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Abstract—In the field of 3D reconstruction there are two main
challenging tasks that require careful consideration, namely,
feature detection and matching. The corresponding automatic
process introduces noise resulting from the image capture and
spurious features matching. A number of robust algorithms for
hypothesis evaluation have been suggested; they would deal with
these limitations by removing outliers. Most of these works
are merely comparisons to previous algorithms and lack any
standalone evaluation. This paper attempts to fill this gap by
introducing a novel and robust statistical methodology. It has the
advantage of evaluating related algorithms using non-dimensional
metrics for fixed and continuous intervals. In addition, the
proposed methodology is validated using a proof of concept
scenario based on the 3D pose estimation phase in the 3D
reconstruction pipeline. The obtained results are very promising
and emphasize the methodology’s generic nature, clearing the
way for its application in a multitude of scenarios, such as
computer vision and 3D reconstruction.

Keywords-robust algorithms; standalone methodology; statisti-
cal tests; hypothesis testing

I. INTRODUCTION

3D reconstruction from 2D images demands multidisci-
plinary knowledge from several areas, including image pro-
cessing, computer vision, geometry, and linear algebra, and
also demands knowledge relating to nonlinear systems opti-
mization, among other areas. This broad and specific knowl-
edge is required in all phases of the 3D reconstruction pipeline,
from 2D image acquisition, to the end product, which is
characterized by a cloud of 3D points and by the parameters
of the cameras that make up the scene. An example of a 3D
reconstruction pipeline can be seen in Figure1. This pipeline
is based on Structure from motion (SfM) which is a classical
approach to compute the scene structure and camera motion
assuming that this information is unknown [1].

This 3D reconstruction pipeline is composed of the fol-
lowing phases: Image Acquisition and Tracking, Fundamen-

tal Matrix Estimation, Pose Estimation, Triangulation, Dense
Reconstruction and Texturing of the 3D Reconstruction. The
first phase is responsible for image processing, since the view
acquisition from an image sequence, and the extraction of
features in an image, find the correspondent point in the
following image. Once the matching point has been computed,
the following phase is used to estimate the Fundamental
Matrix that encapsulates the projective geometry between the
two views, as defined by the epipolar geometry. The Pose
Estimation phase is used to calculate the camera matrix [2].

Besides the camera’s calibration parameters, extrinsic pa-
rameters (the camera pose formed by camera positioning and
orientation) are also recovered with 3D reconstruction. A 3D
point is reconstructed by triangulation of corresponding points
in each group of images and with each corresponding camera
pose. The scene can be sparsely reconstructed if only a few
thousand points have had their 3D positions computed, or it
can be densely reconstructed (called the Dense Reconstruction
phase) if the total 3D points extracted are in the millions.
Finally, the next phase is to generate texture from the images
and render it into the reconstructed 3D model. Further details
can be found in [1].

When real data is used in the 3D reconstruction pipeline,
there is an introduction of accumulative errors in each exe-
cuted stage. It starts with image acquisition, which depends
on parameters such as image resolution, camera sensor and
illumination. The image being processed may have noise when
passed on to the next stage of the pipeline. In the tracking
phase, aspects such as feature occlusion, false matchings,
and drift, due to areas in the image with poor textures or
low significant gradients, can also introduce noise into the
features positioning along the tracks. Therefore, once it has
been acknowledged that there are errors in the data, which
were introduced by acquisition and tracking, a new approach
that take those errors into account during the calculation



Fig. 1. 3D reconstruction pipeline. Adapted from [1].

of the fundamental, essential and camera pose matrices is
required [2].

Since the actual distribution of the error distribution is
unknown, it’s not possible to filter correct data unless we
have the ground truth for the acquisition and tracking stages.
Thus, the ground truth can be obtained by methods such as
laser scanning, fixed camera path etc., which are expensive
techniques, or we can assume that the input data is generated
by synthesis. In this paper we will assume that our data is syn-
thetic and that the aggregated noise is modeled with a Gaussian
distribution, which is sufficient to infer the robustness of the
analyzed algorithm.

