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Abstract—Many image segmentation algorithms have been associated with these methods is that when the returnell resu

proposed, specially for the case of binary segmentation (eb is not satisfactory, the user options are parameter ad@rssm

ject/background) in which hard constraints (seeds) are proided o e initialization (with a new input curve), which may be
interactively. Recently, several theoretical efforts wee made in difficult for a non-expert user ’

an attempt to unify their presentation and clarify their rel ations. . ) . ) .
These relations are usually pointed out textually or depiatd in The second class, includes mainliye wire (intelligent
the form of a table of parameters of a general energy formulabn.  scissor} [4], [B] and its extensions [6],L[7],L18], and some
In this work we introduce a more general diagram representalon  snakes variants, which detect the global minimum of an activ
which captures the connections among the methods, by means o contour model's energy between two end poifits [9]. In refati

conventional relations from set theory. We formally instartiate . . ; .
several methods under this diagram, including graph cuts, pwer to other methods from the first class, likeaked], live wire

watersheds, fuzzy connectedness, grow cut, distance cumnpd Provides much tighter control to users since the desired pat
others, which are usually presented as unrelated methods.HE can be interactively selected from multiple candidate path
proposed diagram representation leads to a more elucidated More recently, theaiverbed [L0] approach was also proposed
view of the methods, being less restiictive than the tabular i, orger to handle complex shapes without shortcutting the
representation. Itincludes new relations among mgthods,ebsldes b d H disadvant fth thod d
bringing together the connections gathered from differentworks. oundary. However, one disadvantage of (ne methods under
It also points out some promising unexplored intermediate this class is that they are usually hard to be extended to
regions, which can lead to possible extensions of the exisi multidimensional images [11].
methods. We also demonstrate one of such possible extension  The third class comprises seed-based image segmentation
which is used to effectively combine the strengths of regioand methods which adopt basically the following steps: The user
local contrast features. . . . . .
provides a partial labelling of the image by placing hard

Keywords-graph search algorithms; image foresting transform;  constraints (known as seeds). After that, the seed’s labels
graph-cut segmentation; watersheds; fuzzy connectedness are propagated to all unlabeled regions by following some
optimum criterion, such that a complete labeled image is
constructed. Correction of wrongly segmented parts ismeco

Image segmentation involving the extraction of an objeg@lished by the addition and/or removal of seeds followed by
from a background is a well pursued topic in image processitige recomputation of the segmentation. This class encloses
and computer vision. However, in order to guarantee redialthany of the most prominent methods for general purpose
and accurate results, user supervision is still requiregyeral segmentation. In this work, we focus on this seed-based
segmentation tasks, such as the extraction of poorly defingddss, although some ideas presented here (e.g., the miiagra
structures in medical imaging and arbitrary objects in radtu representation) can be easily adapted to the other classes.
images. These problems motivated the development of devereSeveral seed-based image segmentation methods have been
different methods for semi-automatic segmentation, ajmimleveloped based on different theories, supposedly ndetkla
to minimize the user involvement and time required withou¢ading to different frameworks, such as watershed [14],[1
compromising accuracy and precision. random walks [[14], fuzzy connectedne$s][1%].1[16], graph

These methods are usually divided in three classes, depetuts [17], [18], distance cul[19], and grow clit[20]. Howeve
ing on the type of user input: 1) Initial contour/surface, 2fhey usually make direct/indirect use of some image-graph
boundary-based constraints (anchor points), 3) regieedbaconcept, such as arc weight between pixels, which may be
constraints (seeds). interpreted as similarity, speed function, affinity, calstance;

On the first type, the user specifies an initial curve, closkepending on different frameworks used.In view of thiserdgc
to the target boundary, which deforms automatically ugualworks have started to seek for theoretical relations among
evolving into a local minimum that is returned as the finalifferent frameworks as an important topic of reseaicH ,[21]
segmentation. This class includes the familyaofive contour [22], [23], [24], [25], [26], [Z{]. In these works, the relahs
(snake} [ andlevel setmethodsl[2],[[B].However, a problemare usually textually presenteld [22], [23], [24], or theye s
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tabular representation, where each cell content reflecis-a @ll relations depicted for quick reference. Possible esitars
tinct method resulting from different parameter configioraé are discussed in Secti@d V, including the demonstratiohef t
of a generic energy formulation_[25]._[26]. 127]. Howevercombination of two methods yielding to new solutions over an
the tabular representation based on an unigue generalyenengexplored region. Our conclusions are stated in Sefibn VI
formulation has some drawbacks:

« The extension to include new algorithms usually involves
the addition of more parameters in the general energy for-We are restricting our analysis to the case of binary
mulation (e.g., a second parameter[inl [27] was necessg@gmentation for sake of simplicity, and also because some
in order to extend the previous work_]25]). This limitsnvolved methods are hard to be extended to multiple objects
the inclusion of more methods, given that, the additiot®-9-, graph cut). But it is important to note that the diagra
of a third parameter would lead to a three-dimensionBfre presented can be trivially extended to the analysis of
table which is hard to visualize. segmentation involving multiple objects.

