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Abstract—Research on human speech production is highly
dependent upon information about the position and movements
of the speech articulators. Dynamic magnetic resonance imaging
(MRI) has been the main tool to support this process. With this
technique, image sequences can be acquired in the act of speech,
which allows identifying shapes of the vocal tract in real time.
However, the spatial and temporal resolution requirements are
not known a priori and are expected to vary according to the
speech task. Several available approaches enhance resolution by
either changing the acquisition process of current devices, or by
trading the acquisition devices themselves by more powerful ones.
Both solutions involve additional hardware costs. In this paper, we
propose an evolution of an approach to enhance spatio-temporal
resolution of MRI image sequences of the vocal tract using only
digital image processing techniques. On one hand, temporal res-
olution is increased by generating intermediate images according
to the movement present in an observed sequence. On the other
hand, spatial resolution is increased by applying a novel approach
to super-resolution image reconstruction based on the Wiener
filter. To evaluate the proposed approach, we processed a set of
five simulated low resolution images in a sequence. Compared to
available methods, results provide evidence of the effectiveness
of the proposed method.

Keywords-magnetic resonance imaging (MRI); human speech
production research; spatio-temporal resolution enhancement;
super-resolution image reconstruction.

I. INTRODUCTION

Based on models of the human vocal tract shape and the
acoustical processes involved in speech production, articula-
tory synthesis uses computational techniques for artificially
synthesizing speech. Fig. 1 shows the contours of interest in
speech production research: larynx, epiglottis, lips, pharyngeal
wall, glottis, velum and hard palate. These anatomical compo-
nents, which are called speech articulators, are controlled in
order to change the shape of the vocal tract during the speech
production process. Therefore, knowledge about speech artic-
ulators position and movements is essential for articulatory
synthesis research.

Magnetic resonance imaging (MRI) is an emerging tech-
nique for studying speech production because it is an in
vivo safe nonradioactive procedure which permits a good
delineation of soft tissues. It is considered a powerful tool
since it allows the three-dimensional visualization of the vocal
tract during phonation. Since the initial application presented
by Baer et al. [2], the use of MRI has produced very use-
ful results to the speech production research [3]. Because

Fig. 1. Contours of interest to the speech production research. Adapted from
the work of Bresch and Narayanan [1]

of the low spatio-temporal resolution of conventional MRI
acquisition techniques, earlier studies were limited to static
postures such as vowel sounds. Later, the development of the
cine MRI technique allowed the imaging of dynamic vocal
tract shaping. However, this method relies on the scanning of
numerous exact repetitions of the same speech sequence to
reconstruct the impression of articulatory movement in time.
Therefore, this is not the most adequate imaging method for
the study of continuous running speech. Real-time MRI refers
to the direct capturing of moving image data with frame
rates sufficient to capture the speech articulators movement.
According to Bresch et al. [4], this became possible because
of some advances in imaging technology, including: improve-
ments in computer speed, parallel imaging, rapidly fluctuating
gradients, novel k-space trajectories, etc.

However, fast acquisition of high-quality images, the de-
tection of the main features in each image, and the analysis
and modeling of the time-varying vocal tract shape still are
great challenges in this subject [4]. Considering image quality,
the temporal and spatial resolution requirements are expected
to vary depending on the speech task and there is no prior
information about these requirements. Moreover, even though
MRI advances represent a significant improvement in the
quality of information about changes in vocal tract shape over
time, MRI capacity is still not close to the spatio-temporal
resolution necessary for capturing the dynamic characteristics
of tongue movement.

Several available approaches enhance resolution by either
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empowering the acquisition process, or by trading the acquisi-
tion devices themselves by more powerful ones. In both cases,
there are financial and hardware limitations. For instance, a
long exposure time is required to obtain images with sufficient
anatomic detail. In fact, the trade-off between image quality
and frame rate limits the use of MRI in the study of some
physiological events. Therefore, it is of great interest to
increase the resolution of existing image sequences using only
digital image processing techniques.

