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Fig. 1. Overview of the feature extraction process for the proposed transfer framework. Firstly, several models are created from an auxiliary
(source) database (a–b), and applied to the target (action) database (C–d). The results of those models are combined in several ways (e, f, g)
and then used as features for the final action classifier (h), together with the results of the baseline classifier (j). More details will be provided
in Section IV

Abstract—To manually collect action samples from realistic
videos is a time-consuming and error-prone task. This is a
serious bottleneck to research related to video understanding,
since the large intra-class variations of such videos demand
training sets large enough to properly encompass those variations.
Most authors dealing with this issue rely on (semi-) automated
procedures to collect additional, generally noisy, examples. In
this paper, we exploit a different approach, based on a Transfer
Learning (TL) technique, to address the target task of action

recognition. More specifically, we propose a framework that
transfers the knowledge about concepts from a previously labeled
still image database to the target action video database. It is
assumed that, once identified in the target action database, these
concepts provide some contextual clues to the action classifier.
Our experiments with Caltech256 and Hollywood2 databases
indicate: a) the feasibility of successfully using transfer learning
techniques to detect concepts and, b) that it is indeed possible
to enhance action recognition with the transferred knowledge of



even a few concepts. In our case, only four concepts were enough
to obtain statistically significant improvements for most actions.

Keywords-action recognition; transfer learning; bags-of-visual-
features; video understanding;

I. INTRODUCTION

An important bottleneck in research on action recognition in

realistic videos resides in the lack of large enough training data

bases for the Machine Learning (ML) algorithms involved. In

this work we propose a framework for action recognition in

videos which rely on external auxiliary databases, drawing

on the effort already spent in labeling those databases and

avoiding the cost to produce more training action samples. To

do this, we rely on the ideas of transfer learning techniques

[1].

Transfer learning allows transfer of knowledge between

different databases by relaxing the classical assumption of

learning algorithms that training and testing data might come

from the same probability distribution. Our experiments in-

dicate that knowledge transfer between quite different visual

databases is feasible under the assumptions of transfer learn-

ing. Also, they show that even a challenging action database

as Hollywood2 [2] can benefit from the knowledge of a few

concepts brought from the Caltech256 [3] still-image database.

The assumptions underlying this work are: (a) transfer

learning between a concept image database and a action video

database is possible; b) by recognizing the presence/absence

of a series of concepts along the video segment can bring

relevant contextual clues to action videos; (c) the context in

which an action occurs can help on recognizing the actions.

II. RELATED WORK

A. Dealing with Scarce Training Data

In the pursuit of finding a scalable way for collecting

training samples for different actions in movies, both [4]

and [2] use textual information coming from movie scripts

to automatically segment actions and scenes samples. Their

procedure is further refined in [5], in which a clustering

algorithm similar to k-means [6] is applied to temporal sub-

windows of the initial video clip, in order to narrow it into a

more precise action location in time.

In [7], the issue of collecting a large-enough amount of

training data for high-level video retrieval is addressed by

the usage of videos collected from Youtube1 filtered by pre-

defined categories and tags.

The resulting annotations achieved in those cases are quite

noisy, although both the experiments reported in [4] and in [7]

indicate that they are still able to produce classifiers above the

chance level.

B. Transfer Learning for Images and Videos

In [8], it is proposed a solution to overcome the lack of

training data for leaf image classification by using as an

auxiliary external database images from an herbarium (the

1http://www.youtube.com

main database are images of a few individual fresh leaves,

while in the herbarium – which contains much more examples

– the leaves are dried and can be tied together in groups).

Another example of transfer learning in Computer Vision –

yet in still images – is provided by [9], for face recognition.

In that paper, they observe that examples of generic faces

traits (e.g., lips, moustache, curly hair) are easier to collect

than examples of every specific people in the database. So,

instead of training a face classifier based on people’s examples,

they train 65 classifiers on selected traits and use the scores

provided by such classifiers to compute the feature vectors.