. On|y a few Specia| cases of some methods can beSince all methods to be included in the diagram can be
represented in this table. For example,[inl [26] what thégformulated based on image graphs (although the original
call a watershed is, in fact, only a specific solution withif@pers sometimes ommit this), we decided to explain thesidea
a wider universe of existing definitions of watershed [28pIready focusing on image graphs, as exposed next.
that can not be represented on that tabldlcéliso many A multi-dimensional and multi-spectral imageis a pair
methods closely related to watershed are not included, I) whereZ C Z" is the image domain anf(p) assigns a
such as the fuzzy connectedness faniilyl [29]. set ofm scalars/;(p), i = 1,2,...,m, to each pixep € Z.

« In order to fit in a particular table cell, some method§he subindex is removed whenn = 1. An imagel can be
are presented without considering explicitly importarifiterpreted as a grapd = (N, .A) whose nodes in\ are
regularization parameters, that could be used to establigrge pixels irZ, and arc(p, ¢) are defined by aadjacency
new connections with other methods (e.g., shortest pathigfation A C N x N. We useq € A(p) and (p,q) € A

« Lastly, the general energy formulation used is very con0 indicate thatg is adjacent top. For each ardp,q) we
plex (e.g., it involves a continuous solution that is latdf@ve an associated arc weightp, ¢). Although some methods
discretized on a second step), while some methods & be directly executed over directed graphs, we will assum
be more naturally described using a more intuitive ari¢ndirected graphs in order to standardize the discuss@nAi
simpler energy formulation already designed for harig taken as an irreflexive and symmetric relation, artg, ¢) =
segmentations, as presented[inl [2B]] [24]. w(q,p). For exa}mple, one can také to consist of all pairs

In view of these problems, in this work we introducé®’ N0des(p,q) in the Cartesian produch/ x A such that

a more general representation in the form of a diagraffl>4) < p andp # g, whered(p, ) denotes the Euclidean

which captures the connections among methods by meandgfance andg is a specified constant (e.g., 4-neighborhood,

conventional relations of set theory. We formally instatei Whens = 1). _ , ,
several methods under this diagram, including graph cuts,S°me methods may require an extended graph with addi-

power watersheds, fuzzy connectedness, grow cut, distaf{@g2l nodes and arcs (e.g., graph cut) but since for mosteof t
cuts, and others. New relations among methods are depict@§thods these additions are usually completely disredarde
as well others gathered from different works, which are af® Will postpone their explanation to a more specific section
brought together in a common representation. The proposed* Pinary seed-based segmentation can be defined by a

diagram representation presents the following advantages '2beled image. = (Z, L), which must satisfy two sets of hard

« It allows to properly represent the full universe of solu-C(.)nStramtSSO C.I f"‘”dSb cz (‘.900817 - 0.)’ containing ;eed
tions of each method pixels selected inside and outside the object, respegtiel,

. It leads to a more elucidated view of the methodd(?) =1 if p € So, L(p) = 01if p € &, andL(p) € {0, 1}

explicitly treating all parameters of each method. dtherwise).

« It is less restrictive than the tabular representation, agdzog artlz Input |_rl;1|age grﬁ\p@f: (thr“fgﬂand ;‘e]?d Zeg :'t
can be arbitrarily extended. o Uop, e POSSIDIE results of a me are defined Dy 1tS

« It also points out some promising unexplored intermedtﬂit of parameters? = {Py, B, ..., Py} and by its internal

ate regions, which can lead to possible extensions of t Sees(:l'gggj ma?g?ng:etrh\?aﬁ?esse of multiple valid solutions for
existing methods. P '

. L . To depict the relations among the methods, we introduce a
The diagram representation is introduced in Sedibn 1. mgagram representation where each mettibds represented

