performing convolution in object space. Later, van Wijk [17]
and also Laramee et al. [18] proposed to apply the IBFV
algorithm to 3D surfaces realizing texture advection in image
space. As a result, their techniques are fast and independent
of the surface mesh’s complexity. Weiskopf and Ertl [19] also
proposed a GPU-based LIC algorithm for imaging vector fields
on surfaces; they perform the convolution in screen space



and use a solid 3D texture noise to ensure frame-to-frame
coherency.

We have also used the screen space to perform image
convolution using a GPU-accelerated LIC algorithm. Different
from previous works, we propose the use of color to infer a
three-dimensional understanding of the 3D flow and avoid the
use of 3D textures while ensuring frame-to-frame coherency.

III. PROJECTED LIC
Reservoir simulators output, among other data, vector fields

associated to the cells of the model, at different time steps of
the simulation. Due to the large amount of data generated,
reservoir engineers, in general, opt for outputting only a few
critical time steps. This sparse output disallows accurate vector
field interpolation, forcing us to visualize each outputted time
step as representing steady-state flows.

In a pre-processing phase, we compute vector fields at
vertices averaging data associated to neighboring cells. We
then send the 3D vector field to the graphics pipeline as vertex
attribute. The goal is to visualize these 3D data using surfaces
as the geometric support. Layer and section surfaces are built
by extracting, for each hexahedral cell, the corresponding
central quadrilateral. The vector field is often not aligned with
the surfaces. As pointed out by van Wijk [17], visualization
of non surface-aligned flow is more difficult to be interpreted.
To overcome this difficulty, we propose to apply LIC to
the tangential component of the flow and to use color (see
Section IV) to depict the normal component.

As illustrated in Figure 2, given the vertex unit normal (n̂),
we compute the tangential component of the 3D vector field
(�f ) associated to the corresponding vertex:

�ft = �f − (�f · n̂)n̂ (1)

Because we apply LIC in screen space, we need to project
the resulted tangential vector field. Being v the vertex position
in object space, we perform the projection by applying the
modelview-projection matrix (M). Denoting projected quanti-
ties with apostrophes, we have:

�f �
t = M(v + f̂t)−Mv (2)

In this formula, note that we use the unit tangential vector
(f̂t) to ensure that the position v+ f̂t does not fall behind the
camera. This is valid because LIC does not consider vector
field magnitude.

We then adjust the resulting projected vector by the screen
aspect ratio (�f �

t ← �f �
t w/h), and apply conventional 2D LIC

in screen space. A z-value buffer is used to detect depth
discontinuity along the streamline to avoid wrong convolution
of pixels that are far apart in object space, as proposed by
Laramee et al. [18]. The depth value is also used to identify
fragments that belong to the background.

A. Noise mapping

For surfaces, when convolution is done in object space,
there is the need to use a solid 3D white noise, which
requires a significant amount of memory and limits the level

screen space

object space

n̂ �f

�ft

�f �
t

v

Fig. 2: Projection of tangential vector field.

of magnification achievable without blurring the image. In
image space, one can consider that both vector field and white
noise images are aligned. This allows a direct correspondence
between pixels of both images to perform the convolution.
Magnification is unlimited, always producing high quality
images.

However, for image-space convolution, if we consider user
interaction for manipulating the model or moving the camera,
a given part of the model will be projected on different regions
of the screen, resulting in annoying image flickering. In order
to eliminate this effect, a given triangle of the surface mesh
has to be mapped, always, to the same texture region. One
can achieve this by employing a solid 3D texture, mapping
the white noise in object space, while performing convolution
in screen space. To avoid the problems related to using
3D textures, we propose a new strategy to assign texture
coordinates to the vertices of the mesh using a 2D noise image,
while eliminating image flickering.

In a pre-processing phase, we assign a randomly generated
texture coordinate to each vertex of the model. As a result,
triangles of the mesh will be mapped into arbitrary regions
in texture space. The probability to end up with degenerated
texture mapping is too small, and we assume it does not
happen. After projection, triangles are mapped to screen,
calling for texture magnification or minification. We try to
avoid texture magnification through the use a large noise
image (in our experiments, a size of 2048 x 2048 has proved
to be enough). Texture minification is solved by the use
of mipmapping. For each level of the mipmap pyramid, we
construct a different white noise image. We then set texture
filtering to perform linear interpolation across pyramid levels
and to get the nearest value in a given level. In this way, we
ensure smooth transition across different levels but preserve
aleatory distribution of fetched samples.

IV. COLORING AND ANIMATION

The LIC reveals only local vector field tangent, but neither
magnitude nor direction are depicted (see Figure 3a). Cabral
and Leedom [3] proposed the use of a color scale to map field
magnitude, and the use of periodic motion filters to reveal flow
direction via animation.