To solve the above mentioned problems, a robust estimate of
the desired calculus is used to obtain, via random sampling, the
model that best adjusts to all observations. Thus, it is possible
to separate the correct data according to the selected estimate.

Starting with real images, an uncertainty is added to the
data which will generate a hypothesis that corresponds to the
estimate object, not to the final product desired (a homography
or any other relation).

There are several algorithms available in the literature
to generate hypotheses [3], [4], [5] and to evaluate their
suitability to the data of the tracking phase. However, the
direct application of these algorithms to 3D reconstruction
deserves special attention concerning estimate precision. The
algorithms were developed and validated comparing their
results with other pre-defined algorithms [6], [7], [8], [3]. The
above mentioned precision evaluation has been carried out by
measuring the re-projection error, which is a recurrent metric
in 3D reconstruction. The re-projection error measures how
closely the estimates are related to the observed values when
the hypotheses are generated.

The comparison of the techniques taking into account only
their estimate errors allows the evaluation of final results;
however it is not possible to extract important statistics such
as undetected outliers. It is also not possible to evaluate how

precise the algorithm is, as the error measurement depends on
the input data and is influenced by the sample size. The use of
an error measurement metric is valid only for direct algorithm
comparison, as there is no information about the algorithm
precision itself.

Instead of making comparisons among algorithms, as in
the existing robust algorithms’ analysis, this work proposes a
methodology based on robust statistical algorithms to perform
hypothesis evaluation, such as RANSAC (Random Sample
Consensus) [4] and related works, taking into account the
correlation characteristics with the expected response (ground
truth) and the presence of outliers. The strong point about
the proposed methodology is the introduction of an isolated
algorithm evaluation that does not depend on algorithms’
comparisons.

Furthermore, the methodology aims to aid researchers inter-
ested not only in the re-projection error metric but also in other
metrics such as stability, outliers’ presence and the correlation
level among the selected hypotheses and the ground truth.
Another strong point of the methodology is the possibility
that the user has to define the tests’ precision, regardless of
comparisons.

This paper is organized as follows: section II-A introduces
the hypothesis to evaluate the algorithms in the context of 3D
reconstruction. Section II presents some algorithms that serve
as the basis for the implementations available in the literature,
and it also presents comparisons among those algorithms.
Section III defines the fundamental concepts, presenting the
statistical tests and the required analysis to build the proposed
evaluation methodology. In section IV a synthetic validation is
presented to illustrate the robustness and the practical usage of
the proposed methodology. Finally section presents the results
and proposes further research directions.

II. STATE OF THE ART

The robust estimators’ comparison methodologies available
in the literature are very simple as to what concerns the
comparison metrics. Many works do not perform an evaluation
of the estimators but propose a new estimator algorithm
which will be analyzing according to a certain metric (usually
precision and/or processing time). The comparisons performed
by these works are made using algorithms well known in
the literature and serve as the basis for other estimators.
This section contextualizes some fundamental concepts by
describing the most used algorithms in the field, and presents
some works on robust estimator comparison.

A. Contextualization

Considering the context of robust evaluation, a hypothesis
is commonly generated from a random sample of input data
and evaluated in the entire data universe. One hypothesis is a
candidate to the final product when it is approved by testing it
against a certain threshold. After generating a certain number
of hypotheses, the best one, according to a factor defined in
the process is seen as the desired result.



This method of hypothesis evaluation is the basis of the
RANSAC algorithm [4], an iterative method to estimate pa-
rameters of a mathematical model based on a set of data
that contains errors. The observations (input data) that do not
adhere to a particular set of parameters are called outliers,
and those which are faithful to the model are called inliers.
The classification of a particular observation as an inlier or
outlier is performed by comparing the error generated by the
hypothesis test with a threshold tolerance specified by the
user. If the error is greater than this threshold, the sample
is classified as an outlier.

The original RANSAC uses, as a factor in the evaluation of
hypotheses, the number of inliers produced by the evaluation.
Thus, a winning hypothesis is always the one with the largest
number of inliers.