Section[Ill, we give a short overview of several seed—bas% a setX (P) of its possible parameters values and internal

methods, already pointing out existing and new connectngvn_s variability depicted as a simple closed curve. Whépresents

tSakln_g r%dx\r/gntage_of a mhorg_ uniform a(;wd formal presenr':hat|0£|unique solution for any image graph and seed set, its closed
ectio Instantiates the diagram and presents a summary.g., collapses to a single dot in our representation. The

10n the later papel127], the authors changed the name of dfisrom relations among the methods are Captured by the foIIowmg
“watershed” to the more specific “power watershed q=1". rules:

Il. DIAGRAM REPRESENTATION



« Two methods are considered to overlap when for ang a non-canonical weight, we will adopt a different symbol,
image graphG = (Z, .A) and seeds they can produce thsuch asi(p, q).

same result for some proper selection of their parametersa|though several of the described approaches allow zero
and internal choices. In this case their diagrams pres&féighted arcs, we are avoiding such values in our discussion
an intersection. for the following reasons: In some frameworks, the connec-
« Two methods are disjoint if there exists an image grapfyity through these weights is not allowed (i.e., zerowea
and seed set for which they cannot guarantee the saights are interpreted as non-existing arcs). Moreowsn-z
solution for any selection of their parameters (althougfhjued weights can also lead to additional differences betw
they may eventually produce the same result for sora@me approaches such as the creation of holes inside the
simple images). objects. However, these differences are not that subataatid
« A methodX is a subset of another methddif for any they are usually implementation details that could be gasil
image graph and seed set, all of its predicted solutioBRanged, so we decided to skip them in order to simplify
are also valid solutions df for some suitable parametergyr analysis. Also, zero-valued weights make impractioais
selection on that graph. transformations between dual representations of someaugth
due to division by zero.

KCC
. A. Image Foresting Transform

IFT frmin The image foresting transforndlFT) [21] is a tool for the
design of image processing operators basedamectivity
functions (path-value functions) in graphs derived from the
image. It has been used as an unifying framework for several
image processing operators (not restricted to segmenjatio

In the physical universe the IFT can be explained as a theory
of the ordered formation of communities, in the mathemética
universe as an image transformation into an optimum-path
forest, and in the computational universe as an extension of
Dijkstra’s algorithm to more general connectivity functso
and multiple sources [21].

Ordered formation of communitie€onsider a population
in which each individual has an intrinsic desire to lead gou
Individuals, with greater desire to become a leader, offer
rewards to their acquaintances, inviting them to become par
_ . of their communities. If the offered reward is greater than
Figure[ shows the_ proposed _dlagram for th_e See‘?I'baﬁﬁgir current desire, they consent to the proposgl. A member
mthods, ;howr_l later n next sect.|on, as well their relatian of one of these communities, who was more rewarded, also
be instantiated in details on Sectidnd I V. invites his/her own friends, offering to them a reward tora@
to his/her community, and the process continues. However, a
member never offers a reward higher than his/her own reward,
In order to instantiate the diagram, we give in this sectiofhq an individual only changes community when the new
a short description of several methods, including thetrdis offered reward is greater than his/her current reward. The
considered parameters. But first, in SecfionT)I-A, we dibgcr process follows the order of individuals with higher reward
theimage foresting transforniFT) [21], which will be used {5 the ones with lower reward through their acquaintances,
as an underpinning in establishing the relations amongakvenj| the population is divided into communities, such that
segmentation methods. In view to standardize the presemtateach individual will belong to the group that offered the toes
we adopted a canonical formulation of the arc weights, q)  (maximum) reward to him/her. At the end, a leader is an
of the graph, so that: individual whose intrinsic desire is greater than any relvar
1) For all(p,q) € A, we have thad.0 < w(p,q) < 1.0. that was offered to him/her. A leader can also be a lonely
2) Low values are assigned to the arcs that cross tmelividual who could not conquer anyone else.
object’s boundary, and high values to the remaining arcsFrom the mathematical point of view, each individual of the
(ideally ~ 0.0 and1.0 respectively, although in practicepgpulation corresponds to a node (pixel), his/her acqanires
this is usually not possible). are defined by the adjacency relatigh and each community
For example, we could use the complement of some normas-given by an optimum-path tree. In the case of seed-based
ized gradient magnitude on an arc@a&, ¢). When we refer segmentation methods the leaders are always the seefis in
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Fig. 1. Schematic representation of the relations betweethads.
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(roots by impositionﬂ. The seed set§, and S, give us a  Therefore, in order to standardize the presentation, we
partial labelling of the image, and this labelling is proptegl consider only the functions that are indeed distinct, and we
to all pixels inZ\S, such that each community receives thestantiate them in relation to the canonical weightg, ¢), so
same label of its leader. that the optimum solution is obtained through a maximizgtio
The propagation of invitations from a leader to an indibeing consistent with the description given for the formati
vidual ¢, follows a chain of friend pairs, forming @ath of communities:
T = (p1,P2,- - Pn)s (Pispit1) € A i = 1,2,...,n — 1, .
with origin at the leadep, € S, and terminus ag = p,, ¢ S. fmin(m) = i w(pi, Pit1) (6)
The reward offered ta; through this path is defined by a _ n
connectivity functionf (). Let w, denote such a path with fs(m) = , >, —o—wpips) O
terminus at a node. A path, is optimumif f(r,) > f(7,) Eh2enl
for any other pathr, in (\,.A), with terminus atq. The Wherer is aregularization parameter that will be important for
optimum-path valud/(q) is uniquely defined for all € A/ theoretical connections, arfgh uses a sum of negative terms in
by V(q) = maxyy, in (v,.4)1f (7q) }- Eq.O, because of the maximization problem, as explained ear
By assuming that the leaders are the seeds,imwe can lier. Note that a division by any positive constant, to nolinea
restrict the search for optimum paths only to paths startitige weightsi, andds, does not affect the segmentation results
in S. So to simplify the discussion we will only define theof functions f,,;,(7) and fs(r), therefore, we can always
connectivity functions for such paths (i.e;, € S andp; ¢ S instantiate them based on the canonical weights without los