In our case, we can also map the field magnitude as
illustrated in Figure 3b. However, this does not suffice, be-



cause the image does not reveal information regarding the
normal component of the field. This is important for a correct
understating of the 3D flow. To solve that, we can represent
the normal component using a different color scale. Since
the normal component is normalized, it varies from −1 to 1
(negative numbers indicate the flow is entering the surface); we
map negative values to blue, zero value to white, and positive
values to red, as shown in Figure 3c.

We then propose the use of a two-dimensional color scale,
combining both previous scales, as illustrated in Figure 4.
This allows us to map both magnitude and normal component
simultaneously in a single image. If the field is aligned to the
surface, the scale varies from white to green. The blue color is
assigned to negative normal component with high magnitude,
while red to positive. A cyan tone indicates that the flow is
entering the surface with low magnitude, while a yellow tone
indicates the flow is going towards the viewer, also with low
magnitude. With this coloring scheme, 3D flow is correctly
revealed, even with the use of surfaces as geometric support.
Figure 3d illustrates the achieved result. We believe that with
little practice the resulting image can be easily and correctly
interpreted.

For revealing flow direction via animation, Cabral and
Leedom [3] suggested the use of a phase shifted Hanning filter
windowed by the Hanning function itself. Our goal was to
control the animation speed in a way proportional to the field
magnitude. That is, in regions with high magnitude values,
the flow should move faster. We applied a speed factor (λ),
somehow proportional to the field magnitude, to control phase
shift, expressing the kernel by:

k(w) =
1 + cos(cw)

2
× 1 + cos(dw + λ β)

2
(3)

with λ ∈ [0, 1]. First, for each pixel, we tried to set λ directly
proportional to the normalized magnitude value (m̄):

λi = m̄i =
mi

mmax
(4)

where mi represents the magnitude field value of a pixel, and
mmax the maximum magnitude value of the field.

However, with this speed factor, neighboring pixels along
a given streamline went out of phase and, after a couple of
frames, the animation started moving backwards, especially in
areas of high magnitude values. In order to keep neighboring
pixels along streamlines in phase while adjusting animation
speed, we propose a factor proportional to the quantized
normalized magnitude value. In our examples, we have used:

λ = 0.1
� m̄i

0.1

�
(5)

In this way, areas of high magnitude values move faster, but
all pixels in a same area move in phase at the same pace.

We have also extended our technique to visualize multi-
phase flow. Reservoir simulation computes flow and saturation
change of three phases (oil, water and gas). We then examined

(a) Vector field revealed by LIC

(b) A white-green scale maps magnitude

(c) A blue-red scale maps normal component

(d) A 2D color scale maps both magnitude and normal component

Fig. 3: Proposed coloring scheme.

the use of colors to simultaneously visualize multiphase flow.
In the oil industry, traditionally, visualization of oil, water,
and gas data are assigned to green, blue, and red colors,
respectively. We than use the three color channels to encode
the result of up to three LIC algorithms, one for each phase
flow. Figure 5 illustrates the result for a simulation that
considers only oil and water. In this image, the color intensity
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Fig. 4: Proposed two-dimensional color scale.

is given by the saturation value of each phase. The image then
depicts both saturation and flow distribution of oil and water
throughout the reservoir.

V. IMPLEMENTATION

The proposed technique is implemented in a two-rendering
pass algorithm, coded in GLSL. In the first pass, the 3D
surface model is processed and rasterized to multiple rendering
targets. The application has to provide the following vertex
attributes: position, normal, 3D vector field, and randomly gen-
erated texture coordinate. The vertex shader implementation is
straightforward and basically transforms the vertex and passes
all the vertex attributes (including position) to be interpolated
by the rasterizer. The fragment shader applies Equations 1 and
2 to compute the projected tangential vector field. It outputs
three images to be used by the second pass:

• color image: RGBA image that stores the illuminated
color (r, g, b, α) at each pixel; this represents the shaded
pixels to be combined to the vector field imaging. In
general, this corresponds to a luminance image, but we
keep it as a full color image to allow the application
to combine textures and transparency to the vector field
imaging.

• texture coordinate image: RGB image that stores the
texture coordinate (s, t) assigned to each pixel. In the
third channel, it stores the corresponding pixel depth
value (z).

Fig. 5: Multiphase (oil and water) flow visualization. In this
case, color intensity is set proportional to saturation.

• vector field image: RGBA image that stores the 2D
projected tangential vector field (f �

tx
, f �

ty
), using the third

channel to store the normal component (fn), and the forth
channel to store the corresponding 3D vector field mag-
nitude (��f�). The front-facing flag and the interpolated
vertex normal is used to appropriately set the normal
component sign: negative values for flow entering into
the surface and positive values for flow arising from the
surface.

The second pass is application independent and operates in
screen space. In this pass, the projected vector field image
(velocity image) is used to perform conventional 2D LIC in
screen space. The normal component and the field magnitude
are used to fetch the color palette. The depth value is used
to detect pixel belonging to the background and streamline
discontinuities. The texture coordinate values are used to fetch
the 2D texture noise that is also provided as input. The result
of the LIC at each pixel is then combined to the color image
provided by the first pass.