RANSAC (and its variations) is a method widely used
by the community of 3D reconstruction, but it depends on
user interaction to determine the test threshold to which the
hypotheses will be subjected. There are other methods of
evaluation of hypotheses and of threshold definitions that are
more appealing by automating calculation and by considering
the accumulated error. These methods will be introduced in
section II-B.

In the case of the hypothesis used in 3D reconstruction (ho-
mographies, fundamental matrix, essential matrices, projection
matrices or poses), the error measured for each observation,
considering the hypothesis generated in the current iteration,
is called reprojection error. This error can be calculated in
two ways: first through a simple Euclidean distance between
the 2D point (measured by the tracker) and the reprojected
2D point in the image (using a calculated 3D point and
a projection matrix); in the second, it uses the distance d
between the 2D point (x) and a line in the image (l) (generated
from the application of the fundamental or essential matrix
to the corresponding point to the given point, present in a
different image), where this line is called the epipolar line, as
illustrated in Figure 2.
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Fig. 2. Epipolar geometry (From [2]). In a pair of images, the projections
of an estimated 3D point X̂ must lie on epipolar line, l and l′ respectively.
The epipolar distance is the sum of the Euclidean distance (d) between x and
the point that lie at the foot of the perpendiculars from the measured point to
epipolar line x̂, and the equivalent distance (d′) on the other image (x′ and
x̂′).

After calculating the reprojection error and a robust estimate
of hypotheses, the observations that are classified as outliers

or inliers can be defined. Filtering outliers is very important to
discover points that distort the generation of hypotheses, and
should not be considered in the process of 3D reconstruction.
If any of the outliers is rebuilt, it will not only pollute the
generated point cloud but it will also possibly introduce noise
in the generation of the mesh that represents it.

B. Robust estimators

The most used robust estimators in the field of 3D recon-
struction are based on the RANSAC approach. RANSAC has
several parameters that directly influence the choice of the
best hypothesis, among them the error threshold that separates
the inliers from the outliers, the proportion of inliers in the
set (in most cases an assumption), and the probability of
a hypothesis containing only inliers. From these parameters,
other important factors are also calculated such as the number
of iterations of the algorithm, equivalent to the number of
hypotheses generated.

Other estimators have emerged with the proposal to reduce
the number of parameters present in RANSAC, using the
possibility to infer them through a set of input data. Among
these is the LMedS (Least Median of Squared) [9], which
computes the threshold by estimating the noise present in
the data, and follows a Gaussian distribution. There are also
estimators that modify the evaluation of hypotheses, using
approaches that differ from the classical counting of inliers
and the comparison of the re-projection error. In this case, the
concept of M-estimators was introduced by [5] as estimators
that are obtained by minimizing the sum of functions applied
to input data. The algorithm that uses the approach of M-
estimator for the evaluation of hypotheses is called MSAC (M-
estimator Sampling Consensus). There are others algorithms
which are derived from the MSAC and which use specific M-
estimators such as MLESAC (Maximum Likelihood Estimator
Sampling Consensus) which uses the concept of maximum
likelihood [5].

C. Estimator comparison

We did not find in the literature a standard to compare
robust estimators.In [6], the adequacy of points to a line in
the two-dimensional space was used as hypothesis. This study
evaluates only the accuracy of the algorithms using the error
normalized square of the inliers [10] as metric. Other similar
work proposes a new algorithm called StaRSaC [3] and its
evaluation uses as a metric only the measure of distance
between the winner hypothesis and the ground truth.

In [7] authors prioritize the evaluation of algorithms con-
sidering criteria like time of application and usage of power
computing. The metrics used are: number of inliers, number
of hypotheses evaluated, number of hypotheses, and speedup
achieved in relation to the reference implementation of the
RANSAC. In [6] the authors compare the robust estimators
using methods including a minimizing non-linear method. The
only evaluated metric is reprojection error.

Furthermore, in [11] the evaluation is concerned to the best
rotation and translation that aligns the position and orientation



of one data set to the other is constructed by solving an
optimization problem. And a statistical method that identifies
outliers in the data sets is proposed. But, the results are just
compared against other approaches. In [12] the parameters
are robustly estimated and the probability distribution of the
estimated parameters is evaluated to identify outliers, but
there is not a formal approach to evaluate the robustness
of the algorithms standalone, neither extensive text to verify
algorithm’s behavior.