To the best of our knowledge, Martins et al. [5] were
the first to develop a method for spatio-temporal resolution
enhancement of vocal tract image sequences. They proposed
a two stage approach based on a previous non-rigid image reg-
istration method. In the first stage of their approach, displace-
ments and deformations, estimated by the image registration
method proposed by Rueckert et al. [6], were used in a motion
compensated interpolation procedure to generate intermediate
images. In this way, the resulting images were coherent with
the movement present in the observed sequence. Then, in the
second stage, in order to increase spatial resolution, the dis-
placements identified by the registration method were used in
a super resolution image reconstruction (SRIR) approach that
applied a maximum a posteriori probability (MAP) estimation
based on a Markov random field (MRF) prior model. However,
since the iterated conditional modes (ICM) algorithm was used
to sequentially update high resolution pixel intensities, the
approach turned out to be computationally costly.

In this paper, we propose an evolution of Martins et al.’s
approach that generates higher quality images with reduced
computational cost. The SRIR method used in the second
stage of the previous proposal is replaced by a novel discrete
Wiener filter based method. A separable covariance matrix of
a first order Markov process [7] is constructed according to
the distribution of the low resolution pixel areas along the high
resolution grid. In this way, because of the characteristics of
the Wiener filter, resulting images are reconstructed respecting
the minimum mean squared error (MMSE) criterion in a single
iteration.

Based on several observed vocal tract image sequences,
equivalent sequences with higher spatio-temporal resolution
were generated for a visual evaluation of the proposed ap-
proach in a real situation. Moreover, a numerical evaluation
of the proposed method has been conducted by processing a
simulated low resolution sequence with known deformations.
Compared to the method proposed by Martins et al. [5],
results provide evidence of the effectiveness of our method.
The remainder of this paper is organized as follows. Section
II provides a background for understanding the proposed
method. Section III presents the proposed spatio-temporal
resolution enhancement approach. Section IV evaluates our
method in comparison to others. Section V discusses related
work. Finally, Section VI concludes the paper.

II. BACKGROUND

A. The Non-Rigid Image Reconstruction Method

Rueckert et al. [6] present a non-rigid image registration
method based on free-form deformations (FFD) and cubic B-
spline interpolations. This method is widely used in the med-
ical context [8]. FFD was originally developed to model 3D
deformable objects in computer graphics applications. It is de-
fined by a discrete three-dimensional mesh of uniform spaced
control points, each of which associated with a displacement
vector. In contrast with nonparametric transformation, where
a displacement vector is associated with every location, FFDs
describe the displacements of a general location of the image
by a set of vectors, so that the nearer have more influence
in this location. The weights associated with each vector are
defined by a weighting function, such as B-splines.

Following [6], deformations are modeled by a transforma-
tion ϕ, which combines global scene movement with local de-
formations. In the context of the vocal tract image sequences,
it is not worth to consider the global scene motion, since
deformations are highly localized around the jaw. Moreover,
considering only midsaggital image sequences of the vocal
tract, the transformation is bidimensional. Local deformations
are modeled by the FFD, which is written as the three-
dimensional tensor product of the uni-dimensional cubic B-
splines. Considering the image volume Ω = {0 ≤ x ≤ X, 0 ≤
y ≤ Y }, let Φ denote a nx × ny mesh of control points φi,j
with uniform spacing δ. The local transformation is given by

ϕ(x, y) =

3∑
m=0

3∑
n=0

Bm(u)Bn(v)φi+m,j+n, (1)

where i = bx/nxc − 1, j = by/nyc − 1, u = x/nx − bx/nxc
e v = y/ny − by/nyc. Bk represents the k-th basis function
of the B-spline

B0(u) = (1− u3)/6
B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u+ 1)/6
B3(u) = u3/6.

(2)

Note that this basis functions have limited support, which
means that changes in one control point coordinates affects
only its local neighborhood.

The control points act as parameters of the local transforma-
tion ϕ. Indeed, the kind of deformation that can be modeled by
this transformation is highly dependent on the resolution of the
mesh of control points. Control points with smaller spacings
allow more localized deformations. However, the computa-
tional complexity is also defined by the resolution of the mesh.
Therefore, in order to accomplish the best tradeoff between
model flexibility and computational complexity, Rueckert et
al. implemented a hierarchical multi-resolution approach in
which the resolution of the mesh is increased in a coarse to
fine way.

In order to regularize the transformation, guaranteeing its



smoothness, the following penalty term was used
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Moreover, to relate the reference image with the transformed
one, the normalized mutual information is used as the simi-
larity criterion

Csimilarity(I1, ϕ(I2)) =
H(I1) +H(ϕ(I2))

H(I1, ϕ(I2))
, (4)

where H(I1) and H(ϕ(I2)) are the marginal entropies of I1
and the transformed image ϕ(I2), and H(I1, ϕ(I2)) stands
for their joint entropy. The optimal transformation is found
minimizing the cost function

C(Φ) = −Csimilarity(I1,ϕ(I2)) + λCsmooth(ϕ), (5)

where λ is the weighting parameter.

