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Abstract—Content-based image classification/retrieval based
on image descriptors has become an essential component in
most database systems. However, most existing systems do
not provide mechanisms that enable interactive multi-objective
queries, hampering the user experience. In this paper we present
a novel methodology capable of accomplishing multi-objective
searches while still being interactive. Our approach relies on
a combination of class-specific metrics and multidimensional
projection to devise an effective and interactive image retrieval
system. Besides allowing visual exploration of image data sets,
the provided results and comparisons show that the proposed
approach outperforms existing methods, turning out to be a very
attractive alternative for managing image data sets.

Keywords-Multidimensional projection, Content-Based Image
Retrieval.

I. INTRODUCTION

Content-based image retrieval (CBIR) is a basic tool in
any computational system aimed at supporting the cataloging
and querying of images from large databases such as art
collections, photograph archives, and medical diagnosis. Many
different mechanisms have been proposed to accomplish the
CBIR process, which vary as to the metric used to compare
images as well as the way the search results are presented
(see [6] for a comprehensive survey). Among the different
approaches, multidimensional projection-based CBIR [8] has
emerged as one of the most promising methodology, since
it allows for simultaneously querying multiple images while
visualizing the results in a two-dimensional manner that en-
ables user interaction.

Despite the advances and good results, existing multi-
dimensional projection (MP) methods have not yet exploited
all its potential towards incorporating well-known pattern
recognition tools into the CBIR process. For example, MP
techniques are very flexible in terms of the metric used to
measure the similarity between instances of data, thus, the
metric could be adjusted according to the class of image one is
searching for. In particular, the Least Square Projection (LSP)
method [22], which has turned out to be a quite efficient MP
method for CBIR [8], does not make use of any mechanism to
tune similarity metrics so as to improve search results while
querying multi-class image databases.

In this work we build on the flexibility provided by LSP
and propose a new MP method, called Class-Specific Multi-
dimensional Projection (CSMP), which preserves the good

properties of LSP while still being more accurate. In contrast
to other MP methods, CSMP uses a family of metrics rather
than a single one to accomplish the projection. More specific-
ally, CSMP combines pattern recognition tools such as feature
extraction and feature selection to assign a distinct metric to
each query image. Therefore, when the user performs a search
with multiple query images, a particular metric is tailored
from each query image, enabling a more accurate mechanism
to compare images according to the class the images belong
to. As we show in Section IV (results and comparison), the
proposed class-specific metric construction increases accuracy
considerably, outperforming other MP methods, including the
original LSP method.
Contributions We can summarize the main contributions
of this work as:

• The design of class-specific metrics to measure the simi-
larity between images (Section III).

• A new multidimensional projection method (CSMP) that
relies on the class-specific metrics to accomplish content-
based image queries.

• A system capable of performing multiple queries in
databases with images from many different classes.

To the best of our knowledge, this is the first time a MP
method makes use of a set of metrics rather than a single
one to accomplish the mapping to the visual space.

II. RELATED WORK

As mentioned above, the technique presented in this paper
makes use of multidimensional projection to perform content-
based image retrieval. Therefore, we provide a brief overview
of both fields in order to better contextualize our approach.

A. Content-Based Image Retrieval

Content-based Image Retrieval (CBIR) is a branch of Com-
puter Science that encloses techniques and methods aimed at
organizing large digital image repositories by means of visual
content. As such, any technique ranging from a similarity
function to a robust image annotation system are strictly
related to CBIR [6].

Started in the 90’s [27], research on CBIR has evolved to
more specific topics such as relevance feedback [34], face
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recognition [33] and medical images [20]. Another compre-
hensive review has been written by Datta et al. [6].

In general, CBIR techniques seek to tackle two intrinsic
problems: a) How can an image be mathematically described?
and b) how to best compute the similarity between two
images given their mathematical representation. The answer
to these two questions are addressed in the following CBIR-
related topics: feature extraction, feature selection, definition
of distance functions and metrics, indexing of features and
even user interfaces.