The authors of [10] propose a series of pre-computed clas-

sifiers from several auxiliary data sources to concept detection

on TRECVID2005 videos. They used three low level features

(Grid Color Moments, Gabor Textures and Edge Histograms)

extracted from keyframes for these classifiers. The final clas-

sifier using the auxiliary ones outputs is a modified version of

least squares SVM (LS-SVM).

In [11], it is proposed a bird’s eye view representation

to transfer policy knowledge between keepaway robot soccer

setups, with different number of objects in the scene.

To the best of our knowledge, no author has made use of

transfer learning for action recognition in videos.

C. Contextual Information in Action Recognition

In [2], the usage of contextual information in aiding to

recognize related actions is addressed. In that work, relevant

scene types are learned from the texts of movies scripts.

Scene and human-actions are then described as Bags-of-

Visual-Features (BoVFs)[12] and off-the-shelf Support Vector

Machines (SVM) classifiers are trained separately for both

kinds of concepts (scenes and actions). Finally, the correla-

tion between scenes and actions is explored to enhance the

recognition results both for scenes and actions.

In [13], the context for events selected from the Large-Scale

Concept Ontology for Multimedia (LSCOM) event/activity

annotations [14] is captured by the trajectories of videos in

the concept space, which is defined by a number of concepts

selected from LSCOM-lite annotations ([15]). Concept detec-

tors are trained on low level features like color, texture, motion

and edges, and the trajectories themselves are analyzed by

Hidden-Markov Models (HMM), whose scores are used to

form a feature vector for the final SVM classifier.

The work of [16] explores context at lower levels. In that

work, contextual information is encoded by different contex-

tual descriptors computed on trajectories of Scale-Invariant

Feature-Transform (SIFT) points [17]. Such descriptors are

combined with different spatio-temporal grids in a multi-

channel kernel scheme similar to that applied in [4].

Interestingly enough, the comparison among several 3D

point detectors and descriptors performed by [18] concluded

that, except for the KTH 2 database [19], regularly spaced

dense samplings of points perform better at action recognition

than interest points. This result reproduces similar ones ob-

tained for scene recognition by [20], and can be considered

2 Acronym for Royal Institute of Technology in Swedish



as additional indirect indications of the importance of context

in realistic videos, since denser samplings, by covering larger

areas, should be better able to capture contextual information.

The distinct result for KTH can be explained by the fact that

it is a controlled database, whose backgrounds are almost

completely uniform. Hence, there is virtually no context to

be described in KTH.

III. TRANSFER LEARNING

Classical Machine Learning (ML) algorithms rely on the

assumption that training and test data come from the same

probability distribution. In fact, though, it is rare a case of

practical application in which such an assumption is concretely

guaranteed. Most applications of ML randomly splits the avail-

able data between training and test sets (or among validation,

training and testing sets) and assume that future real data to

which the trained algorithm will be applied will follow the

same distribution.

Nevertheless, as it is argued in [1], there are plenty of real-

world examples in which such assumption is not realistic.

A typical example is the classification of web pages, in

which data is constantly changing, thus letting the underlying

trained algorithms outdated. They go on by citing sentiment

classification of products in shopping websites. Such classifi-

cation is based on user review data, which can present huge

variations among different categories of products. In this case,

a sentiment classification algorithm trained on a few products

will probably fail on most other products, and even specialized

classifiers will not be able to cope with the variations of

perceptions of the product users along time. In some cases,

as in the one tackled in this work, there is simply not enough

available labeled data in the target database, and its acquisition

is too expensive and error-prone.

Transfer Learning (TL) techniques come up to deal with

those kinds of applications, by allowing distributions, tasks

and domains of training and test data to vary. The notation,

definitions and classification of TL algorithms of [1] are going

to be applied in most of this review.

