
High Level Classification for Pattern Recognition
Thiago C. Silva, Thiago H. Cupertino, and Liang Zhao

Department of Computer Sciences, Institute of Mathematics and Computer Science (ICMC)
University of São Paulo (USP)

Av. Trabalhador São-carlense, 400, 13560-970, São Carlos, SP, Brazil
e-mail: {thiagoch, thiagohc, zhao}@icmc.usp.br

Abstract—Traditional data classification techniques consider
only physical features of input data in order to construct their
hypotheses. On the other hand, the human (animal) brain
performs both low and high order learning and it has facility
to identify patterns according to the semantic meaning of input
data. In this paper, we propose a data classification technique by
combining the low level and the high level learning. The low level
term can be implemented by any classification technique, while
the high level classification is realized by the extraction of features
of the underlying network constructed from the input data. Thus,
the former classifies data instances by their physical features,
while the latter measures the compliance to the pattern formation
of the data. Our study shows that the proposed technique can
not only realize classification according to the pattern formation,
but it is also able to improve the performance of traditional
classification techniques. An application on handwritten digits
recognition is performed, revealing that higher classification rates
can be obtained when we have a proper mixture of low and high
level classifiers.

Keywords-High level classification; complex networks.

I. INTRODUCTION AND RELATED WORK

Supervised Data classification aims at creating a map from
the input data to a corresponding known output in the training
phase. The constructed map, called classifier, is then used to
predict new input instances. Many classification techniques
have been developed [1], [2], such as linear discriminant
functions, K-nearest neighbors, Bayesian decision theory,
neural networks, committee machine, Support Vector Machine
(SVM) and so on. However, all those techniques train and
classify data considering only the physical features (e.g., dis-
tance or similarity). Here, we call them low level classification
techniques. However, data items are not isolated points in the
attribute space but tend to form certain patterns. For instance,
in Fig. 1, the data points represented by the “triangles”
(black) are most probably to be classified as pertaining to
the “square” (blue) class if only physical features, such as
distances between data, are considered. On the other hand, if
we take into account the global relationship among the data,
we intuitively classify the “triangles” items as members of the
“circle” (red) class, since a clear visual pattern of “eight” is
formed. The human brain performs both low and high order
learning and has facility to identify patterns accordingly to
the semantic meaning of the input data. Nevertheless, this
kind of task is still hard to be performed by computers. Data
classification considering not only physical attributes but also
pattern formation is here referred to high level classification.

Fig. 1. A simple example of a data classification task where there exists
a class with a clear visual pattern, in this case, the red (“eight”) class. The
goal is to classify the black “triangles” data items. Traditional (low level)
classifiers would have trouble to classify such items, since they only derive
their decision based on merely physical measures.

There are several kinds of works related to high level
classification. One of them is the co-training technique [3],
[4], a semi-supervised learning process [5]. It requires two
views of the data and assumes that each example is de-
scribed using two different feature sets that provide different
and complementary information about the instances. The co-
training technique firstly learns a separate classifier for each
view using any labeled examples. Then, the most confident
predictions of each classifier on the unlabeled data are then
used to iteratively construct additional labeled training data.
By considering different views of the same data set, some
kinds of data relationships determined by the predefined views
may be uncovered. Another related technique is the committee
machine [6], which consists of an ensemble of classifiers. In
this case, each classifier makes a decision by itself and all these
decisions are combined into a single response. The combined
response of the committee machine is supposed to be superior
to those of its constituent experts. Since each classifier has a
particular view to the input data, the combination of them
may reveal relationship among input data. The Semantic
Web [7], [8] is another strongly related work. The idea of
Semantic Web is “an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation” [9]. Semantic
Web uses ontologies to describe the semantics of the data.
Is a promising idea but it also has many difficult challenges.
A key challenge in creating Semantic Web is the semantic
mapping among the ontologies. Maybe the most related works

to high level classification are the contextual classification
techniques [10], [11], which consider the spatial relationships
between individual pixels and the local and global configura-
tions of neighboring pixels to assign classes. The underlying
assumption is that the neighboring pixels are strongly related,
i.e., the structure of classes are likely to be found in the
presence of others. However, from the viewpoint of general
high level classification, all the above mentioned approaches
are quite restricted either to the types of semantic features to
be extracted, such as co-training and ensemble method, or to
the types of data, such as the contextual classification. To our
knowledge, it is still lacking an explicit and general scheme
to deal with high level classification in the literature, which is
quite desirable for many applications, such as invariant pattern
recognition [12], [13]. This work presents an effort on this
direction.