for i > 1). Some commonly used functions are given belowof generality.
From our discussion we have already two segmentation

Fmaz(m) = max  01(pi,pit1) @) aigorithms: IFTy, . (P = () with no parameters and
fmin(®) = min  da(p;s, pit1) (2) IFTy (P = {n}) with one parameter. Both of these meth-
=12,...,n=1 ods can present multiple valid solutions. The §etof all
fo(n) = Z 03 (pis Dit1) (3) pixels with ambiguos labelling constitutes the tie-zone re
i=1,2,..,n—1 gions. These ambiguos pixels can be partitioned in several
fu(r) = H 54(pi, pis1) () possible ways, and this is a free choice of these algorithms,

being all connected solutions equally valid. We also inelud
xplicitly two commonly used subcases bf7%, .., denoted
y IFTfIFO(P = ) and IFTFFO(P = (), which are
obtained by using the specific tie-breaking policddEO and
LIFO [21], respectively.

i=1,2,...n—1
The maximization of the reward offered by the connectivit
functions always has a dual equivalent definition involviang
minimization problem (i.e.V (¢) = miny, in (w,.4){.f(74)})-
For example,V(¢) must be maximized forf,,,(7), and
fmaz () is used to solve the dual problem wheréq) must B. Fuzzy connectedness: AFC, RFC, IRFC

be minimized while searching for optimum paths. .
: — In absolute-fuzzy connectedndsd$-C) [30], the optimum-
Inthe case of functiongs(r) and/u(r), the dual definition path values to all pixels if\S, are computed using only the

is obtained by applying a transformation to the arc weights: ) . ) i .
. Function fs(r): V(q) must be minimized wher; > Seeds inS,, with function f,,;.(7), such that the labelling

0.0, and maximized fovs < 0.0. (i.e., the dual form is SL::gz\rlli(tedmp;X(‘%/lS( ';’_ obtained by thresholding the resgitin
obtained by changing the sign of weights). y mapvolq):

« Function fr;(7): V(g) must be maximized whef.0 < V,(q) = ~ max { frmin(mg) 1}, (8)
84 < 1.0, and minimized fod, > 1.0 (i.e., the dual form Vg in (N, A)|org(mq) €S0
is obtained by the inversion of weighds '). whereorg(m,) denotes the origin of the path,.