The framework presented in this paper addresses the topics
of feature selection, definition of the most appropriate metrics
and user interface issues, introducing the use of projections
and user intervention to provide accurate image retrieval.

B. Multidimensional Projection

Multidimensional projection methods map instances from
a high dimensional space into the visual space (R2 in our
context) so as to preserve distances as much as possible. MP
methods can be grouped into two main categories, namely,
global and local methods.

Global Methods map data instances into the visual space
using a single transformation. Techniques based on spectral
decomposition, also known as classical scaling, are typical
examples of global methods. Classical scaling embeds in-
stances from eigenvectors of a double-centered transformation
applied to a dissimilarity matrix (symmetric matrix containing
the dissimilarity between each pair of data instances) [31].
Although many authors have proposed alternatives towards
getting around the high computational cost and the lack of
flexibility as to user interaction [2], [3], [9], [25], [29], [12],
classical scaling is still computationally costly and cumber-
some.

The global method proposed by Kruskal [13] uses
nonlinear-optimization to map data instances to the visual
space. Since finding the minimum of the energy functional
(commonly called stress function) is costly, Pekalska et al. [24]
proposed a technique that first embeds a subset of samples
in the visual space using Kruskal optimization scheme and
then maps the remaining instances using a linear mapping.
Although Pekalska’s approach may be tuned to allow user
interaction, it requires that a minimum number of sample is
projected in the first step, which hampers the user experience.
The recent linear mapping PLMP [23] uses an approach
similar to Pekalska’s method, but PLMP makes use of faster
mechanisms in both stages of the projection so as to enable
the projection of out-of-core and streaming data.

Least Squares Projection [22] (LSP) is a two-step global
technique that uses a non-linear scheme to position a subset
of samples (control points) into the visual space. Assuming
that each instance of data can be represented as an average
of its neighbors, LSP builds Laplacian-like systems and uses
the previously projected samples to constraint the system.
Control points can be manipulated by user in order to facilitate
grouping visualization and exploration.

Fig. 1. Pipeline of our methodology.

Local Methods use, basically, two components to perform
the multidimensional projection, namely the neighborhood
information of each instance and the location of a subset
of samples in the visual space. The mapping of an instance
x is carried out by considering only the neighbors of x,
which characterizes the local nature of the process. The well-
known approach proposed by Chalmers [5] (and its hybrid
variants [11], [19]) first maps a subset of the samples using a
force-based scheme and then exploits neighborhood structure
of those samples to embed the remaining data in the visual
space.

The recent PLP method [21] uses a force-based scheme to
place a subset of samples in the visual space. The remaining
data instances are projected through a family of Laplacian-
like operators, each one built using local information. PLP
provides great flexibility to user interaction, however, the
continuous manipulation of projected data demands costly
structural updates, impacting robustness and interactivity.

The technique proposed in this work can be seen as a mid
term between global and local methods, since it uses a single
transformation to project the instances onto the visual space
while changing the metric so as to handle the data in a more
localized manner. Therefore, our approach aims at holding the
robustness of global methods while allowing for the flexible
user interaction typically found in local methods.

III. CSMP IMAGE RETRIEVAL

This section presents the technicalities underling the pro-
posed projection-based CBIR technique. Before going into the
details, though, we provide an overview of the pipeline our
method is built on.

A. Pipeline Overview

The proposed technique comprises five main steps (Fig. 1),
namely, feature extraction, selection of query images, class-
specific metrics construction, projection map assembling, and
multidimensional projection itself. Having extracted the fea-
tures, the next step, selection of query images, is carried out
by the user and consists of selecting a set of images for
which similar instances should be searched for (recall that
our methodology allows multiple searches to be performed
simultaneously). The user explicitly indicates the images be-
longing to distinct classes. From the class information the
system automatically carries out a feature selection procedure
so as to compute the subset of features that better represents



(a) (b)

Fig. 2. Multiple query images: (a) Before user manipulation; (b) After user
intervention, similar instances are grouped together.

each class. The resulting subset of features is used to define
the class-specific metrics which is used to assemble the matrix
responsible to perform the multidimensional projection in the
last step of the pipeline. Each step is fully detailed below.