Another research area which is fundamental to this work
is the Complex Networks. A complex network refers to a
large scale graph with nontrivial connection patterns [14], [15].
Such networks have emerged as a unified representation of
complex systems in various branches of science [16]. Complex
networks are ubiquitous in nature and everyday life. Examples
include the Internet, the World Wide Web, biological neural
networks, social networks between individuals and among
companies and organizations, food webs, metabolic networks
and distribution as the bloodstream, postal delivery routes and
distribution of electric energy etc. Many network measures
have been developed to characterize nodes, subnetworks and
the whole network [17], [18]. Such measures can also be used
to distinguish one type of network from another. One of the
salient features of complex networks, as data representation
tools, is the ability to describe the topological structure of the
data. Such representation not only emphasizes the physical
distances among nodes, but also captures from local to global
relationships among data instances. Consequently, it is a
suitable tool to uncover pattern formation. For example, it has
been shown that the topological structure is quite useful to
detect various cluster forms using a data clustering algorithm
with a unique distance measure [19].

In this paper, we propose a novel technique by combining
the low level and the high level data classifications using a
networked data representation. The low level classification can
be implemented by any classification technique, while the high
level classification is realized by the extraction of features of
the underlying network constructed from the input data. Thus,
the whole classification technique consists of two terms: the
first considers classifying data items solely by their physical
features and the second measures the compliance to the pattern
formation from the input data items. Numerical studies show
that the proposed technique can not only execute classification
accordingly to the pattern formation, but also can improve the
performance of traditional classification techniques. Interest-
ingly, we find that in general good classification results can
be obtained by the combination of the two terms.

The remainder of the paper is organized as follows. The
definition of the proposed model is described in Section II. In

Section III, we provide computer simulation results to show
the high level classification performance and its particular
characteristics. In Section IV, we apply the proposed technique
to manual digits recognition problem. We show that the
high level classification can really improve the recognition
precision. Finally, Section V concludes the paper.

II. MODEL DESCRIPTION

A training set is denoted here as Xtraining =
{(f1, y1), . . . , (fl, yl)}, where the first component of the ith
tuple fi = {x1, . . . , xd} denotes the attributes of the d-
dimensional ith data item. The second component yi ∈ L =
{L1, . . . , Ln} characterizes the class label or target associated
to that data item. The goal here is to learn a mapping from x
to y. Usually, the constructed classifier is checked by using a
test set Xtest = {f1, . . . , fu}, in which labels are not provided.
For an unbiased learning, we have Xtraining ∩Xtest = ∅.

With these definitions at hand, we now advance to the
network formation. The network will be constructed solely
based on the data presented in the training set Xtraining. In
this case, every data item (xi, yi) is represented as a vertex. A
connection between two vertices will take place accordingly
to the similarity and the classes of each data item. Consider
that ρ(i, j) denotes the distance between vertices i and j,
then a connection will be formed between the vertices i and
j if the following conditions are satisfied (ϵNN technique):
(i) ρ(i, j) ≤ ϵ and (ii) yi = yj , where ϵ is a fixed positive
constant, i.e., vertices i and j are within a predefined similarity
(it is used the Euclidean distance in this work) and are
instances of the same class. If it happens that no data item
of the same label is within the circular region with radius
ϵ, then we deliberately make a random link between the
data item under analysis and any other data item with the
same label. This enforces a single component for each class.
The constructed network will then be used to extract pattern
information from the original input data.

A. The High Level Classification Technique

The classification technique proposed in this work can be
comprehended as a high level (semantic) classifier. Therefore,
it is capable of processing the test set in a more intelligent form
by using a mixture of local features, provided by the physical
distance among the data instances, and global semantic fea-
tures, which are induced by the unveiled class patterns formed
by the data.

With the purpose of being able to represent such mixture, we
propose a classifier M that consists of a convex combination
of a low level classifier and a high level classifier. Mathemat-
ically, the probability that a data item i ∈ Xtest be classified
within the class j ∈ L, is given by:

M
(j)
i = (1− λ)T

(j)
i + λC

(j)
i (1)

where T
(j)
i ∈ [0, 1] denotes the probability (decision) pro-

duced by an arbitrary traditional (low level) classifier; C(j)
i ∈

[0, 1] indicates the probability predicted by a high level clas-
sifier; λ ∈ [0, 1] is the compliance term which plays the role
of counterbalancing the classification decision predicted by
both classifiers. Whenever T

(j)
i = 1 and C

(j)
i = 1, we may

deduce that the i carries all the characteristics of class j.
On the other hand, whenever T

(j)
i = 0 and C

(j)
i = 0, we

may infer that the i does not present any similarities with the
items of class j. Values in between these two extremes lead
to natural uncertainness in the classification process and are
found in the majority of executions of a classification task.
The same reasoning can be applied to M

(j)
i . From Eq. (1),

one can minimize the classification error by just choosing the
class j characterized by the highest M (j)

i . Therefore, Eq. (1)
provides a fuzzy classification method. Moreover, it is valuable
to salient that, when λ = 0, Eq. (1) reduces to a common low
level classifier.

Equation (1) supplies a general framework for the clas-
sification process, in the sense that any technique could be
easily brought into play. The first term of Eq. (1) is rather
straightforward to implement, since it can be any traditional
classification technique.