Moreover, functiongs:(7) and fir(7) are in fact equivalent  The resulting segmentation is defined as the maximal subset
for image segmentation, in the sense that they can be cedvedf 7, wherein all pixels; are reached by optimum paths whose
into each other by using a logarithmic transformation (ongluesV,(q) are greater than or equal to a given threshald
to one correspondence). Since the logarithm conserves gte; ¢ S, (i.e., we are assuming marker imposition).
order of the connectivity values, it won't affect the final In relative-fuzzy connectedneg@®FC) [31], [15], a separate

segmentation (Eql5). connectivity mapV;(q) taking into account only the back-
ground seeds is also computed:
log (fu(m)) = log II  duipin) Vi(q) = { frmin(mg) }- ©)

= max
i=1,2,...,n—1 Vg in (N, A)|org(mq) €Sy

= Z log(d4(pi, pi+1)) (5) The final segmentation is obtained by comparing the two
i=1,2,...,n—1 connectivity maps/,(¢) andV;(q), such that each pixel €
- _ _ Z\S is given to the label with higher connectivity values. The
It is also possible to implement the IFT such that a seed mapewome

a leader, but since the seeds are selected by the user, italiyupreferable tie regions of the RFC approach (i-QTRFC = {q € I\S |
to assume them as hard constraints by using root imposition. Vo(q) = Vu(q)}), are larger than the tie zones produced by



the IFTy,,., (ie., Tirr, — C Trrc) [23]. In RFC, the tie- propagation until convergence [31]._[15], while the ordkre

breaking policy is fixed such thdi(q) = 1 only if V,(¢) > propagation of IFT leads to linear time implementations,

Vi(g), and L(g) = 0 otherwise. Since the tie regions are notlepending on the priority queue usédl[2L], [6].

assigned to the object in RFC, the resulting object is always

smaller or equal to théFT,, .. result, usually causing holesD: Distance cut

within the object. In distance cut(DC) [1€], an algorithm based on additive
Later, the iterative relative-fuzzy connectednessethod connectivity functionsfs(w) is presented. In fact this work

(IRFC) [1€] was proposed to improve RFC, aiming at thaelso proposes solutions to the alpha matting problem, but

reduction of the tie regionzrc. It is basically an iterative we will focus only on the main core parts used for hard

refinement strategy that imposes additional constrainseda segmentation. Basically, it starts computing two connéyti

on results from the previous RFC iterations. In fadETy,,., mapsV,*(q) andV;*(q) separatelly for object and background,

already solves this problem due to the simultaneous lals#hilar to what was done for RFC, but this time using the

propagation from all seeds with online competition (i.efunction fx(m).

TirFc = Q}FTfmm). Indeed, IRFC was later reformulated -

based ol F'T},,.. [24], the only remaining difference is that Vo) = Vo in (N_Iﬁ%rg(ﬂq)eso{fx(ﬁq)}v (10)

the ties are left unassigned to the object on the IRFC approac >

while TFTy, . also allows other tie-breaking policies. Vo'(a) = vy in (Nﬂi)(frg(ﬂq)esb{fz(ﬂ—q)}7 (11)
From the above discussion, we have now other three al

rithms: REC(P = 0) and IRFC(P = @) with no param-

eters, andAFC(P = {x}) with one threshold paramefer

Both RFC and IRFC produce unique segmentation result

for any image graph, due to their conservative tie-breaking (VE(q))~?

policy. Also, there is amAF'C extension called:-connected Povi(q) = VE@) L+ Vi) L (12)

componentgKCC) [32], which considers the resulting object ¢ b

as the union of allAFC results computed separately, withA hard segmentation may be obtained by thresholding(q)

a different thresholds; for each seed irS,. The algorithm at 0.5. However, from our previous discussion relatigC

%)ﬁereorg(wq) denotes the origin of the path,.
After computingV,*(¢q) and V;*(q), the probability of a
gixel g € T\S to be assigned to the object is taken as:

KCC(P = {k1,k2,...,Ks,}) has|S,| parameters. andIF'Ty,, .., we know that the tie regions may increase when
we compute the connectivity maps separately for object and
C. GrowCut background. To understand this, lets consider the follgwin

In GrowCut (GROW) [20], a new iterative algorithm for €¥@MPle:

image segmentation is proposed based on Cellular Automat€t T4 D€ the best path fronf, to a p'X_qu’ and letr,
for solving pixel labelling. The segmentation is refined twit e best !oath frong;, 1o g. When there is s_qnultaneous label
each iteration according to an automata evolution rule. T éopggat!on from all seeds with cpmpetmomq bIoc_ks Tq
calculation continues until the automaton converges tallet making impractical the path, .an.d Its futurg extensions) if
configuration. f(mg) > f(1,), and the opposite is also valid whefitr,) >