B. Image Feature Extraction

Given a set of images I , the very first step of our
methodology corresponds to embed I in the feature space. In
more mathematical terms, we have to specify a transformation
Λ : I → Rk, where k is the number of features used to
represent each image.

The transformation Λ is defined from feature extraction
mechanism widely employed by the computer vision and
pattern recognition communities. More specifically, we start
by applying a sequence of feature extractors in each image
α ∈ I , concatenating the results in an array. The sequence
of extractors we employ convey mainly texture (wavelet [15],
Gabor [1], Tamura [7] and first order moment [30]) and color
information (color moments [18]).

The extractors above results in an array with 220 entries,
most of them not relevant to discriminate the images. In order
to clean up the feature array, we apply the well-known SSFS
subset evaluator [10] tool which filters out irrelevant entries,
producing a much smaller set of features, with only 15% of
the original amount of features, which defines the dimension
of the feature space.

This feature extraction step is, indeed, run in a pre-
processing step, since it has to be done only once.

C. Class-Specific Metrics

Suppose that I has already been embedded in the feature
space Rk. The CBIR process requires that a set of query
images is specified in order to drive the search process. In our
context, the set of query images, denoted by Q, are provided
by the user. The images in Q can be either picked out from
the database I or provided as a new instance. In the latter
case, the query images has to go through the feature extraction
procedure described above.

One strength of our methodology is that visual resources
are available to the user during the process. Therefore, after
selecting the query images the user can specify the class they
belong to by interactively grouping similar query images in
the visual space, as illustrated in Fig. 2. The system interprets

each group of query images as a class to be searched. In
other words, the user is implicitly labeling the query images
according to the groups formed.

Accurate methods are known to select the features that best
characterize each instance in a classified (labeled) data set.
Therefore, the labeled query images can be submitted to a
feature selection procedure in order to identify the subset of
features that best represents each group of query images. We
are using the Logistic Model Tree [17] as feature selector,
since this method produced better results in most of the tests
we carried out.

Let Qi be a subset of the query images that shares the same
label (grouped together by the user) and IQi = {i1, . . . , ir} be
the indexes of the features that best represent the images in Qi
(determined by the feature selector). Given an image α ∈I ,
β ∈ Qi, and γ ∈ Q j, i 6= j it is reasonable to expect that

dQi(α,β )≤ dQ j(α,γ)

if α belongs to the same class as β , where the class-specific
metric dQi is defined as

dQi(α,β ) = ∑
j∈IQi

(α j−β
j)2 (1)

where α j accounts for the jth coordinate (feature) of α

(resp. β ). The metric (1) is indeed a pseudo-symmetric, since
dQi(x,y) = 0 does not imply that x = y, moreover, the triangle
inequality may not be satisfied as well.

The rationale behind the class-specific distances defined in
(1) is that if α is an image similar to β ∈ Qi then IQi should
be the best features to represent α , thus dQi(α,β ) should
be small. However, one should expect a larger dissimilarity
if a class-specific metric is used to measure the distance
between α and a non-similar query image γ . Therefore, using
class-specific metrics one avoids to compare features that do
not represent the images properly, improving accuracy while
increasing confidence in the value of the measured distance.

The bar graphs in Fig. 3 support our claim. Fig. 3(a)
shows the average Euclidean distances from instances labeled
as “Helicopter”, “Revolver”, and “Sunflower”. Notice that,
on average, the distance between similar instances such as
helicopter to helicopter (left most blue bar, H-H) and revolver
to revolver (middle green bar, R-R) are not much smaller than
the distance between helicopter and revolver (left most green
bar, H-R), for instance. Therefore, it would be difficult to
distinguish elements from these classes. In contrast, the class-
specific distance measure makes helicopters closer to their
counterpart, the same for revolvers and sunflowers, as depicted
in Fig. 3(b). It can be seen that the average distance computed
from elements belonging to the same class is normally smaller,
i.e. for one helicopter and other helicopters (left most blue
bar, H-H), one revolver and other revolvers (middle green bar,
R-R), one sunflower and other sunflowers (right most red bar,
S-S).