The network-based (graph-based) technique underlying the
high level classifier has the characteristic that each class
corresponds to an isolated subgraph (component) within the
network. Thus, a class component must always be connected,
so that every class is represented by and unique compo-
nent. With that in mind, we make use of a combination
of well-known network measures developed in the complex
network literature to compose the high level classifier C. These
measures are chosen in a way to cover relevant high level
aspects of the class component. The number of measures to
be plugged into the high level classifier is user-controllable;
thus, let us suppose that K measures are selected to comprise
the classifier. Mathematically, the high level classification
probability that a data item i ∈ Xtest belongs to the class
j ∈ L is given by:

C
(j)
i =

∑K
u=1 α(u)

[
1− f

(j)
i (u)

]
∑|L|

g=1

∑K
u=1 α(u)

[
1− f

(g)
i (u)

] (2)

where α(u) ∈ [0, 1],∀u ∈ {1, . . . ,K}, is a user-controllable
coefficient that indicates the influence of each network mea-
sure in the process of classification; |L| denotes the number
of distinct classes in the problem, and f

(j)
i (u) is a function

that depends on the uth network measure applied to the ith
data item regarding the class j. This function is responsible
for providing an answer whether the data item i in analysis
possesses the same patterns of the component j or not. Indeed,
in order to Eq. (2) to be a valid convex combination of network
measures, the following constraint on the coefficients must
always be satisfied:

K∑
u=1

α(u) = 1 (3)

Regarding the f
(j)
i (u), it possesses a general closed form

given by:

f
(j)
i (u) = ∆G

(j)
i (u)p(j) (4)

where ∆G
(j)
i (u) ∈ [0, 1] is the variation on the uth network

measure that occurs on the component representing class j if i
joins such component and p(j) ∈ [0, 1] is the proportion of data
items pertaining to the class j. Remembering that each class
has a component representing itself, it is naturally to check
the pattern compliance of a new data item to be classified
by examining whether its insertion to a component results
in a great variation of all the network measures. In other
words, if there is a small change in the network measures,
the new data item is in compliance with all the other data
items that comprise that component, i.e., it follows the same
pattern as the original members of that class. On the other
hand, if its insertion is responsible for a significant variation
on the network measures of that component, then probably
the data item in question may not belong to that class. This
is exactly the behavior that Eq. (2) together with Eq. (4)
propose. Consider that a data item i is to be classified in an
arbitrary classification problem and consider also that there
are 2 possible classes, namely A and B, K = 1, i.e., we are
using only one network measure, and classes A and B are
equally sized. Hypothetically, say that ∆G

(A)
i (1) = 0.7 and

∆G
(B)
i (1) = 0.3. Clearly, this data item has a bigger chance

to belong to the class B, since if it joins class B, it would
produce less variation on the network measure. Indeed, that is
what Eq. (2) precisely produces.

We proceed to explain the role of the p(j) ∈ [0, 1] in Eq.
(4). In real world databases, we usually encounter unbalanced
classes. Roughly speaking, a database frequently encompasses
several classes of different sizes. In general, some network
measures are very sensitive to the size of the components.
In an attempt to soften this problem, we introduce in Eq.
(4) the term p(j), which is the proportion of vertices of the
component representing class j. On account of that, we expect
to obviate the size effects in the classification process. For
instance, consider an arbitrary data item i and two classes, A
and B, such that the A’s size is 10 times bigger than B’s. In
this case, p(A) = 10/11 and p(B) = 1/11. Without the term p(j),
it is expected that variations on the network measure due to
the insertion of i in A to be considerably smaller than B, no
matter how data item i complies to class B. By considering
the term p(j), the bigger value of p(A) over p(B) diminishes
the above mentioned undesirable effect.

B. Composition of the High Level Classifier

In this subsection we introduce the selected set of network
measures that compose the high level classifier, namely: as-
sortativity, clustering coefficient, and average degree. In spite
of having chosen these measures, it is worth to emphasize that
other network measures can be also plugged into the high level
classifier through Eq. (2).

1) Assortativity: The assortativity measure numerically
translates the preference for vertices of a network to attach
to others that are similar or different regarding the vertex’s
degree in a structural sense [20]. In general, r lies between
−1 and 1. When r = 1, the network is said to have perfect
assortative mixing patterns, while at r = −1 the network is
completely disassortative.

Remembering that each class owns a representative and
unique component, we can calculate the assortativity with
regards to each of the existing classes. Let Uj = {u : yiu =
j ∧ yku = j}, where u represents an edge, iu, ku ∈ Xtraining

indicate the vertices at each end of the edge u. In another
terms, Uj encompasses all the edges within the class j. With
these considerations, the assortativity of class j is given by:

r(j) =
M−1

∑
u∈Uj

iuku −
[
M−1

∑
u∈Uj

1
2 (iu + ku)

]2
M−1

∑
u∈Uj

1
2 (i

2
u + k2u)−

[
M−1

∑
u∈Uj

1
2 (iu + ku)

]
(5)

Let us now derive ∆G
(j)
i (1) using the assortativity measure.