Accoring to the code i [20], during the local evolution r,ulef(ﬂq)' But if there is no competition (i:e., the connectivity
a pixel is attacked by all its neighbors, and it is conquerdf2PsS &€ computed separately for object and background),

by a neighbor if the attack force is greater than its streng eg.Tq n:ay be EXteP%Ed e;/hen ;/;]/htg“qu) > f(7q), dp055|tbhly best
This is closely related to the theory of ordered formation gading to augmented paths thal are as good as the bes
communities presented earlier (see Secimll-A), wheee textensions fromm, to the same nodes, thus increasing the

attack force corresponds to the reward offered, the defandd'® ZOnes.

strength corresponds to the best reward he/she received S%u_télfo(;tunatelri/, metI_h_e case OfEf trr:'sf prol_)IemTLsai:!ot
far (which is set initially as his/her intrinsic desire toate possible due to the additive nature of the function. S,

groups), and “conquering” translates into “becoming pdrt geficiencies of a bad path are inherited by all of its extersio

a community”. The only difference is that it is an unorderefind this extra cost can not be eIiminated..Therefore, in the
formation theory, leading to parallel implementations loé t example given, the _extenS|ons of the pajfwill never be as
IFT [33]. Therefore, the results of the proposed Growc@00d as the gxtensmns from Whenfz_(ﬁq) =~ Jo(7g). _
algorithm are in fact equivalent to the results obtainedfy | _AS conclusion, we have that the tie regions ot (i.e.,
with connectivity functionfr(7) (the attack force is defined Tpc = {q € I1\S | PObj(‘].) = 0.5}) and the tie regions
by a product), which are in turn equivalent to IFT with(r) of ”.sz are the same ("?'TDC ~ .TIFT@)' The only

as pointed earlier. But the implementation presented_nj [263"]‘5“”,”1g d|ffere_nce 1S that IDC the tie regions may only

is slower for sequential processing, with resemblances 98 assigned to either object or background, due to the thresh

old fuzzy connectedness implementations based on unarde?&ing solution (i.e., the object may be takenag; (q) > 0.5
or asPy;(g) > 0.5), while in IFTy, other partitions may be

SWe assume thak is selected such that the resulting object region doe%al!d depeqd|ng on the order of propagation of the elements
not invade the external seeds inside the tie zones.



E. Maximum Spanning Forest & Power watershed will be denoted here as algorith®l, (P = () which has no
The IFTy,, algorithm [34], [35] captures the essentiaparame?ers. This method produces unique segmentatidtsresu

features of thavatershed transform from marke¢®vT) [36], for any image graph.

although there is no unique and precise definition for @ Graph cut: min-cut/max-flow

watershed transform in the literature_[37]. Indeed, it was ] ) ) i
proven that the tie zones of tH&"T}, . include all solutions _INteractive segmentation using tinein-cut/max-flowalgo-
predicted by many discrete definitions of WT[28]. rithm [L4] uses extended image graphs, where wo termi-
Recent works consider the watershed solution WT as a pgd#! nodess and ¢ (source and sink) represent object and
tition resulting from amaximum spanning fore¢MSF) [13], background, respe_ctlvely. The terminal nodes are directly
[38]. The segmentation results BY'T;, .. include all possible connected o all pixelp € I by arcs(s,p) and (p.?). A
MSF-WT solutions among many others not predicted by tﬁgstgr version of the min-cut/max-flow al_gc_>r|thm from saairc
MSF-WT [Z8]. In particular, the segmentations obtained by SINK [41] s then used to compute a minimum-cut boundary

[FT;,. usingLIFO tie-breaking policy [[2], or with fixed among all Iabgleq imaged = (Z, L), according to the
label (I or 0) to all tie zones, always correspond to a valid®!lowing equation:

MSF-WT segmentation_[23]. More generally, we may also E(L) = Z [w(p,q)]"
consider the IFT with the following connectivity functioorf V(p,q)€A| L(p)=1,L(q)=0 ’
a pathm = (p1,p2,...,pn)- | 7
pathm = (p1,pa2,...,pn) i Yoo sty + > ds,p)14)

fulm) = w(pn-1,pn) (13) vpez| L(p)=1 peT| L(p)=0

As discussed in !_21], this ConneCtiVity fUnCtiCﬁ;},(ﬂ') is not The We|ghts§(p’t) and 6(8,]?) assigned to a_|b c 7T are
smootH21]], and therefore, it may not lead to an optimum-patfefined as follows:

forest. However, the IFT will still return a spanning forest If p € S,, then we seb(s,p) = oo andd(p, t) = 0

and in this case using, (), it will also be a maximum if _ _
. , . € Sy, then we seb(s,p) =0 andd(p,t) = co.
spanning forest[132]. To understand this, please note that P b (s.p) (p, ) =0

the IFT usingf, (7) with a single seed becomes essentially * goﬁsé:f;f&];n these weights are defined by Equa
the Prim’s algorithm[[39]. By construction, the extensian t
multiple seeds naturally results in a maximum spanningstore 5(s,p) = X-M,(p) (15)
};;refore,jrom the above discussion we ha\_/e othe_r algorith S(pt) = A-Mpy(p). (16)
t. (P = 0) with no parameters, which is equivalent to