B. Super-Resolution Image Reconstruction

Super-resolution image reconstruction (SRIR) is a power-
ful methodology for increasing spatial resolution using only
signal processing techniques. Lately, it has been a very active
research area because, in cases that high spatial resolution im-
ages are required, the existing low resolution imaging systems
can still be utilized. SRIR methods attempt to reconstruct a
high resolution image from a set of low resolution observations
of the same scene. The observed images must present sub-
pixel displacements among them. It allows the existence of
different information on each of the observations and the
exceeding information is used to increase spatial resolution
(Fig. 2). Images with this characteristic can be acquired from
a single camera with several captures; from multiple cameras
located in different positions; by scene motions or local objects
movements; by vibrating imaging systems; using video frames,
etc. Therefore, the SRIR methodology is valuable in several
contexts. For instance, surveillance applications frequently
need to do synthetic zooming of regions of interest (the face
of a criminal or the license plate of a car) in low resolution
video sequences. In the medical context, multiple acquisitions
are usually possible, nevertheless the quality of these images
is usually limited. Likewise, in satellite imaging applications,
several images of the same area are commonly acquired and
higher resolutions are often demanded.

Fig. 2. Illustration of the SRIR process.

Tsai and Huang [9] were the first to discuss the SRIR
problem. They adopted a frequency domain approach based on
the shifting property of the Fourier transform, to model global
translational scene motion. Recently, several algorithms were
proposed, most of them in the spatial domain. In point of fact,
despite the simplicity of frequency domain approaches, there
are several disadvantages in this formulation. For instance,
usually, it does not permit much flexibility with respect to the
motion models. Spatial domain approaches are normally more
flexible about motion models, degradation models and, mainly,
the inclusion of a priori constraints. It is important to note
that, similar to image restoration problems, the SRIR problem
is considered ill-posed and regularized solutions using a priori
constraints are usually required. Projection onto convex sets
(POCS) based approaches impose prior knowledge by convex
sets [10]. Nonetheless, despite the simplicity and flexibility
of this approach, it demands high computational power and
if the intersection of the sets is not a single point, there will
be more than one solution. Therefore, the result depends on
the initial estimation. Probabilistic reconstruction techniques
are able to include prior knowledge in a more natural way
and the Bayesian maximum a posteriori probability (MAP)
estimation is the most promising method [11]. In this ap-
proach, all parameters and observable variables are considered
unknown stochastic quantities and probability distributions are
assigned to them based on subjective beliefs. In fact, the prior
probability density function of the high resolution image is
used to impose constraints to the solution. Markov Random
Fields (MRF) prior models are considered the most flexible
and realistic since they allow the inclusion of prior knowledge
using only neighborhood relationships [12]. However, MAP-
MRF approaches usually suffers from high computational bur-
den. On the contrary, deterministic regularization methods are
typically computationally simpler [13]. They use some desired
information about the solution to stabilize it. Since images
usually present limited high-frequency activity, smoothness is
the most common constraint imposed.

To coherently analyze the SRIR problem, firstly it is es-
sential to formulate the image formation model relating the
desired high resolution image to the low resolution observa-
tions.

1) Image Formation Model: Consider f [i, j], 0 ≤ i, j ≤
M an ideal undegraded image sampled at the Nyquist rate
from the continuous scene of interest f : R2 → R. In a real
situation, the digital image is usually blurred by the optical
system and also corrupted by noise. In this sense, following
a lexicographic ordering, a low resolution degraded version
gk[k, l], 0 ≤ k, l ≤ N , N ≤ M , of the high-resolution image
f , can be modeled by

gk = Dkf + nk (6)

where nk stands for noise in the k-th low resolution obser-
vation, following an additive model. Dk models the sensor
acquisition function. It implements the convolution with the
sensor point spread function (PSF), followed by a sampling
operator. According to Park et al. [14], most SRIR methods



in the literature model the sensor PSF as a spacial mean
operator, assigning the mean of a high resolution block to the
relative low resolution pixel. Moreover, in some proposals, this
operator is also responsible for the sub-pixel displacements
present among the observed images, as illustrated in Fig. 3.
Considering d the scale factor, in practice, this operator is
given by

Dk =
1

d2


11 . . . 1 0

11 . . . 1
. . .