According to them, a domain D is composed of a feature

space X and a probability distribution over that space P(X ),
and can be mathematically defined by:

D = {X ,P(X )} (1)

A task T is defined by a label space Y and a prediction

function f(.) which is the equivalent to the conditional prob-

ability P(Y|X ):

T = {Y,P(Y|X )} (2)

The target domain Dt is the domain of interest for the

application, usually with few or no labeled data at all. A source

domain Ds is an auxiliary source of information, generally –

but not always – with a great amount of labeled data, which

hopefully can be used to aid the ML algorithm to be adequately

trained for the target task.

From those definitions, three main categories of TL algo-

rithms can be identified:

Inductive Transfer Learning

Inductive Transfer Learning (ITL) concerns those cases

in which the source and target tasks differ, no matter their

domains. The most common case of ITL is when there is a

lot of labeled data in the source domain, which makes this

type of ITL similar to multitasking learning. For example,

[21] proposes the TrAdaBoost extention of the AdaBoost

algorithm to deal with new instances coming in an already

trained system, potentially provoking a continuous distribution

change.

A less common case of ITL occurs when there is a related

source domain, but their instances are all unlabeled. An

example of such a technique more known as self-taught

learning – can be found in [22] in which a image representation

is learned from unlabeled instances, to be applied in the target

domain (whose task is also unsupervised).

Transductive Transfer Learning

Transductive Transfer Learning (TTL) involves cases in

which the tasks are the same, but the domains vary. Looking

at Equation 1, it is possible to see that different domains

can vary in two aspects: they can have different feature

spaces (for example, text classification for different languages)

or they can share the same feature space but have varying

probability distributions (for example, text classification on

different specialized databases).

Unsupervised Transfer Learning

Unsupervised Transfer Learning (UTL) techniques are de-

veloped to the cases in which there is no labeled data on

neither source or target domains.

In all cases of TL, the knowledge can be extracted from

the source instances, from learned feature representations or

from model parameters. In case of relational datasources, it is

possible to occur the transfer of relational knowledge either.

IV. TRANSFERRING CONCEPTS FROM STILL IMAGES TO

VIDEOS

The transfer framework proposed in this work is depicted in

Figure 1. It illustrates the complete feature extraction process,

including information both from the source database – in our

case Caltech256 concept images database – and from the target

database – action videos Hollywood2 database – until the final

representation for the video is achieved, that can be submitted

to the final SVM classifier.

The process is performed as follows: in (a) m negative

samplings, equaling the number of positive ones are prepared.

In (b) static concept models are built for each negative sample,

with the libsvm software[23], using a pyramid kernel with

2 levels [24]. Meanwhile, (c) shows that a video summary

is created according to a simplified version of the algorithm

presented in [25]. Most summaries for the video fragments

ended up composed of 2-4 frames. In (d), the models created

in (b) are applied to the summary frames, providing (e) m

different probabilities for each concept, for each summary



frame. In (f), the replications for each concept are combined

to provide a unique result for each frame. The arrow indicated

by (g) indicates the repetition of the process described from

(a) to (f) for every frame in the summary. In step (h) the

probabilities for each frame are combined at a video level. The

combination is done by max certainty3, since we are interested

to know whether the concept appears or not in the entire video.

The arrow (i) indicates the repetition of the process described

from (a) to (h) to every concept in the database. Finally, the

video has a representation composed of n concept probabilities

added by the probability of the baseline action classifier. That

baseline probability is computed from the SIFT-based BoVFs

[4].

V. EXPERIMENTS

The instantiation of the main elements of the proposed

framework for the experiments are described in Table I. In

all the experiments, the number of replications is m = 5.

Two sets of experiments were conducted in order to evaluate

the assumptions of this work (stated at the introduction). We

address those assumptions by trying to specifically answer to

the questions addressed in the next two sections.

TABLE I
SOURCE AND TARGET DATABASES USED IN THE EXPERIMENTS

.

Generic Element Instantiation

Source database Caltech256 photos, described by HueSIFT
binary BoVFs. To introduce some geometric
information to the representation, a two-
level pyramid kernel [24] was applied. The
first experiments use rotary-phone examples
only and the concepts used in the second
row of experiments are: car-tire, car-side,
rotary-phone, telephone-box.