MSF-WT. This algorithm may present multiple valid solutson Where M,(p) and M,(p) are membership maps for object
One example of such ties are the ambiguos plateaus on @mel background, respectively, computed for mlle Z by
frontiefl supervised learning from user selected scribbles; & 0

In order to solve ambiguous plateaus, a family of methodgpecifies the relative importance of the arcs with the virtua
called power watershed¢PW) [26], [27] was later proposed.nodes versus the arcs between pixels. Whemecomes low,
In these methods g-cut optimization is performed on thewe may face ahrinking biasleading to solutions with small
plateaus (e.g., a random walk2r][14]). However, some tlieoreuts. In order to avoid this bias, we must compensate it by
ical aspects may only be ensured if the proposed algorithming higher, values|[28]. On the other hand, wh&fecomes
is executed over a reconstructed gra@fﬂ. Therefore, the too high, the method degenerates into a trivial threshgldin
authors apply first a geodesic reconstruction on the weiglft®., L(p) = 1 if §(s,p) > d(p,t) andL(p) = 0 otherwise, for
before employing the proposed power watershed algorithmall p € 7). If we assumeV/,(p) + M,(p) = 1.0 for all p € Z,

This reconstruction essentially increases the number of aas desired for a surrogate of the probability, then thistamiu
biguous plateaus, since it converts all unmarked maxima afod high A assumes the fornk(p) = 1 if M,(p) > 0.5, and
their domes into plateaus. Moreover, since 1l , per- L(p) = 0 otherwise, for allp € Z\S (the pixels inS have
forms simultaneously reconstruction and segmentafioij, [4€ixed labels).
its tie-zone regionglprmm correspond exactly to all am- Therefore, we have the min-cut/max-flow approach
biguous plateaus of the reconstructed gr&gh Hence, the M F(P = {n, A}) with two parameters. Note that, the usage
power watershed PW corresponds basically to a particutsfrcanonical weights in the first sum of Equatlad 14, does not
Tirry, . SOlUtion, where the tie zones are treated by applyifgad to a loss of generality, since the division/normaicrat
other segmentation methods over it (e.g., random walks whigyn any positive constant (applied to all arcs) does not #hier
q = 2 [28§]). order of the cut values. Hence, a representation with caabni

This combination of a geodesic reconstruction, followed byalues is always possible.

the power watershed algorithm with= 2 as presented in[27],
IV. DIAGRAM INSTANTIATION

4A plateau is a subgraph of consisting of a maximal set of nodes FigureEl shows the proposed diagram for the seed-based

connected with edges having the same weight. . . . .
5The optimality of the power watershed according to a genermrgy M€thods. Several depicted connections were extensively di

formulation is achieved if seeds are the only maxima in thegengraph[[26]. cussed along this paper. We also included some other simple



methods on the diagram, as for exampl&i R stands for
thresholding the membership mag,(p), followed by manual
seed painting, which is related to graph cut as pointed o
in Section[I=F. We also show that theF Ty, (P = {n})
includes theVoronoi 11 normas a special case when= 0
(assuming 4-neighborhood). Next we show a quick reference (@) (b)
index, pointing to the related papers or sections that mnt?—‘ 3. Results of FT¢  for different o values (0, 0.1, 0.3) and fixesl.
the proper remark concerning each relation between method¥ Fmin

The connections betweef¥'Ty, . and MF(P = {n, \})
are given inl[2B], the relations between MSF-WT (il 1y, )
and MF(P = {n,A}) are given in [[ZR], and the relations
between/ F'Ty, andIFTy, . are given in[[28]. Furthermore
the proof that/ FTy, . has no intersection with FC(P =
{k}) and RFC is given in [23]. GrowCut is equivalent to
IFTy, (P = {n}) as discussed on Sectipn1l-C. The relation
between/ RFC andIFTy,,,,, was given inl[24],[[2B]. Inl42],
[43], it was shown that thé& F'C' segmentation can be viewed
to some extent as aAF’'C' segmentation wherein the require
threshold is determined automatically. However, in gelhéra
is not possible to deriv& F'C' objects viaAF'C' segmentation
(e.g., when there are more than two objects involve® inC,
or S contains three or more singletons, the thresholds for eaﬁ;
seed need not be equal) [42], [43]. Nevertheldss;C [32]
can provide these different thresholds, includiRg'C as
particular case. In[[42][143], it was also proven tHzRFO
cannot be represented VIAFC(P = {k}). The relation
betweenI FT;, (P = {n}) and DC(P = {n}) was shown