0 11 . . . 1

 . (7)

Fig. 3. Illustration of the downsampling operator causing the sub-pixel
displacements among the observations.

The image formation model in Eq. (6) considers only
one high resolution image. However, most SRIR approaches,
which intend to reconstruct one high resolution image, are able
to reconstruct a sequence of high resolution images following a
sliding window approach [11]. For each high resolution image,
a different low resolution image is considered as the reference
one. Moreover, just a subset of the whole sequence is used in
each step.

In order to estimate the sub-pixel displacements among
the low resolution observations, the first step in an SRIR
approach is to register all the observations considering one
of them as a reference. In a sliding window approach, each
reconstructed high resolution image corresponds to the low
resolution reference in the considered subset of observations.
Actually, given the sequence of low resolution observations
gk, k = 1, . . . , q, a sequence fk, k = 1, . . . , q will be
reconstructed. In the reconstruction of fk, gk is considered
as the reference, in the subset gk−n, . . . , gk+n. Therefore, a
subset of 2n+ 1 observations is being considered.

C. The Spatio-Temporal Resolution Enhancement Method

Martins et al. [5] proposed a two-step method to in-
crease spatio-temporal resolution of human vocal tract MRI
sequences. Considering a sequence of images, in order to

increase temporal resolution, one could combine pixel values
at the same spatial locations in adjacent images, to generate
intermediate frames. However, this procedure blurs locations
that moves and decreases resolution in small details of the
images. In the first stage of their approach, displacements
and deformations estimated by the non-rigid image registration
method proposed by Rueckert et al. [6], were used in a motion
compensated interpolation procedure to generate intermediate
images. In this way, the generated images were coherent with
the observed sequence motion.

Fig. 4 shows a sequence of vocal tract images, acquired with
an MRI system operating at 1.5 Tesla (quantum gradients;
30mT/m amplitude; 0.24ms rise time; 125T/m/s Slew rate;
50cm FOV; 5 frames/s). The non-rigid registration algorithm
was applied to each pair of images always selecting the
first image as the reference one (the images of the meshes
of control points are merely illustrative). Considering the
correspondence between each control point in the sequence
of identified meshes, intermediate meshes were generated by
positioning control points in intermediate positions – linear
interpolation of the corresponding control points coordinates
in adjacent meshes. According to the intermediate mesh of
control points, temporal resolution enhancement is performed
by applying the transformation ϕ to both adjacent images,
and then performing the mean of the transformed images as
illustrated in Fig. 5. Considering that intermediate control
points coordinates were found by linear interpolation of the
corresponding control points coordinates in the adjacent im-
ages, the weights ω1 and ω2 are always 0.5.

Fig. 4. Illustration of the registration of pairs of images.

In the second stage of the method proposed by Martins
et al., in order to increase spatial resolution, the displace-
ments identified by the registration method were used in
a MAP-MRF SRIR procedure. Following a sliding window
approach, each high resolution estimation fn, n = 1, . . . , q,
was reconstructed considering a subset of the low resolution
observations gk, k = n− 2, . . . , n+ 2. Prior information was
imposed by using the generalized isotropic multi-level logistic
(GIMLL) MRF model to characterize each high resolution
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Fig. 5. Weighted sum of transformed neighboring images.

estimation. The iterated conditional modes (ICM) algorithm
was used to sequentially update the high resolution pixel
intensities f in, i = 0, . . . ,M2, by maximizing the posterior
probability P (f in|g(n), f

ηin
n ), where ηin is the set of neighbors

of pixel i in the high resolution image fn, and g(n) indicate
the subset of low resolution images in the sliding window
g(n) = gn−2, . . . , gn+2.

III. THE PROPOSED METHOD

A. Wiener Filter Based Super-Resolution Reconstruction

Mascarenhas et al. [7] present an statistical interpolator of
the SPOT multispectral bands, under a Bayesian framework.
The 20m resolution multispectral bands are interpolated to
10m resolution. The local linear estimation of the interpolated
pixels was performed under the MMSE criterion, by using
the orthogonality principle [15]. The authors assumed the
separability of the correlation structure on the spatial and
spectral domains, as well as the separability of the spatial
correlation structure in the horizontal and vertical directions
using the first order Markovian model in each direction. This
is a common practice in the image processing literature [16].