III. METHODOLOGY

Considering the lack of a standalone methodology to eval-
uate robust algorithms, including those for 3D reconstruction,
this paper proposes a methodology to fill in this gap.

To use this methodology, the basic requirements are stan-
dard (Ω∗) ground truth and the set of vectors produced by
the algorithm to be analyzed. These vectors, in the context of
3D reconstruction, can be exemplified as poses (six degrees
of freedom floating point vectors, with three degrees of angles
and three degrees of translation), fundamental matrices (nine
degrees of freedom floating point vectors, one for each matrix
element), homographies, and others. In the scenario to be
validated in section IV, it will be presented as an evaluation
of algorithms for robust estimation of camera poses.

The proposed methodology is defined in nine steps:

1) Set evaluation scenario. Choose the application on
which the methodology will be used; for example, select
from 3D reconstruction, or adjustment of lines, among
others, and define what will be the hypothesis.

2) Generate the ground truth. After choosing the scenario
and the associated hypothesis, a synthetic model should
be built (the ground truth).

3) Generate data entry error associated with an average
of µ and variance σ2 and add outliers. From the
ground truth introduce errors to simulate real world envi-
ronments. Errors can follow any probability distribution
satisfying the conditions of the chosen scenario.

4) Run the algorithm with the generated data. Select
the algorithm to run and generate the data using as input
the sample created in the previous step. The simulation
should be run several times according to the Monte Carlo
method.

5) Prepare the solutions so that the variables are in-
dependent. The solutions will be manipulated to ensure
the assumptions defined by the tests described in section
III-A and III-B.

6) Set the test parameters. In this step, the level of rigor
of the tests to be applied should be defined.

7) Apply Pearson test. At this point in the methodology,
there should be verification as to whether the solution is
valid or not according to the parameters defined in the
previous step.

8) Select the valid solutions and apply the KS test. If
Pearson’s test did not reject the solution, this step will
apply the KS test in order to refine the model. This step

is essential for obtaining good results and to calculate
the coefficient of robustness in the next step.

9) Compute the percentage of valid solutions and the co-
efficient of robustness). In this last step, the percentage
of valid solutions is computed and also the coefficient
of robustness of the algorithm according to parameters
set in step 6, is obtained.

Considering that the proposed method needs validation, the
following sections present the background for the definition of
the tests to be performed. First the linear coefficient of Pear-
son will be introduced and, subsequently, the Kolmogorov-
Smirnov test will be described. Concluding this section, an
interpretation of the results will be presented.

A. Pearson linear coefficient

Pearson’s linear coefficient (PLC) [13], also known as
Normalized Cross Correlation (NCC), is a correlation measure
between two vectors.

Given a pair of vectors X1, ..., Xn and Y1, .., Yn indepen-
dent and independent among each other , PLC is calculated
as seen in equation 1:

r =

∑n
k=1(Xk −X)(Yk − Y )

(
∑n

k=1(Xk −X)2)(
∑n

k=1(Yk − Y )2)
(1)

where X =
∑n

k=1 Xk

n and Y =
∑n

k=1 Xk

n . PLC is a
well known estimator in the literature; it is effective, easy
to implement and interpret, but it has some limitations. The
main one is that the relationship between the vectors has to be
linear (which is irrelevant to this methodology because, as the
aim is to compare the solutions that are similar to the ground
truth, the graph taking abscissas and coordinates from the two
vectors in question should produce a result close to a straight
line with a 45 angle).

Another limitation is that the PLC takes into account the
mean vectors. In this case, if the distribution of vectors
is asymmetrical or with heavy tails, the average may be
inconsistent and therefore the value of r may not be suitable.
For purposes of future reference, this work is defined as the
Pearson test to the possible rejection of a value r. It rejects
the hypothesis of correlation ∀r such that r < β, where β is
the stipulated correlation level.

B. Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) [13] is a nonparametric
statistical goodness-of-fit test used to infer the degree of
similarity between two probability distributions. In this case
the objective is to test the null hypothesis H0:

H0 : F (t) = G(t) ∀t (2)

Let X1, ..., Xn and Y1, ..., Yn be two random variables
from a continuous distribution, where X and Y are mutually
independent and identically distributed. To compute the KS
test the empirical distributions Fm(t) and Gm(t) for X and
Y respectively should be obtained. The test statistic is given
by:



J =
mn

d
max{|Fm(t)−Gn(t)|} (3)

where m is the number of observations for the sample X , n
is the number of observations to sample and d is the greatest
common divisor of m and n. For the decision rule with a level
α of significance, H0 is rejected if J ≥ jα, otherwise it is not
rejected.

The advantage of using this test is that, as a nonparametric
test, you can use any probability distribution and it can there-
fore be applied in all cases that meet the above assumptions.

It is worth noting that the goal of this test is to compare
probability distributions of two samples and not the degree
of similarity itself, so when H0 is not rejected, we highlight
that the hypotheses each have a similar probabilistic behavior.
Moreover, as shown in equation (3) the statistic is calculated
based on max{|Fm(t) − Gn(t)|}, so this test is effective in
detecting outliers and this is the key point for choosing it (see
section IV).

Finally, it should be noted that the KS test does not behave
well for constants’ vectors, e.g. in case of camera paths
(section IV) that lead to little movement in a given coordinate
(translation or rotation).

C. Considerations on the methodology

Being λ and γ the results of tests KS and Pearson, the
thresholds for evaluating algorithm should be set. For both
tests, the closer to 1 the thresholds are, the more rigid is the test
and the solution generated by the algorithm is more accurate.

Even though the PLC is a robust metric, the KS test should
be additionally performed. This test adds robustness since in a
comparison between the probability distributions of the values
of the solutions, it is possible to cover differences that point
out the presence of outliers. A measure of robustness of the
evaluated algorithm can be extracted from the discrepancy
between the Pearson and KS tests, since, when an estimate
is accurate, both tests should not reject the solution. Thus,
there have been three possible outcomes:

• Values above the thresholds for PLC and KS
• Values below the thresholds for PLC
• Values above the thresholds for PLC and below for KS.
When the two tests reach values above the threshold, the

algorithm produced good results. Similarly when the Pearson
presented values below the threshold the algorithm did not
generate a good result. Examples of interpretations will be
shown in section IV. These results show a consistency between
the tests, independent of the thresholds adopted.

When the solutions have values above the threshold for
PLC and below for KS, the generated discrepancy points to a
fault in the robustness of the algorithm, which maintains an
average sufficiently precise not to be dismissed in the Pearson
test; however its probability distribution (empirical) indicates
the possibility of the presence of wrong elements within the
solution (outliers). Thus, the metric coefficient of robustness
(CR) indicated by this work is defined by:

CR = 1− discordant hypotheses
hypotheses accepted by the Pearson test

(4)

IV. PROOF OF CONCEPT

The error distribution is not predictable for real data and
therefore it is not possible to filter outliers except under
the presence of the ground truth. Since the acquisition of
the ground truth is expensive because it depends on a laser
scanning, fixed camera path etc., a synthetic test scenario was
created in the context of 3D reconstruction using multiple
images to validate the steps defined by the proposed method-
ology. The 3D reconstruction pipeline is divided into several
stages as illustrated in Figure 1. The evaluation scenario
takes into account, for this proof of concept, the robust pose
estimation phase that deals with the errors introduced in the
input data from the earlier stages of the pipeline.

The statistical evaluation of the robust algorithms was done
through an analysis of the computation of the pose based on
the methodology defined, using the implementation of two
robust algorithms. The first was the StaRSaC [3] which con-
sists of a method to estimate the parameters that incorporate
some features that add value to RANSAC with respect to the
computation of an uncertainty threshold. StaRSaC generates a
stable solution according to the calculation of the variance of
the estimated parameters. Various inliers’ acceptance thresh-
olds are generated using an exponential function and for each
threshold several hypotheses are generated. The solution is
chosen for its adequacy to the model (lower re-projection
error and a larger number of inliers), considering the threshold
whose generated hypothesis has the smallest variance of the
estimated parameters.