Consider that an arbitrary data item i is to be classified. In
relation to an arbitrary class j, we first calculate the actual
assortativity measure of the component representing class j.
Let it be denoted by r(j). Then, we virtually insert the data
item i into component j using the ϵNN technique, as exposed
in the previous section, and recalculate the new assortativity
measure. Let the new value be denominated r′

(j). We perform
this procedure to all classes j ∈ L. However, if there are no
connections from that data item i to a specific component, say
pertaining to class k ∈ L, by this approach, we would have
r(k) = r′

(k), which is undesirable, since this configuration
would state that the data item i is as similar as possible to
the component of class k. In order to overcome this problem,
a simple post-processing is necessary as follows. For all
components k ∈ L that do not share at least 1 link with the
data item i, we deliberately set r(k) = −1 and r′

(k)
= 1,

i.e., the maximum possible difference , since r ranges from
[−1, 1].

With all this information at hands, we are able to calculate
∆G

(j)
i (1) for all j ∈ L as follows:

∆G
(j)
i (1) =

|r′(j) − r(j)|∑|L|
u=1 |r′

(u) − r(u)|
(6)

where the denominator is introduced only for normalization
matters. According to Eq. (6), for insertions that result in
a considerable variation regarding the assortativity quantity,
∆G

(j)
i (1) will be high, and, consequently, by Eq. (4), f (j)

i (1)
is expected to be also high, yielding a low value for the high
level classifier C, as Eq. (2) reveals. On the other hand, for
insertions that do not cause a considerable variation regarding
the assortativity quantity, ∆G

(j)
i (1) will be low, and, as a

result, by Eq. (4), f (j)
i (1) is expected to be also low, producing

a high value for the high level classifier C, as Eq. (2) exposes.

2) Clustering Coefficient: The clustering coefficient mea-
sure quantifies the degree to which local nodes in a network
tend to cluster together. Evidence suggests that in many real-
world networks, and in particular social networks, nodes tend
to create tightly knit groups characterized by a relatively high
density of ties [21]. Here, we use the measure originally
proposed by Watts and Strogatz [21]. The local clustering
coefficient of a vertex in a graph quantifies how close its neigh-
bors are to being a clique (complete graph). Mathematically
speaking, the local clustering coefficient for a given vertex i
pertaining to the representative component of class j is given
by:

C
(j)
i =

|euk|

k
(j)
i

(
k
(j)
i − 1

) (7)

where |euk| the number of links shared by the direct neighbors
of vertex i (number of triangles formed by vertex i and any
of its two neighbors) and k

(j)
i is the degree of vertex i of

component j. By Eq. (7), we see that C
(j)
i ∈ [0, 1]. Having

calculated the local clustering coefficient of all vertices that
belong to the class j, we are able to define the component’s
average clustering coefficient by:

C(j) =
1

nj

nj∑
i=1

C
(j)
i (8)

where nj symbolizes the number of vertices in component j
and C(j) ∈ [0, 1]. Roughly speaking, the clustering coefficient
tells how well connected the neighborhood of the node is. If
the neighborhood is fully connected, the clustering coefficient
is 1 and a value close to 0 means that there are hardly
any connections in the neighborhood. With that in mind, we
motivate the use of such measure by using the following facts:
components with large clustering coefficient are found to have
a modular structure with high density of local connections,
while components with small average clustering values tend
to posses many long range connections, destroying local
structures.

The derivation of ∆G
(j)
i (2) is rather analogous to the

previous case, except for a simple detail: In this case, for all
components k ∈ L that do not share at least 1 link with the
data item i to be classified, we intentionally fix C(k) = 0
and C ′(k) = 1, i.e., the maximum possible difference, since
C ranges from [0, 1], where C(k) and C ′(k) represent the
clustering coefficients of the component k before and after
the data item to be classified is inserted, respectively. In this
way, we are able to define ∆G

(j)
i (2) as:

∆G
(j)
i (2) =

|C ′(j) − C(j)|∑|L|
u=1 |C ′(u) − C(u)|

(9)

3) Average Degree: The average degree measure is rela-
tively a simple measure and statistically quantifies the average
degree of the vertices of a component. This measure by itself

is weak in terms of finding patterns in the network, since
the mean value may not exactly quantify the degrees of the
majority of vertices in a component. However, if it is jointly
used with another measures, such as assortativity and cluster-
ing coefficient, its recognition power significantly increases.
Here, its usage is motivated by the fact that components with
degrees alike are valid candidates to pertain to the same class.
In this case, the average degree of an arbitrary component
representing class j is given by:

⟨k(j)⟩ = 1

nj

nj∑
i=1

k
(j)
i (10)

where k
(j)
i indicates the degree of vertex i from the component

j. The derivation of ∆G
(j)
i (3) is rather analogously to the

previous case, except for a simple detail: In this case, for all
components u ∈ L that do not share at least 1 link with the
data item i to be classified, we purposefully assign ⟨k′(u)⟩ =
max

(
⟨k(u)⟩ −min

i

(
k
(u)
i

)
,max

i

(
k
(u)
i

)
− ⟨k(u)⟩

)
, i.e., the

maximum possible difference from the mean of the compo-
nent, i.e., ⟨k(j)⟩. In this way, we are able to define ∆G

(j)
i (3)

as:

∆G
(j)
i (3) =

|⟨k′(u)⟩ − ⟨k(u)⟩|∑|L|
u=1 |⟨k′

(u)⟩ − ⟨k(u)⟩|
(11)

Again, ⟨k′(u)⟩ and ⟨k(u)⟩ represent average degree of the
component u before and after the data item to be classified is
inserted, respectively.