D. The Class-Specific Multidimensional Projection
The proposed Class-Specific Multidimensional Projection

method builds on the LSP technique [22] to perform visual



(a) Average Euclidean distance

(b) Average class-specific distance

Fig. 3. Dataset containing 3 distinct classes of images. (a) Distances between
classes measured using Euclidean metric. (b) Distances measured using class-
specific metric. Notice that average distance between elements belonging
to the same class (H-H, R-R, S-S) are smaller for class-specific distance
(indicated by arrows).

CBIR. However, in contrast to LSP, our approach makes
use of the class-specific metrics defined in (1) so as to
increase accuracy. Moreover, we constraint the linear system
responsible for mapping instances to the visual space using a
penalty method rather than the least square approach used by
LSP. The penalty method has several advantages if compared
to the least square method, as detailed below.

The CSMP relies on the assumption that each instance α

of a data set I can be written as a linear combination of its
nearest neighbors in the visual space. In more mathematical
terms, let Nα = {α1, . . . ,αs} be the set of s nearest neighbors
of α , and denote by (αx

i ,α
y
i ) the coordinates of each element

αi ∈ Nα when mapped to the visual spaceR2. From the linear
combination hypothesis, one can compute the two-dimensional
coordinates of α as:

(αx,αy) = ∑
αi∈Nα

ciα(α
x
i ,α

y
i ) (2)

where ciα > 0.
Each image in I gives rise to a vectorial equation as the one

given in (2), which can be assembled into two homogeneous
linear systems:

Lx = 0; Ly = 0 (3)

where x and y account for the coordinates of the mapped
elements and L is the matrix derived from equation (2).

The sets Nα define a Nearest Neighbors Graph (NNG) of
I , that is, a graph connecting each element in I to its
nearest neighbors. It can be shown that the rank of L is
n− q, where n is the number of elements in I and q is the
number of connected components making up the NNG [28].
Thereby, in order to ensure a single non-trivial solution for the
linear systems (3), the NNG should have only one connected
component, which can be ensured by adding new edges linking
disconnected components of the NNG.

The coefficients ciα are defined as follows:

ciα =

 dQi(α,αi) if either α or αi is a query image
d(α,αi) if α and αi are not query images
0 otherwise

(4)
where d is the Euclidean distance and dQi is the class-specific
metric defined in (1). In order to ensure symmetry for L, we
are assuming the convention dQi(α,αi) = 0, if α and αi are
query images from different classes.

The lack of geometric information in (3) may lead to
solutions that are difficult to interpret and analyze. Geometrical
information can be incorporated by using the coordinates of
the user selected query images as constraints for (3).

We are using the penalty method [32] to constraint (3),
which can be stated as follows: let Q be the query images
and bx (resp. by) be the vector with zero in all entries except
in the entries bi corresponding to a query image αi, where the
value bi = αx

i is settled. The penalty method transforms the
problem Lx = 0 into

(L+P) f = Pb (5)

where P is the diagonal penalty matrix with non-zero diagonal
elements pii = p only in the positions corresponding to the
query images and p a large value (108 in our implementation).

The penalty method holds several good properties. For
instance, it preserves the symmetry and positive semi-
definiteness of the system, thus allowing for Cholesky fac-
torization. Moreover, adding a large positive value in some
diagonal entries improves the conditioning number of the
matrix, thus lessen numerical instabilities.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

To evaluate the proposed approach, two experiments are
provided. The first one aims to show how the projections
produced by the CSMP compare with those computed by
PLMP and LSP counterparts. Both qualitative and quantitative
results are given. The second experiment describes the CSMP
in a CBIR context.

Two data sets, herein named dataset1 and dataset2, both
created with 256x256 images from the Caltech 101 [16]
image database, were used in the experiments. Dataset1 in-
cludes 255 samples from three distinct classes: Helicopter(88),



(a) 3-Class dataset: distinct color frames depict distinct classes. (b) 4-Class dataset: distinct color frames depict distinct classes.