VI. RESULT ANALYSIS

In this section, we first discuss the benefits of combining
projected LIC with an appropriate color encoding for revealing
3D flows using surfaces as the geometric support. The goal of
our proposal is to use surfaces as the support for visualizing
actual 3D flow, which are, in general, not surface aligned.
To be an effective visual representation, the produced images
have to clearly and unambiguously reveal the 3D structure of
the flow. van Wijk [17] discussed the visualization of non-
aligned flow on surfaces. He compared images that depicted
the surface of a torus in a vertical flow, as schematized in
Figure 6: f̂1 represents the vertical vector field.
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Fig. 6: Surface of a torus in two different flows: f̂1 represents
a vertical flow, and f̂2 represents a 45o degree deviated flow.

van Wijk [17] compared the achieved results for two differ-
ent approaches to deal with non-aligned surface flows. A first
image was generated by projecting the flow on the surface and
imaging the tangential component, and a second by imaging
the 3D flow as it is. We reproduced this experiment with our
algorithm and obtained the images shown in Figure 7, which
are similar to the ones presented in [17].



(a) Flow projected on surface (b) Flow not projected

Fig. 7: Surface of a torus in a vertical flow.

(a) Flow projected on surface (b) Flow not projected

Fig. 8: Surface of a torus in a 45o-degree deviated flow.

While the first image shows the surface shape clearly, it
does not reveal the actual flow. van Wikj [17] concluded that
the second image shows the flow field better. In his opinion,
the image effectively conveys that this is a simple and uniform
flow. In this case, the torus would represent a flow probe for
inspecting the involving 3D flow.

We argue that, without an appropriate coloring scheme, both
images are unclear and ambiguous. Consider, for instance, the
same approaches for a 45o-degree deviated flow, as illustrated
by field f̂2 in Figure 6. Again, the images achieved by
projecting the flow on the surface and not projecting are shown
in Figure 8. As can be noted, the image obtained by the
tangential component reveals a change of the flow, while the
image of the 3D flow without projecting on the surface does
not reveal the change (compare Figures 7b and 8b).

Additionally, for reservoir flow visualization, the surfaces
of layers or sections cannot be viewed as probes, but as actual
geometry of the model. It is important to understand the flow
in relation to the surfaces. For that reason, we have opted
to project the flow on the surface and to use color to depict
the normal component. When we apply the proposed two-

(a) A vertical flow (b) A 45o-degree deviated flow

Fig. 9: Projected flow using the proposed color scheme.

dimensional color scale, the changes in flow direction are
clearly revealed. Figure 9 shows the achieved image assuming
a small magnitude value.

We then test our technique on actual reservoir data. Fig-
ure 10 shows the achieved image for visualizing a 3D oil flow
on different layers of a simulated reservoir model. The image
clearly reveals the flow near a producer well. The green and
blue tones indicate high magnitude occurs only near the well.
The blue tone on the top layers indicates the flow is going
downward. Green tone indicates the precise layer in which
the oil is entering the well.

Figure 11 illustrates that the technique can be applied to
arbitrary surfaces. In the case, a layer surface is shown to-
gether with two crossing sections. Note that different crossing
surfaces can be used to help understanding the 3D field based
on projected components.

The avoidance of image flickering while interacting with the
model and the flow animation speed varying in accordance to
the field magnitude can be observed in the video attached as
additional material (at JEMS site).

VII. CONCLUSION

The numerical simulator of black-oil reservoir models out-
puts 3D vector fields, specially flow of oil, gas, and water,
that must be inspected by reservoir engineers. In this paper,
we propose the use of LIC on surfaces to visualize 3D flow
of black-oil reservoir models. Layers and sections of reservoir
models represent natural geometric supports for inspecting
simulation results, and it seems natural to explore these
surfaces to reveal flow information as well. As in [17], [18],
and [19], we have opted for performing image convolution in
screen space, using a GPU-based implementation of the LIC
algorithm. We propose the use of a two-dimensional color
scale to infer a three-dimensional understanding of the 3D
flow represented on the surfaces. We also explore colors for
multiphase flow visualization. We present an effective strategy
for avoiding image flickering during user interaction, based on
randomly generated texture coordinates assigned to vertices
and an appropriate scheme for representing and filtering the
white noise. We also included a speed factor in the periodic
filter proposed by Cabral and Leedom [3] to animate the flow
with a speed proportional to the field magnitude.

The proposed technique was validated by reservoir en-
gineers and is currently being integrated into an industrial
application. We are currently investigating the use of the
proposed technique on terrain surfaces for GIS applications.
To improve the achieved images, we plan to test the use of
twofold convolution as proposed by Weiskopf [20].
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Fig. 10: Visualization of 3D oil flow on different layers (with imposed separation) of a reservoir model. The LIC reveals the
tangential component of the flow and colors indicate the normal component and magnitude.

Fig. 11: Visualization of 3D oil flow on different crossing surfaces. In the case, a layer surface is combined with two orthogonal
crossing sections.
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