Target database Hollywood2 videos, described by STIP bi-
nary BoVFs, classified by a multilevel ker-
nel as that of [4]. In the first set of experi-
ments, only frames of AnswerPhone against
all other frames are tested. In the second set
of experiments, all actions are tested.

A. Is it possible to transfer knowledge from Caltech256 to

Hollywood2?

Firstly, we needed to assess whether image-based classifiers

would be able to identify the same concepts in videos frames

from an unrelated collection. To establish this, Caltech256

rotary-phone images where used to train five (m = 5) classi-

fiers with different negative samples. In addition, to verify

the idea of representation transfer (Section III), the visual

vocabulary was randomly selected from: (a) the source-only;

(b) the target only and, (c) a mixed selection of visual words

from both source and target samples.

Another evaluation was performed at a kernel level, and the

following configurations were tested: linear, χ2, multilevel [4]

and pyramidal kernel [24], all using both one and two-level

representations.

3maximun distance from probability=0.5

Such classifiers were applied in a phone baseline database

built on frames of Hollywood2 actions database. Such baseline

was built by manually collecting 90 positive examples of im-

ages presenting phones from the summaries of the Hollywood2

action class AnswerPhone. The same amount of negative

examples were randomly chosen among frames coming from

summaries of videos of all other action classes. The summa-

rization algorithm is a simplified version of that presented in

[25]. Hollywood2 original training and test sets separation -

which come from different movies – was maintained.

Our aim in these first round of experiments is to verify

the viability of transfer from Caltech256 to Hollywood2 in

the concept level, showing how a transfer classifier would

compare with a classical one – the baseline. It is interesting to

notice that this baseline provides a ceil to the transfer result

(instead of a floor), given that – from the point of view of

traditional ML theory - the non-transfer setup, with training

and testing coming from the same distribution is the ideal

one. In other words, the transfer classifier is supposed to

work, at best, slightly worse than the baseline. Thus, the main

advantage of using a transfer-based classifier is that it opens

the possibility of using any additional sources of information

which would otherwise be inaccessible to a classical classifier.

Hopefully, such additional information would compensate the

bias introduced by the extraneous source dataset.

B. Does detecting Caltech256 concepts on Hollywood2 frames

enhance action recognition?

In this second round of experiments, the feature vectors

extracted by the procedure described in Figure 1 for every

video are submitted to a new SVM classifier, this time with

a kernel based on χ2 distances (the same of [4], but using a

unique channel).

Similarly to the case with the concepts, not all the training

set were used at once for training the baseline. Instead, all the

positive samples for each action were taken together with a

random selection of negative samples of the same size. This

more lightweight experimental setup (when compared to a

typical full Hollywood2 classification setup as those in [4],

[2]) was chosen to speed-up the verification of our main

assumption: the ability of Caltech256 concept classifiers to

enhance action classification on Hollywood2.

VI. RESULTS AND DISCUSSION

A. Transferring from Caltech256 images to Hollywood2

frames

In this section we show that, indeed, knowledge transfer

from Caltech256 to Hollywood2 frames is feasible.

Figure 2 (a) shows the individual results for Phone classi-

fication in Hollywood2 frames, with and without transfer. As

suggested by [1], such ’brute force’ transfer led to negative

transfer for individual classifiers. Nevertheless, in Figure 2 (b)

the individual results for transfer settings are combined, using

five replications per kernel configuration, indicating that in

some cases it is possible to achieve results above chance level,

although skewed to the positive side. It is possible to observe



also that the less skewed results tend to be provided mostly

by the more sophisticated kernels, namely those proposed

in [4] and [24]. Figure 2 (c) shows the same data colored

by combination scheme, showing that average and maximum

distance from the mid-point probability are those responsible

for the best transfer results.

(a) Individual Results, showing that initially, there is
negative transfer.