Considering the ICM performance limitations, we replaced
the second stage of the spatio-temporal resolution enhance-
ment proposed by Martins et al. [5] by a discrete Wiener filter
based SRIR method, similar to the statistical interpolator pro-
posed by Mascarenhas et al. [7]. Considering the orthogonality
principle and image formation model presented in Eq. (6), the
estimation is given by

f̂ = E[f ] + ΣfgΣ
−1
gg (g − E[g]) , (8)

where E[.] is the statistical expectation, g is the vector of low
resolution pixel observations, Σfg the cross-correlation of f
and g, and Σgg is the observations covariance matrix. Assum-
ing separability on the horizontal and vertical directions, we
define the prior covariance matrix Σff using the first order
Markovian model

r(x) = σ2ρ|x|, |ρ| < 1,∀x, (9)

where σ2 is the image variance. Thus, considering unit dis-
tances, Σff will be defined as

Σ = σ2


1 ρ ρ2 . . . ρN−1

ρ 1 ρ . . . ρN−2

...
. . .

...
ρN−1 . . . ρ 1

 . (10)

Considering the image formation model, Σfg and Σgg are
given by

Σgg = DΣffD
T + Σnn, (11)

Σfg = DΣff , (12)

where Σnn is the noise covariance matrix.
The estimation is implemented for each high resolution

pixel individually. For each low resolution pixel that is influ-
enced by the current high resolution pixel, its eight neighbors
are also used in the estimation of this high resolution pixel as
illustrated in Fig. 6. In the following, we outline the proposed
SRIR algorithm:

1) For each high resolution pixel fi, assign to g the set
of low resolution pixels influenced by it, together with
their eight nearest neighbors;

2) Assign to f ′i the set of high resolution pixels that
influences the low resolution pixels in g;

3) Define Σff according to the spatial distribution of the
high resolution pixels in f ′i ;

4) Define Di, the downsampling operator relative to the
low resolution pixels in g;

5) Define Σgg and Σfg (Equations (11) and (12));
6) Assign E[f ′i ] + ΣfgΣ

−1
gg (g − E[g]) to f ′i ;

7) Extract fi from f ′i .

Fig. 6. Illustration of the low resolution pixel areas used in the covariance
matrix construction.

There are computational savings associated with the estima-
tion of a subset of high resolution pixels in each step of the
algorithm. However, in this paper we only discuss the resulting
images of the single pixel estimation.

IV. RESULTS

Considering a scale factor 2, Fig. 7 shows the details of the
256×256 images reconstructed by the GIMLL SRIR approach
and by the proposed method. It is possible to note that,
visually, they are very similar. However, the ICM algorithm



TABLE I
NMSE OF THE 5 SIMULATED IMAGES RECONSTRUCTED BY THE

PROPOSED METHOD IN COMPARISON WITH THE BILINEAR INTERPOLATION
OF THE LOW RESOLUTION SIMULATIONS AND THE IMAGES

RECONSTRUCTED BY THE OTHER METHODS.

Img01 Img02 Img03 Img04 Img05
Wiener 0.00071 0.00043 0.00031 0.00026 0.00025
GIMLL 0.00110 0.00066 0.00060 0.00056 0.00050
DAMRF 0.00110 0.00072 0.00063 0.00057 0.00051
TV 0.00330 0.00260 0.00240 0.00240 0.00240
Potts 0.02180 0.02160 0.02120 0.02140 0.02090
Bilinear 0.00800 0.01690 0.01610 0.01620 0.01650

converged in four iterations, performing the maximization of
the local conditional probability for 65536 pixels in each
iteration. On the other hand, the proposed method generated
the high resolution image by performing the steps discussed
in Section III only one time for each pixel.

(a) GIMLL (b) Wiener

Fig. 7. Images reconstructed by (a) the GIMLL SRIR approach and (b) by
the proposed Wiener filter based approach.