III. COMPUTER SIMULATIONS

In this section it is presented the results from a simulation
using artificial data in order to show the effectiveness of the
model. For this matter, we will give an equal weight for each
of the network measures previously introduced, i.e., we will
set α(1) = α(2) = α(3) = 1/3, according to Eq. (2). Note
that the constraint imposed by Eq. (3) is satisfied. Usually,
these parameters are not sensible to the final result of the
algorithm. The only sensible parameter to the model is λ,
which counterbalances the influence of the low and high level
classifiers.

In this simulation, we are going to empirically calculate the
minimum compliance term λ for which all the data items from
the test set are correctly classified. Before going any further,
let us clarify the concept of orientation in the learning. The
orientation in a learning process is given by the preference of
predicting some data item to the detriment of the others, i.e.,
the orientation provides a natural ordering for the classification
task. A good orientation can supply results much more relevant
than to those orientations that do not base their arguments
in a good heuristic or measure. Consider the classification
problem arranged in Fig. 2, where there is a segment of line
represented by the red or “circle” class (7 vertices) and a
condensed rectangular class outlined by the blue or “square”

class (100 vertices). Hence, we have that pred = 7/107 and
pblue = 100/107. Regarding the network formation, we have
used the ϵNN technique with ϵ = 0.07 (this radius covers,
for any vertex in the straight line, 2 adjacent vertices, except
for the vertices in each end). For the low level classifier,
we will employ the ϵNN classifier with ϵ = 0.07, i.e., we
predict the class of the data item plainly by the proportion of
vertices of each class that are contained in ϵ-radius taking as
the center the vertex to be classified. The task is to classify the
10 test data items described by the big “triangles”. Clearly, the
orientation will play a main role in the classification problem
here. Let us fix the preference for classifying vertices from left
to right. The graphic embedded in Fig. 2 shows the minimum
value allowed for the λ in order to the data items to be
correctly classified. For the first data item to be classified,
λ = 0 suffices, i.e., any efficient traditional classifier could
correctly predict this data item. However, from the second
to the seventh, higher minimum compliance term values are
required. Specifically, as the straight line diametrically crosses
the condensed region pertaining to the blue class, the minimum
feasible compliance term approaches λ → 1, since we cannot
establish our decision from the low level classifier, because
it would erroneously decide favorable to the blue or “square”
class. The data items to be classified in the border of the blue
or “square” class, namely the second and seventh, require a
lower value in relation to those situated in the middle of the
blue’s territory. From the eighth data item forward, a λ = 0
will suffice.

In order to give a clear idea of how the network measures
vary, in Table I it is reported all the calculated relevant
measures of the contextual classification regarding the first
5 left-most big “triangle” data items in Fig. 2 and the corre-
sponding classification decision for λ = 0 and λ = 0.95. A
careful look at Table 2 corroborates the importance that the
proportion of vertices plays in the process, as it is responsible
for counterbalancing the nominal variations of each network
measure against the size of the component. In this case, the
small variations that occur due to the insertion of a new data
item in the blue class is amplified by the high value of p(blue).
Conversely, the sizable variations that take place in the red
class by virtue of the addition of a new data item is softened
by the low value of p(red). Specifically, we can observe that the
first big “triangle” data item (number 1) is correctly classified
as a member of the red (“circle”) class with 100% certainty,
no matter which classifier we use, i.e., λ = 0 (solely a low
level classifier) or λ = 0.95 (mixture of low and high level
classifiers). This is expectable, since there is no blue example
in the vicinity of the first “triangle” data item. However, as
we cross the blue component, the low level classifier (λ = 0)
always misclassifies the examples, due to the high density of
examples pertained to the blue class. The highly organized
data that composes the red class is sufficient to the high level
classifier (λ = 0.95) to decide favorable for the red class, in
detriment to the blue class, as one can see from the data items
from 2 to 5.

TABLE I
SNAPSHOT OF THE MEASURES CAPTURED IN THE CONTEXTUAL CLASSIFICATION TASK OF THE BIG “TRIANGLE” DATA ITEMS IN FIG. 2. THE ITEMS ARE

ENUMERATED FROM LEFT TO RIGHT (ORIENTATION). THE LEFT-MOST “TRIANGLE” DATA ITEM IS THE ITEM 1 AND SO FORTH, UP TO THE FIFTH ITEM
(NUMBER 5). BOLDED VALUES IN THE TWO RIGHT-MOST COLUMNS EMPHASIZE THE FINAL CLASSIFICATION OF THE ALGORITHM FOR λ = 0 AND

λ = 0.95.