(b) Results combined (colored by kernel), showing that
model combination overcomes negative transfer.

(c) Results Combined (colored by comb. strategy),
showing that average and maximum distance from the
p=0.5 work better than majority voting.

Fig. 2. Transfer of Knowledge about Phones (k=400, m=5)

Replications of these experiments with k = 4000, indicated

no expressive enhancement over k = 400, while the results

obtained with k = 100 individual tend to present stronger

fluctuations, thus becoming less reliable. Their equivalent ROC

graphs are not shown due to lack of space.

Figure 3 shows the F1 score between the baseline and the

results with transfer from Caltech256, using three different

sources for the visual vocabulary. Each graph illustrates a

different combination scheme for the classifiers. In Figure 3 (a)

individual classification results are combined by majority

voting for each item; In Figure 3 (b), the probabilities of

positive samples provided by the classifiers are averaged. In

Figure 3 (c) the combined classifier relies on the individual

classifier whose probability is farthest from the middle-point

(p = 0.5), meaning that in this scheme the final classifier uses

the result of the classifier which has the greatest certainty of

its response for that item.

(a) Majority Voting is generally better for non-transfer
setups.

(b) Average Probability is generally better for transfer
setups.

(c) Max Distance from p=0.5 works equally well for
both transfer and non-transfer setups

Fig. 3. F1 Scores show that kernel and vocabulary sources do not present
significant differences for transfer, while the combination scheme can greatly
influence transfer results. (k=400, m=5)

Dark blue bars represent the baseline results (without trans-

fer) while the other colors indicate different visual vocabulary

sources. Each group of bars was computed using a different

kernel.



In terms of combining schemes, these graphs show that:

a) majority voting seems to be appropriate only for traditional

classification setups, while being unstable in transfer setups; b)

using the average probability for decision is better for transfer

setups than to a traditional one and, c) the usage of the greater

certainty classifier seems to be the most stable between transfer

and traditional setups.

In addition, these graphs reinforce how insignificant are

the differences among kernel configurations or vocabulary

sources. Such insensibility to vocabulary sources is an im-

portant result for our transfer setup, since it means that

there is no transfer of representation knowledge and positive

results can be obtained simply by brute-force transfer fol-

lowed by classifier combinations which take into account the

probabilities provided by libsvm, instead of its binary (i.e.,

positive/negative) results.

B. Using transfer to improve action recognition

Based on the results of the previous experiments, it is now

assumed that it is viable to transfer at least some knowledge

obtained from the source database (Caltech256) to the frames

of the target database (Hollywood2) at a per concept basis. The

results of this new set of experiments are shown in Figure 4,

which presents the differences between precision values of the

transfer results in relation to the no-transfer baseline (STIP-

only) showing an increase in the majority of precision values

when transfer is applied.

Fig. 4. Indicates that even with only 4 (four) concepts used for transfer, most
precision values increase, no matter the classifier combination scheme applied
for the concept classifiers. Actions: AP - AnswerPhone, DC - DriveCar, E -
Eat, FP - FightPerson, GOC - GetOutCar, HS - HandShake, HP - HugPerson,
K - Kiss, R - Run, SD - SitDown, SiU - SitUp, StU – StandUp. Transfer
Concepts: car-tire, car-side, rotary-phone, telephone-box

Table II shows the differences for the average combination

scheme and their statistical significance. From Figure 4 and

Table II it is possible to see that there are 4 decreases in

precision only, out of 12, and three of them are not significant.

For the the precision increases (8 out of 12), only FightPerson

and SitUP results are insignificant. In other words, 6 out of 8
increases in precision are statistically significant.

Observing Figure 4 for different actions, it is possible to

see that the DriveCar action had the largest enhancement,

what should be expected, since two transfer concepts in this

experiment were related to cars (car-tire and car-side). How-

ever, unexpected negative results come up for AnswerPhone

and GetOutCar, since the transfer concepts were semantically

related to them. In case of AnswerPhone, the insignificant

impact of the phone concept can be explained by the fact that

telephones usually appear as small objects and play a small

part in the context.