The second implemented algorithm was LMedS [9], , which
uses the same approach as RANSAC to evaluate hypotheses. In
this algorithm, a robust standard deviation is calculated that
is used in defining the acceptance threshold of inliers. The
calculation of the standard deviation is based on the knowledge
generated by the re-projection error of all hypotheses tested.
Therefore, this algorithm first generates all the hypotheses,
then accumulates the residual errors of each one and af-
terwards puts them in a vector to allow extraction of their
median. Once this step is accomplished, the inliers are defined
according to the median obtained. The hypothesis adopted is
the one with less residue accumulated.

According to the second step of the methodology, a ground
truth of the camera poses was established, where was defined
the synthetic camera with a considering as focal length of 1400
pixels. Furthermore, the generated images have a resolution of
800x600 and define as the central point C = (400, 300) with
measures also in pixels. The matrix of the intrinsic parameters
K is then defined by:

K =

1400 0 400
0 1400 300
0 0 1

 (5)



Once the synthetic camera to generate the test scenario was
set, 28 poses for cameras with random variation in the three
axes of rotation were calculated, and in three dimensions,
keeping the camera directed at the scene. The angles were
generated randomly within 7 to 13 degrees on the axis of x
and y, and from 0.25 to 0.52 in the z-axis, while the translation
varied with the distance from the camera to the object which
was defined as 100 meters. The trajectory of the camera was
directed to move around the object capturing the scene from
different angles, as shown in Figure 3, thus obtaining a suitable
setting to track features.

Fig. 3. Camera Path.

The model in this scenario was obtained synthetically from
the Bunny 3D point cloud model available in the Stanford
repository [14]. Each generated projection matrix was applied
to the model, and thus calculated the 2D projection pose for
each camera, resulting in 28 respective images. The matches
of features among these images were computed by a 3D
reconstruction process similar to that described in [1].

Considering that this data set is synthetic, the noise inherent
to real images is not captured, such as inaccuracies in the
calculation of 2D points and error in the computation of
the correspondences between points in different images. To
simulate a real environment (step 3 of the methodology) a
Gaussian noise in the coordinates of 2D points was inserted
and two data sets were generated where the errors follow a
normal distribution with standard deviation of 0.5 and 1.0
pixels, respectively. Also, 20

Following the flow of the proposed methodology, the next
step (4) was to run the 3D reconstruction pipeline in order to
capture the poses generated during the estimation of poses;
see Figure 1. A Monte Carlo simulation [15] was performed
for each algorithm tested with 1000 repetitions and different
samples for each iteration.

Considering that the pose matrix represents a linear trans-
formation on R3 which groups rotation and translation, for a
given sequence of poses, we have the following set of vectors:

Ω̂ = {Rx Ry Rz Tx Ty Tz} (6)

where Rx, Ry , Rz , Tx, Ty and Tz are rotations and

translations on their axes along the path of the camera. Each
of these vectors has size i, where i is equal to the number
of poses. These vectors are created for the ground truth and
for the sample generated by the algorithm to be evaluated
according to step (5) of the methodology.

The behavior of the algorithms was evaluated for values of
PLC 0.80 (80% similarity with the ground truth) to values of
0.95, which provides a rigid test. For the KS test, we defined
the threshold of 0.1 and 0.2, where the first value refers to
a test for well behaved data and the second, a test with high
rigidity, as specified in step (6) of the proposed methodology.

The next step (7) towards the evaluation of the selected
algorithm is the calculation of the linear correlation coefficient
of Pearson (PLC) for each vector. Based on this coefficient, the
vector that has a coefficient value γ is chosen such that ∀ω̂ ∈
Ω̂, γ = min(PLC(ω̂, ω∗)). This ensures that for any element
of Ω̂ the Pearson correlation coefficient is always greater than
or equal to γ.

Similarly, the Kolmogorov-Smirnov test (step 8 of the
methodology) is used in the solutions that are not rejected
by the Pearson test and the chosen vector is the one that has
a p-value λ such that ∀ω̂ ∈ Ω̂, λ = min(KS(ω̂, ω∗)).