Item Class Calculated Network Measures Final Classification Result

Assortativity Clustering Coeff. Mean Degree λ = 0 λ = 0.95

r(.) r′(.) ∆G
(.)
i (1) C(.) C′(.) ∆G

(.)
i (2) ⟨k(.)⟩ ⟨k′(.)⟩ ∆G

(.)
i (3)

1 Red 0.9519 0.9597 0.00001 0.0000 0.0000 0.00001 1.7143 1.7500 0.00001 1.0000 1.0000
Blue 0.5626 0.5626 1.00001 0.6745 0.6745 1.00001 9.5489 9.5489 1.00001 0.0000 0.0000

2 Red 0.9597 0.9653 0.4095 0.0000 0.0000 0.0000 1.7500 1.7778 0.3377 0.1973 0.7518
Blue 0.5626 0.5707 0.5905 0.6745 0.6651 1.0000 9.5489 9.4944 0.6623 0.8027 0.2482

3 Red 0.9653 0.9695 0.3936 0.0000 0.0000 0.0000 1.7778 1.8000 0.3735 0.0036 0.7406
Blue 0.5626 0.5691 0.6064 0.6745 0.6696 1.0000 9.5489 9.5116 0.6265 0.9964 0.2594

4 Red 0.9695 0.9728 0.3070 0.0000 0.0000 0.0000 1.8000 1.8182 0.3897 0.0289 0.7544
Blue 0.5626 0.5701 0.6930 0.6745 0.6705 1.0000 9.5489 9.5204 0.6103 0.9711 0.2456

5 Red 0.9728 0.9755 0.4794 0.0000 0.0000 0.0000 1.8182 1.8333 0.8718 0.0004 0.6480
Blue 0.5626 0.5655 0.5206 0.6745 0.6719 1.0000 9.5489 9.5511 0.1282 0.9996 0.3520

Fig. 2. A detailed analysis of the minimum value of the compliance term λ
that would result in the correct classification of the missing data items of the
straight line (red or “circle” class) in a two-class problem. If a lesser value of
λ would be chosen, then the missing data items would be classified pertaining
to the blue class. The orientation was set from left to right. Whenever a data
item is classified, it is incorporated to the corresponding most similar class.
Traditional techniques would definitely fail to correctly classify the straight
line that diametrally crosses the densely connected component pertaining to
the blue or “square” class.

IV. APPLICATION: HANDWRITTEN DIGIT RECOGNITION

In this section we provide an application to our contextual
high level classifier. In order to do so, a network formation
technique is explained, as well as the simulations results
obtained from the MNIST database [22].

1Since no edge is shared from the data item to the blue class, we set the
network measure variations regarding the insertion of the data item 1 to their
maximum value (as explained in the previous section).

A. The Network Formation Technique

In a graph-based data representation, the images (data items)
are represented by the vertices, whereas the relationships
between them are given by the links. A link connecting two
vertices (images) holds a weight that numerically translates the
similarity between them. Each image can be represented by a
“square” matrix η× η. For rectangle images, a pre-processing
is required to transform it into a square image. Also, we con-
ventionally set the pixels’ values range to lie within the interval
[0, 1] by normalization. Thus, an arbitrary data item (image)
xi can be seen as a matrix with dimensions η×η, where each
pixel xi

(u,j) ∈ [0, 1],∀(u, j) ∈ {1, . . . , η} × {1, . . . , η}.
In order to construct the network, we are required to define

a similarity measure. The traditional pixel-per-pixel distance
is rather insufficient in terms of reliably when representing
data, since such measure is very sensitive to rotation and
scale modifications. Hence, we have considered in this work a
measure based on eigenvalues. The eigenvalues carry essential
information of the images they are derived from [23]: the
greater its value, more information about the image it conveys.

Therefore, the similarity measure between two images are
calculated as follows. First of all, we remove the mean
associated to each image, for having a common basis for
comparison, then we calculate the ϕ < η largest eigenvalues
for each image discarding the smaller ones. Also, in order
to give more emphasis to the largest eigenvalues, a weight is
associated to each one so that the larger an eigenvalue is the
larger will be its associated weight.

Summarizing, in order to compute the similarity between
two images, e.g., xi and xj , firstly we sort their ϕ associated
eigenvalues: |λ(1)

i | ≥ |λ(2)
i | ≥ . . . ≥ |λ(ϕ)

i | and |λ(1)
j | ≥

|λ(2)
j | ≥ . . . ≥ |λ(ϕ)

j |, with |λ(k)
i | being the kth eigenvalue of

the ith data item. Finally, the dissimilarity measure ρ between
images xi and xj is then:

Fig. 3. A detailed analysis of the impact of the compliance term λ on different
traditional low level techniques applied to the MNIST database. The high
level classifier was fixed to a convex combination of assortativity, clustering
coefficient and average degree. One can see that a mixture of the proposed
traditional and high level techniques does give a boost in the classification
rate in this real world data set. The red line shows the results for a network
constructed according to our proposed network formation technique with
only the 4 highest eigenvalues. The low level classifier used here was the
ϵ-neighbors, with ϵ = 0.014. The blue line indicates the outcome using a
simple kNN classifier with k = 3 as the traditional classifier. The magenta
line depicts the results reached for a linear neural network with 10 neurons
in the output layer used as the traditional classifier.