Fig. 4. Projection of the thumbnails obtained by the CSMP projections for the 3-class and 4-class data sets shown in Figs. 5(a) and 5(d), respectively.

(a) CSMP - Error 15.90% (b) LSP - Error 23.32% (c) PLMP - Error 17.16%

(d) CSMP - Error 12.63% (e) LSP - Error 14.57% (f) PLMP - Error 25.17%

Fig. 5. Comparing quality of projection. Top row (3-class dataset): (a) CSMP (proposed method); (b) LSP and (c) PLMP. Bottom row (4-class dataset):
(d) CSMP (proposed method); (e) LSP and (f) PLMP.

Revolver(82) and Sunflower(85). Dataset2 is larger and in-
cludes 690 samples from four different classes: Bonsai(128),
Car(123), Leopards(200) and Wrist Watches (239). Fig. 4
shows a projection of both data sets using the proposed CSMP.

We recall that to build the projection matrix, CSMP seeks
for features that best represents each class in the dataset. These

attributes change the metrics used for computing the dissimi-
larity among instances in the dataset. In general, traditional
feature selection techniques rely on global information of all
classes of the dataset to compute the most relevant features.
Therefore, only one set of features is made available for each
dataset. However we use a feature selection technique capable



of performing this task in class-specific mode, the Logistic
Model Tree [17]. This technique produces the best features for
each class, which is an essential characteristic for the success
of our technique.

A. Experiment 1 - Assessing the Quality of CSMP Projections

In this experiment we compare the CSMP projections with
LSP and PLMP. The top and bottom rows of Fig. 5 illustrate,
respectively, the projections for dataset1 and dataset2. Projec-
tion on the left, center and right columns shows the projections
computed with CSMP, SLP and PLMP, respectively.

To estimate the separability among classes, the visual space
is divided into regions, according to a discriminant function
(Discriminant Function Analysis). In this experiment we opted
for a quadratic function so as to capture the largest possible
number of elements of a given class within a region. This
function determines which elements of a dataset may be
considered as belonging to the same class by means of some
statistical computation [14], [26]. Regions and projections
can then be visualized as shown in Fig. 5. It can be seen
that the CSMP produced the lowest rates for both dataset in
comparison with LSP and PLMP projections. Moreover, the
data becomes much better grouped when CSMP is used, an
important aspect if data is not labeled, since cluster have to
be identified visually.

The error rates are best described in Figs. 6(a) and 6(b),
respectively, where the confusion matrices for the CSMP ap-
plied to the 3-Class and 4-Class data sets are depicted. Notice
that CSMP is quite accurate for both data sets, producing an
error smaller than the state-of-art methods.

Projections such as those of Fig. 5 can also be quanti-
tatively evaluated by silhouette coefficient [4]. This coeffi-
cient measures both the cohesion and the separation between
grouped instances. The cohesion ax of x is calculated as the
average of the distances between x and all other instances
belonging to the same group as x. The separation bx is the

(a) CSMP Confusion Matrix 3-Class dataset

(b) CSMP Confusion Matrix 4-Class dataset

Fig. 6. Classification by CSMP for 3-Class and 4-Class data sets.

(a) Silhouette for the 3-class dataset

(b) Silhouette for the 4-class dataset

Fig. 7. Silhouette of the projections shown in Fig. 5 for CSMP (red bar),
LSP (green) and PLMP (blue). CSMP projection (proposed method) is better
than the other two projections, for both data sets.

Fig. 8. CSMP in CBIR context for the 3-Class dataset.

minimum distance between x and all other instances belonging
to other groups. The silhouette of a projection is given by
Silh = 1

n ∑x∈X
(bx−ax)

max(ax,bx)
where n is the number of instances.