solutions between methods, such d$'C and IFTy, ., .
Motivated by this observation, in this section we present an
'IFTy,,, extension, denoted asFTf ., which combines
AFC and the regulaf F'T, ., . This extension provides more
smooth and controllable transitions between the methaats th
fh [32]. We will instantiate this combination, already faiug
on a special case of practical interest.
If we executeAFC with é(p,q) = min(M,(p), M,(q)),
qhe method becomes a thresholdlng on the membership map
M, at level k, followed by connectivity constraints. In other
words it returns all marked connected components of the
resholded image. Thid F'C solution subsumesiagic wand
m photoshop, being: inversely related to the tolerance
value. This AFC solution also does not suffer from the
disconnection problem that affects théF" for high A values.
Let's consider the following level based weigh{p, q),
which captures alk threshold transitions over the may,.

on Section[dIED. The relation betweehF T}, (P = {n}) 0 if (Mg"**(p,q) = x and

and [FTy, . was empirically suggested ifi_[44]. The proof wp,q) = M (p,q) < K)

that IFTy, (P = {n}) has no intersection with MSF-WT 1 otherwise

(i.e., IFTy,) is given by the counterexample of Figute 2y nare M™as(p, q) _ max(M,(p), M,(g)), and

The relation betweed FTy, . and PW, was discussed on M™n(p.q) = min(M,(p), Mo(q)). Now consider a
SectiordI=E. The relations betweeandom walk{RW (P = oy gre;th’ — (T, A), with modified weightsw' (p, q),

{n})) [14] and PW>, are assuming that the necessary optimal;,ch that(p, ¢) € A’, only if w'(p,q) > 0 and (p, q) € A.
ity conditions for PW, were satisfied (i.e., seeds are the only

maxima), as proved i 27], in order to simplify the analysis w'(pg) = a-pp.g)+(1-a) wpq (17)
IFT fu IFTfz IFTfw The IFT§ (P = {k,a}) corresponds to F'Ty,,,, execu-
tion over the modified grapt’ = (Z, A"). Its result becomes
® O__O ® the same astFC(P = {r}) whena = 1.08, and it becomes
; ; ; a regular/FTy, . for = 0.0. For intermediater values, it
O 2 9 2 gives a mean unexplored behavior of the methods (Figure 3).

From another point of view, we also have that thé, q)
component brings regional properties from the membership
M, into the method, helping the segmentation of thin parts,

Fig. 2. A single 1D counterexample is sufficient to show thatTy, (P =  where the gradient (local contrast) does not solve well.
{n}) has no intersection withF'T;, . We use the weights, anddz |n Eqsﬂ

and[3, as defined in EqEl 6 ald 7, but multiplied by a constattdbes not VI. CONCLUSION

affect the results1Q for 62, and 107 for 63). The weights are indicated for . . . . .
all arcs, and the striped nodes are the seeds. Accordingf@;, . —any The proposed diagram representation was instantiated with
cut in this case is a valid solution, and all unmarked nodes: fa tie zone. geyeral state-of-the-art methods giving a more elucithai@v
However, a valid MSF-WS solution must cut a weakest linkrcganecting f thei lati s fth ' lati ' h
the seeds, so we have only the two possible solutions ireida# 7'y, using ortherr re a _lons'. Om(:j' orthese rela |(_)ns were prese

82). While, only the central cut attendsF"T 'y, for any# value. for the first time, including the connections between GrotyCu
IFTy,, and Distance Cutf F'Ty, and [FTy, . ; RFC and
KCC; PWy andI FT; among others. We also demonstrated

V. POSSIBLE EXTENSIONS an extended method/F'T¢ = (P = {x,a}), which was
From the diagram (Figuild 1), it comes to our attention that

there are some unexplored regions composed by intermediaf&ach seeg € S, must be selected inside regions such tha(p) > «

5 -(8)' (1) ~(8)



motivated by the unexplored regions of the diagram. As &itup2]

work, we intend to extend these analyses to other classes of

segmentation methods.
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