Similar to Martins et al. [5], a numerical evaluation of the
proposed method has been conducted by processing a set of
five simulated low resolution images in a sequence. Transfor-
mations identified in a real sequence were used to simulate
speech articulators’ movement. These transformations were
applied to one observed image and the simulated sequence
was downsampled (scale factor of 2), generating a sequence of
simulated low resolution images. Note that, in this experiment,
the sub-pixel displacements are completely known. We used
the same ICM-based methods considered by Martins et al. [5]
in their evaluation. These methods are the following: the
bilinear interpolation of the reference image, the GIMLL MRF
proposed by Martins et al. [5], the discontinuity adaptive MRF
(DAMRF) model proposed by Suresh and Rajagopalan [17],
the Potts model discussed by Martins et al. [18], and the Total
variation prior discussed by Li [19].

Fig. 8 presents the first high resolution image reconstructed
by each of the methods. Note that the proposed method
produced the best results.

The Normalized Mean Squared Error (NMSE) was used for
this numerical evaluation. Table 1 shows the results. To have
a visual idea of the data, Fig. 9 shows a boxplot of the results
for the three best methods.

Wiener GIMLL DAMRF

0.
00
04

0.
00
06

0.
00
08

0.
00
10

Fig. 9. Boxplot of the results for the three best methods.

Note that the proposed method consistently outperforms
the other methods. In order to check whether the differences
among the NMSE means were statistically significant, we
decided to run an analysis of variance (ANOVA) test. Since the
distributions turned out to be non-normal (verified by running
a Shapiro test), we used the Kruskal-Wallis non-parametric
ANOVA method. At 95% confidence level, the test does
indicate a difference among the means (χ2 = 26.3157, df = 5,
p-value = 0.0000775). A Wilcoxon signed rank paired test also
shows a significant difference between the best two approaches
(p-value = 0.01587). This is an evidence of the effectiveness
of the Wiener based SRIR method in the reconstruction of
high resolution images of the vocal tract.

V. RELATED WORK

To the best of our knowledge, Martins et al. [5] were the first
researchers to develop a method for spatio-temporal resolution
enhancement of vocal tract images used in the context of
speech production. However, they adopted a MAP-MRF SRIR
methodology and used the ICM algorithm to sequentially
update high resolution pixel intensities. This algorithm is
known to have a very fast convergence rate (it converges
in five iterations at most). However, considering 128 × 128
low resolution images and a scale factor of 2, the SRIR
methodology will generate a 256×256 high resolution image.
Consequently, the ICM algorithm will maximize the local
conditional probability for 65536 pixels in each iteration.
Such method can be considered costly when compared to our
Wiener based approach, since it requires only a single iteration.

Mascarenhas et al. [7] discuss an statistical interpolator
of the SPOT multispectral bands, performing the local lin-
ear estimation of the interpolated pixels under the MMSE
criterion. Similar to the approach presented in this paper,
the separability of the spatial correlation structure and the
first order Markovian model were also adopted. However,
Mascarenhas et al. used the correlation model to characterize
the observations, not the image to be reconstructed.

Hardie [13] proposes an SRIR algorithm that uses a type
of adaptive Wiener filter, combining nonuniform interpolation



(a) Bilinear Interpolation (b) GIMLL (c) DAMRF [17]

(d) TV prior [19] (e) Potts [18] (f) Wiener

Fig. 8. Images reconstructed by (a) the GIMLL SRIR approach, (b) the DAMRF approach, (c) the TV prior, (d) the Potts method and finally (e) the proposed
Wiener filter based approach.

and restoration into a single weighted sum operation. The
proposed algorithm adopts an isotropic a priori model, while
our method is based on the first order Markovian spatial
correlation structure. Moreover, differently from our approach,
Hardie focuses on scenes that remain static along the acquisi-
tion of frames, except for global relative motion between the
scene and sensor. This is not the case in our context, since there
are deformations localized around the jaw along the image
sequences.

VI. CONCLUDING REMARKS

In this paper, we presented an evolution of the spatio-
temporal resolution enhancement approach proposed by Mar-
tins et al. [5]. A novel Wiener filter based SRIR method is used
as a more efficient alternative to enhance spatial resolution. We
assumed the separability of the spatial correlation structure
in the horizontal and vertical directions using the first order
Markovian model in each direction. The performed experi-
ments visually and numerically demonstrated the effectiveness
of our approach in the context of the vocal tract MRI image
sequences.

There are computational savings associated with estimating
more than one high resolution pixel in each step of the

algorithm. In this paper we only discuss the single pixel
estimation. However, preliminary experiments indicate that the
estimation of multiple high resolution pixels is feasible. In
future work we plan to apply such procedure.
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