ρ(i, j) =
1

ρmax

ϕ∑
k=1

β(k)
[
|λ(k)

i | − |λ(k)
j |

]2
(12)

where ρ ∈ [0, 1], ρmax > 0 is a normalization constant, β :
N∗ → (0,∞) indicates a monotonically decreasing weight
function that can be arbitrarily chosen by the user.

B. Experimental Results

While recognizing individual digits is only one of a myriad
of problems that involves specific designing of practical recog-
nition system, it still is, undoubtedly, an excellent benchmark
for comparing shape recognition methods. The database in
which we will conduct our studies hereon is entitled Modified
NIST set [22]. This database provides a training set with
60.000 samples and a test set of 10.000 samples. Furthermore,
in order to make the computation more efficient, we have con-
ducted a pre-processing step. Specifically, we will normalize
all the gray-level pixels from the image and reduce its size to
fit in a 20× 20 pixel box, while preserving their aspect ratio.

In this case, we will make use of the dissimilarity measure
based on the first 4 eigenvalues of each image out of 20
eigenvalues, since the image has dimensions 20 × 20. By
virtue of that, we will employ as the function β in the Eq.
(12) an exponential decreasing function with a time constant
fixed at τ = 3 and a scaling factor given by 16, i.e.,
β(x) = 16 exp(x3). Since, this function is mapped into the
interval (0,∞) and is a monotonically decreasing function,
it follows that this β function meets all the aforementioned

requirements. Specifically in this situation, we have that the
weights associated to each eigenvalue are: β(1) = 11.46,
β(2) = 8.21, β(3) = 5.89, and β(4) = 4.22.

For the sake of comparison, we will test the high level
contextual classifier with 3 distinct low level classifiers. The
high level classifier will remain constant as we have been
using, i.e., with an underlying network. The techniques that
will be exploited are listed below:

• A linear classifier through an 1-layer neural network. No
pre-processing was performed. For more details about the
neural network parameters, see [22];

• A k-nearest neighbor classifier with an Euclidean distance
measure between input images with k = 3. No pre-
processing was performed. For more details, one can refer
to [22];

• The ϵNN classifier with an ϵNN network formation
technique with the similarity measure given by a weighted
um of the ϕ = 4 greatest eigenvalues. On the contrary of
the previously two techniques, this technique requires a
network. In all simulations, ϵ = 0.014 for the both steps
(classification and network formation).

We have intentionally provided three techniques with dis-
tinct learning paradigms to show how easily we can plug in any
kind of classifier in the model. Figure 3 shows the comparison
results reached by each algorithm. Our main goal here is to
reveal that a mixture of traditional and high level classifier is
able to increase the classification rate.

For example, the linear neural network reached 88% of clas-
sification rate when we have used only a traditional classifier
(λ = 0). A little increase of the compliance term, λ = 0.25,
is responsible for a boost in the classification rate. In this
case, it achieves almost 91%. Regarding the k-nearest neighbor
algorithm, for a pure traditional classifier, we have obtained
95% of classification rate, against 96% when λ = 0.2. In the
last algorithm, namely the ϵNN classifier with our proposed
measure, we have obtained 98.49% of correctly classified data
items for λ = 0, against 99.06% when λ = 0.2. It is worth
noting that the enhancement is significant. Even in the case
of the ϵNN classifier with an eigenvalue-based distance, the
improvement is quite welcomed, because it is a hard task to
increase an already very high classification rate. Moreover,
one can see that maximum compliance term is intrinsic to
the data set, since, for three completely distinct low level
classifiers, the maximum classification reached is achieved in
the surroundings of λ = 0.225.

For the sake of completeness, in Fig. 4 we provide five
samples that have been misclassified using the ϵNN classifier
for λ = 0, but can be successfully classified when λ = 0.2
(the compliance term with the highest classification rate). For
all these samples, a little aid of the high level classifier in
this process permitted that all these samples to be correctly
classified. In this situation, the traditional classifier cannot
correctly predict those data items since it only uses some
sort of physical measure between the data. When we raise
the influence of the high level classifier decision, i.e., math-
ematically setting λ = 0.2, it uses the information inherently

(a) (b) (c) (d) (e)

Fig. 4. Illustration of 5 samples pertaining to the MNIST database that were misclassified using λ = 0 (only the traditional technique), but have been
correctly classified when using λ = 0.2, i.e., a mixture of traditional and high level classifiers. (a) A handwritten “zero” sample image that was misclassified
to a “eight” pattern when λ = 0 (test sample number 8326). (b) A handwritten “two” sample image that was misclassified to a “seven” pattern when λ = 0
(test sample number 8705). (c) A handwritten “four” sample image that was misclassified to a “nine” pattern when λ = 0 (test sample number 9793). (d) A
handwritten “five” sample image that was misclassified to a “six” pattern when λ = 0 (test sample number 3322). (e) A handwritten “nine” sample image
that was misclassified to a “four” pattern when λ = 0 (test sample number 4301).

embedded within the representative component of each class to
derive high level decisions, which, jointly with the low level
classifier predictions, enabled the contextual classifier M to
correctly classify the samples.