The GetOutCar action is notoriously tricky in Hollywoo2,

since there are scenes in which a car does not even appears in

the scene, or the action is extremely occluded, as can be seen

in Figure 5.

Fig. 5. A sequence showing a difficult example of GetOutCar action. Observe
that the car is presented in a frontal point-of-view (instead of car-side and
the visual information related to the action of getting out of the car is very
small (magenta arrow).

The positive results of the other classes (HandShake, Kiss,

Run, SitDown and StandUp) could also be considered some-

what unexpected, given the apparent unrelatedness of them

with the selected transfer concepts. Such results reinforces our

main thesis that general concepts can have a positive impact

on the overall action recognition performance, no matter the

actions. In addition, it also reinforces our hypothesis that

even apparently unrelated concepts are able to convey indirect

contextual clues to the action classifier.

Figure 6 shows the the ROC points for the DriveCar action,

in which the gains in precision were the largest ones.

Finally, the same graphs for GetOutCar action (Figure 7)

show another interesting effect of using transfer information,

which was found in other actions either (not shown due to

lack of space). In this case, although the average precision

gain is very small or negative (depending on the combination

scheme), it is possible to see how the transfer-based classifiers

tend to be less biased than the baseline classifier, without

transfer.



TABLE II
DIFFERENCES IN PRECISION VALUES WITH THEIR STATISTICAL

SIGNIFICANCE AT A 95% LEVEL

.

Action Difference Significant?

AnswerPhone -0.0132 no
DriveCar 0.0395 YES

Eat -0.0152 YES
FightPerson 0.0060 no
GetOutCar -0.0036 no
HandShake 0.0087 YES

HugPerson -0.0009 no
Kiss 0.0181 YES

Run 0.0090 YES
SitDown 0.0283 YES

SitUp -0.0073 no
StandUp 0.0390 YES

VII. CONCLUSION

This paper aimed at assessing the hypothesis that Transfer

Learning makes it possible to use the information contained

in already annotated databases to improve action recognition

results in challenging, realistic videos. In a first step, an

image-to-frame transfer evaluation was performed using the

Caltech256 as the source concept database and Hollywood2

as the action target database, indicating that the transfer of

knowledge about concepts was possible at frame level, despite

the different distributions between source and target databases.

The second round of experiments was built on the insights

obtained in that first round, and assuming that a) concepts

carry contextual information of video, and b) contextual clues

can improve action recognition in realistic videos. For these

proof-of-concept experiments, we selected four source con-

cepts from Caltech256 and devised a scheme to apply that

knowledge directly for action recognition in the Hollywood2

target database. The scheme depicted in Figure 1 was applied

and most differences in action recognition with transfer were

positive and statistically significant, indicating that transfer

learning assumptions can be successfully applied to action

recognition in videos.

The simplified experimental setup selected prevents a direct

comparison to other recognition rates for Hollywood2 found in

the literature. Their most important outcomes are the strong

indications that such transfer-learning-based framework can

effectively enhance action recognition rates. Those outcomes

provides us with clear directions for future work: to test

our transfer framework on a full action recognition scheme

and compare our results with state-of-the art. This is meant

to be done not only with Caltech256/Hollywood2 databases,

but other also with other source/target database pairs. Some

of the unexpected results also provide us with a few addi-

tional interesting lines of future investigation, such as how

the relationship between the concept classification task and

the action classification task is established. Finally, some

parameters which were fixed in our experiments deserve some

more attention, such as the number of replications, the number

of concepts, the criteria for concept selection, and even the

number of source databases, given that there is a wealth

of concept databases out there that could also be added to

(a) Majority Voting

(b) Average Probability

(c) Max Distance from p=0.5

Fig. 6. DriveCar Transfer Results (k=400, m=10). Observe how the
information introduced by transfer move the average precision away from
the chance level line.

Caltech256 in our framework without the need of further

modifications.
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