The last step of the methodology (step 9) is to compute the
percentage of valid solutions and the coefficient of robustness,
which are illustrated by Tables I and II.

The first result is the correlation level between the ground
truth and the hypotheses. Figure 4 illustrates an example
of a valid camera path reconstruction compared with the
ground truth. According to the proposed methodology it can
be concluded that, for an error of 0.5 pixels, the StaRSaC
algorithm produces valid camera paths valid paths cameras
for 75.53 % of cases, when dealing with a Pearson test with
threshold of 0.85.

Observing Table I, the results for LMeds have the same
behavior. It can be noted that LMedS generate 89.89 % of
valid camera paths with 0.5 pixel error and with a threshold
of 0.85 CLP. This demonstrates that LMedS succeeds in almost
90 % of cases using this threshold, and that it is better than
StaRSaC for these parameters.

For the scenario that considers an error of 1.0 pixel the
performance of the algorithms was reduced, which was ex-
pected, and we can conclude that StaRSaC with 0.85 PLC,
for example, produces 49.70% of valid poses while LMedS
produces only 41.66% of them. It can be proven that with
these results LMedS performs better for samples that show
levels of error of 0.5 pixel in the 2D points, and is more
effective than StaRSaC for these parameters.

The test rigidity is defined by Pearson’s linear coefficient
(higher values mean more correlation), and higher PLC values
generate fewer valid paths due to the rigor imposed by the
PLC. It can be verified in Table I where the percentage of
valid camera paths is decreased, for example, from 77.65%
to 64.53%, in the case of StaRSaC with 0.5 pixel error.
Furthermore, when LMeds and StaRSaC are compared for
PLC = 0.95, with 0.5 pixel error, the LMeds achieves the better
result, while for 1.0 pixel error they have similar behavior.



TABLE I
PERCENTAGE OF VALID CAMERA PATHS USING PEARSON’S TEST

PLC value 0.80 0.85 0.90 0.95
% of valid camera paths 77.65 75.53 71.80 64.53
with 0.5 pixel error(StaRSaC)
% of valid camera paths 90.23 89.89 88.69 83.73
with 0.5 pixel error(LMedS)
% of valid camera paths 54.05 49.70 42.17 26.13
with 1.0 pixel error(StaRSaC)
% of valid camera paths 45.63 41.66 37.50 25.90
with 1.0 pixel error(LMedS)

The Pearson test is sensitive to the presence of outliers
because the average may not be consistent if the vector
distribution is asymmetric or with heavy tails. Thus, because
of this misbehavior, another metric is necessary to filter out
outliers in a robust fashion. Therefore, when the case is
rejected by the PLC test, it must be discarded. Otherwise, the
case will be evaluated by the Kolmogorov-Smirnov test, which
infers the degree of similarity based on probability distribution.

By using the KS test in the paths of valid cameras, the
results in Table II are obtained. The more significant level
corresponds to the more rigorous test. As a consequence, there
are more rejections when the KS = 0.2 than when the KS =
0.1. Using 0.5 pixel error, the percentage of rejection by the
test KS = 0.1 and PLC = 0.8 is 3.25, and for KS = 0.2
and PLC = 0.8 it is increased to 5.30.

Furthermore, when the Person test is more rigid, there are
less rejections by the KS test, as can be showed by Table II. It
is valid because the approved path cameras are more similar
to the ground truth. Considering LMeds result for KS = 0.10
with 0.5 pixel error, the percentage of rejection is reduced from
0.85% using PLC = 0.8 to no rejection using PLC = 0.95.

It can be seen that the LMedS algorithm suffers few rejec-
tions compared to StaRSaC, thus proving to be an algorithm
that generates softer path poses from the probabilistic point
of view. As a result it is concluded that the LMedS generates
fewer outliers and is therefore more accurate than StaRSaC,
according to the coefficient of robustness defined in equation
(4). Figure 5 presents an example of a camera path that was
rejected by the tests using PLC = 0.95 and KS = 0.20
as parameters, then being considered strict testing. Note on
the same figure that although the camera path appears to be
a visually pleasing alternative, the strictness of tests did not
validate it.