V. CONCLUSIONS

In this work, we have proposed a novel combination of a
low and a high level classifiers, which can be considered as a
general framework, to perform supervised data classification.
Thus, the whole classification technique consists of two terms,
where the first term classifies data instances by their physical
features and the second term measures the compliance to the
pattern formation from the input data. Additionally, this paper
also provides a novel network-based high level classifier that
bases its prediction on the organizational changes that the
new item to be classified produces in the data. The high
level classifier is customizable and can be easily extended or
modified by the addition of new network measures, such as
degree entropy, component spectrum, average edge reciprocity,
matching indices, among many others (see [18] for details
about these measures).

We have provided a simple synthetic example in order to
demonstrate how the network measures work before and after
the insertion of the data item, giving a clear view of the
variation of the data organization. A quite interesting feature
of the proposed technique is that the high level term influence
had to be increased in order to get correct classification
as the complexity of the class configuration increased. This
means that the high level term is specially useful in complex
situations of classification. Additionally, an application on
handwritten digits recognition has been presented and higher
accuracy rates have been obtained using the combination of
the two terms in relation to classifiers solely based on physical
distances. More importantly, our study shows that the proposed
technique not only presents innovation for machine learning
theory, but also can achieve good classification results in real
applications.

ACKNOWLEDGMENT

This work was supported by the So Paulo State Research
Foundation (FAPESP) and by the Brazilian National Research
Council (CNPq).

REFERENCES

[1] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[2] V. N. Vapnik, Statistical Learning Theory. New York: Wiley-

Interscience, 2008.
[3] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with

co-training,” in COLT: Proceedings of the Workshop on Computational
Learning Theory, 1998, pp. 92–100.

[4] T. M. Mitchell, “The role of unlabeled data in supervised learning,” in
Proceedings of the Sixth International Colloquium on Cognitive Science,
1999.

[5] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning,
ser. Adaptive Computation and Machine Learning. Cambridge, MA:
The MIT Press, 2006.

[6] S. Haykin, Neural Networks, a comprehensive foundation. Prentice
Hall, 1999.

[7] N. Shadbolt, W. Hall, and T. Berners-Lee, “The semantic web revisited,”
IEEE Intelligent Systems, vol. 6, pp. 96–101, 2006.

[8] L. Feigenbaum, I. Herman, T. Hongsermeier, E. Neumann, and
S. Stephens, “The semantic web in action,” Scientific American, vol.
297, no. 6, pp. 90–97, 2007.

[9] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-
tific American, vol. 284, no. 5, pp. 34–43, 2001.

[10] R. W. Donaldson and G. T. Toussaint, “Use of contextual constraints
in recognition of contour-traced handprinted characters,” IEEE Trans.
Computers, pp. 1096–1099, 1970.

[11] A. Micheli, “Neural network for graphs: A contextual constructive
approach,” IEEE Trans. Neural Networks, vol. 20, no. 3, pp. 498–511,
2009.

[12] J. Wood, “Invariant pattern recognition: A review,” Pattern Recognition,
vol. 29, pp. 1–17, 1996.

[13] G. Chen, T. Bui, and A. Krzyzak, “Invariant pattern recognition using
radom, dual-tree complex wavelet and fourier transforms,” Pattern
Recognition, vol. 42, no. 9, pp. 2013–2019, 2009.

[14] M. Newman, “The structure and function of complex networks,” SIAM
Review, vol. 45, no. 2, pp. 167–256, 2003.

[15] A. Barrat, M. Barthlemy, and A. Vespignani, Dynamical Processes on
Complex Networks. Cambridge University Press, 2008.

[16] S. Bornholdt and H. G. Schuster, Handbook of graphs and networks:
from the genome to the internet. Wiley, 2003.

[17] M. E. J. Newman, Networks: An Introduction. Oxford University Press,
2010.

[18] L. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas, “Charac-
terization of complex networks: A survey of measurements,” Advances
in Physics, vol. 56, no. 1, pp. 167–242, 2007.

[19] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, pp. 75–174, 2010.

[20] M. E. J. Newman, “Mixing patterns in networks,” Physical Review E,
vol. 67, no. 2, p. 026126, 2003.

[21] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[23] I. T. Jolliffe, Principal Component Analysis, 1st ed. Springer Series in
Statistics, 2002.