It is a sensitive coefficient in the interval [−1,1]. The higher
the values of silhouette for a given projection, the better the
cohesion and the separation, that is, instances belonging to the
same class are closer to each other, and yet, distinct classes
are farther apart. Hence, higher values of silhouette indicate
better projections. The bar graphs in Figs. 7(a) and 7(b) show
the silhouette values computed from projections in Figs. 5(a)
and 5(d), respectively. The CSMP silhouettes are higher than
those for LSP and PLMP, in both data sets.



(a) CSMP - all images are relevant for the 3-class dataset (b) FIRE - 3 non-relevant images for the 3-class dataset

(c) CSMP - 1 non-relevant image for the 4-class dataset (d) FIRE - 6 non-relevant images for the 4-class dataset

Fig. 9. Image retrieval for CSMP and FIRE with top 15 images. In red frame, the image used as query. Top row (3-class dataset): all images in CSMP are
relevant, whereas FIRE retrieved three non-relevant images. Bottom row (4-class dataset): one image in CSMP is non-relevant, whereas in FIRE six images
are non-relevant.

B. Experiment 2 - CSMP in a CBIR Context

In order to further attest the effectiveness of our meth-
odology we compare CSMP against the public FIRE CBIR
system [7] for dataset1. Fig. 8 shows the resulting error of
the CBIR queries for both methods. The errors rates in the
y-axis were computed as follows: for each set of retrieved
images (5,10, · · · ,30), we performed three queries, for three
distinct images picked out randomly. We then computed the
mean value for the three queries based on the relevant and
non-relevant images retrieved. It can be seen that our method
produces lower error rates up to 20 retrieved images. After
that, both systems exhibit similar high error rates, which is
expected due to a higher number of retrieved images from the
database.

A visual comparison between CSMP and FIRE CBIR
methods is presented in Figs. 9(a) to 9(d). The first thumbnail,
in a red frame, is the query image used for both methods.
The rank list of images is displayed in descending order by
similarity. Notice that the CSMP outperforms the FIRE CBIR
considerably for dataset1 and dataset2. For the 3-class dataset
shown in Fig. 9(a) all images displayed are relevant and belong
to the class Sunflower, whereas three non-relevant images were

retrieved by FIRE CBIR (Fig. 9(b)). For the 4-class dataset,
CSMP retrieved one non-relevant image (Fig. 9(c)), whereas
FIRE CBIR failed in six ocasions (Fig. 9(d)).

V. DISCUSSION AND LIMITATION

The comparisons presented in Section IV clearly show the
effectiveness of the CSMP technique, surpassing, in requisites
such as accuracy and flexibility, state-of-art methods. The
superior performance of CSMP is a consequence of new class-
specific distance measure it relies on, which ensures a more
reliable distance definition among similar instances. Simplicity
is another strength of CSMP, which essentially requires a
linear solver library to be implemented.

The capability of performing multiple queries is another im-
portant property of CSMP that many applications can benefit
from. This property allied to the possibility of interactively
changing the position of control points in the visual space
render CSMP a very attractive CBIR method.

In our experiments we notice that more “spread” layouts
are produced when penalty factor p (set equal to 108 in all
results presented in this paper) is decreased. The optimal value
of p that produces the best trade-off between accuracy and
pleasant layouts is an issue that deserves further investigation.



Choosing the ideal number of neighbors of each instance
is another aspect we have to investigate more deeply. An
alternative to the k-nearest neighbors scheme employed in our
implementation would be to define a radius of influence to
each point. However, finding the appropriate radius is not an
easy task either.

VI. CONCLUSION AND FUTURE WORK

In this work we proposed a new methodology for visual
content-based image retrieval that relies on a class-specific
distance measure to perform the search. The new metric we
proposed turns out to be quite efficient in discriminating
images that belong to the same class, rendering the pro-
posed projection method superior to existing techniques. In
fact, the evaluation we provided shows that our approach
outperforms existing techniques in terms of accuracy and
robustness while still being able to accomplishing multiple
queries simultaneously. We are currently investigating how to
adapt the proposed methodology to scenarios other than image
retrieval, for instance music and video dataset.
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