After the completion of the test suite for each of the algo-
rithms, this work suggests using a PLC of 0.85, but the user
can adjust this threshold depending on the model. As noted in
section III, the proposed methodology is relevant considering
that one can infer an estimate of the behavior of an algorithm
through the input data of the simulation. This methodology
introduces a new concept because it does not depend on
comparisons between algorithms to verify how suitable the
result is for the application, i.e. it is standalone. However,
comparisons can be made using the metrics proposed in this
methodology as described below.

TABLE II
PERCENTAGE OF CAMERA PATHS REJECTED BY THE KS TEST

PLC Value 0.80 0.85 0.90 0.95
% Rejected by the test KS(0.10) and 3.25 2.56 1.88 0.51
0.5 pixel error((StaRSaC)
% Rejected by the test KS(0.10) and 0.85 0.85 0.68 0.00
0.5 pixel error((LMedS)
% Rejected by the test KS(0.20) and 5.30 4.28 3.25 1.54
0.5 pixel error((StaRSaC)
% Rejected by the test KS(0.20) and 2.05 2.05 1.71 0.68
0.5 pixel error((LMedS)
% Rejected by the test KS(0.10) and 4.36 3.57 2.18 0.79
1.0pixel error(StaRSaC)
% Rejected by the test KS(0.10) and 2.38 1.19 0.79 0.19
1.0 pixel error((LMedS)
% Rejected by the test KS(0.20) and 11.50 8.73 6.74 2.38
1.0 pixel error((StaRSaC)
% Rejected by the test KS(0.20) and 4.16 2.57 1.38 0.59
1.0 pixel error((LMedS)

Fig. 4. Left a camera path reconstruction of a sample without noise. On the
right a reconstruction with camera path considered valid by the metrics.

V. CONCLUSION

This paper proposed a methodology to evaluate the ro-
bustness of a standalone algorithm. The advantage of this
technique lies in the simulation and reliability of the proposed
statistical tests, without the need for comparison among al-
gorithms, once the suggested metrics are dimensionless and
defined within a fixed interval. When real data is used and
a ground truth is available, a comparison between these two
is natural but a simple comparison between the two results
does not offer a statistical evaluation. This ground truth is
related to an input image which is set or to fixed image
correspondences (without the presence of noise). The raw
input data is used to generate some input data with noise,
according to a known probability distribution. This generated
data feeds the algorithm, which generates several outputs
that will be tested against the ground truth through a set
of statistical metrics. It is therefore possible to gain some
insight on the algorithms robustness. Thus, the actual value
of the PLC represents a rank for the solution generated by
the algorithm. This would not be achievable considering only



Fig. 5. A reconstruction of the camera path considered not valid for 0.95
and KS 0.20. The points around the object are the result of the triangulation
of correspondent points with a high error, so these points are considered as
outliers. So this path is considered not valid because there are some wrong
pose, and there are a lot of outlier.

traditional metrics related to the re-projection error, since this
error is not a dimensionless measure and is subject to the scale
in the input data set.

Another contribution of this work is that it defines two
metrics: a primary (PLC) and a secondary (KS). These metrics
allow the classification of algorithms with respect to the ab-
solute similarity to the ground truth and the possible presence
of outliers. The evaluation can be restricted and reliable since
it is based on statistical metrics, which are dependent on the
level of robustness used in the tests.

As proof of concept of the methodology proposed, it was de-
fined as a scenario and implemented in the 3D reconstruction
system, as well as in two robust algorithms in the literature.
These algorithms were analyzed and compared according
to the proposed metrics. The results were satisfactory and
validated the theory described in this study, which confirms
that the methodology is a contribution to the field and can be
applied in different scenarios.

As future work it is suggested that the methodology be
applied to other robust algorithms and other scenarios inherent
to the 3D reconstruction context be analyzed, such as the
generation of fundamental matrices , essential matrices and
homographies. There could also be refinement of the metrics
and of the proposed nonparametric tests, which take into
account more relevant statistics such as Spearman correlation
[13].
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