
Geodesic conic subdivision curves on surfaces
J. Estrada Sarlabous

V. Hernández Mederos
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ICIMAF

Havana, Cuba
Email: [jestrada,vicky,nayla]@icmf.inf.cu

L. Velho
Visgraf Laboratory

IMPA
Rio de Janeiro, Brazil
Email: lvelho@impa.br

D. Martı́nez Morera
Instituto de Matemática
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Fig. 1. Geodesic conic subdivision curves on a triangulated surface. The initial control polygon (in red) and the curve (in blue).

Abstract—In this paper we present a nonlinear curve subdi-
vision scheme, suitable for designing curves on surfaces. The
scheme is inspired in the concept of geodesic Bézier curves.
Starting with a geodesic control polygon with vertices on a
surface S, the scheme generates a sequence of geodesic polygons
that converges to a continuous curve on S. If the surface is
C2 continuous, then the subdivision curve is C1 continuous. In
the planar case, the limit curve is a conic Bézier spline curve.
Each section of the subdivision curve, corresponding to three
consecutive points of the control polygon, depends on a free
parameter which can be used to obtain a local control of the
shape of the curve. Results are extended to triangulated surfaces
showing that the scheme is suitable for designing curves on these
surfaces and has the convex hull property.
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I. INTRODUCTION

A. Motivation

Designing free-form curves is a basic operation in Geomet-
ric Modeling. In the Euclidean space it is a widely studied
problem, nevertheless it becomes much harder if we wish to
design on a curved geometry, such as a triangulated surface.
The problem has been addressed on smooth manifolds as well
as on triangulations, see for instance [1], [2], [8].

Subdivision methods are currently very popular as a design
tool, since subdivision curves can be easily computed in the
Euclidean space. Nevertheless, their counterpart on curved
surfaces are more involved and expensive. A first step on
this sense are linear subdivision schemes on smooth and
discrete manifolds [9], [10], [12], [15]. Nonlinear schemes,
which arise as perturbations of linear schemes on smooth

manifolds, are the next step. They have been described by
Wallner and Pottmann in [20]. Several examples where non-
linear subdivision schemes are useful in Computer Graphics
are also presented in [20]. The convergence and smoothness
analysis of these subdivision schemes can be found in the
work of Wallner and Dyn [19]. They generalize the linear
schemes to manifolds in two different ways. The first approach
substitutes linear average by geodesic average. This method is
very good because it is completely intrinsic, although for some
schemes it requires to compute many geodesics. The second
method performs each subdivision step in the ambient space,
projecting the new points into the manifold. This approach
is more efficient, but depending on the complexity of the
geometry it could conduce to wrong or unexpected results.
Some variants of de Casteljau’s Algorithm have been also
used to define curves on Riemannian manifolds [17] and Lie
groups [2].

In [13] an algorithm to compute a geodesic path over
a triangulated surface is presented. This algorithm is used
to define geodesic Bézier curves [14]. They are a natural
extension of Bézier curves in the sense that linear interpolation
is substituted by geodesic interpolation. In [15] a simple
method to define subdivision schemes on triangulations is
proposed. Using both, shortest and straightest geodesics, a
perturbation of a planar binary subdivision is translated on the
triangulation. This method allows to extend to a triangulated
surface any binary subdivision scheme, regardless whether it
is linear or not.

Inspired in these ideas we introduce in the present paper
a natural extension of geodesic Bézier curves [14] for the
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rational quadratic case: geodesic conic Bézier curves. They
are defined as subdivision curves on a surface. More precisely,
starting with a set of points on a surface S, a control polygon
composed by geodesic arcs joining two consecutive points is
defined. In each step a new geodesic polygon is computed
defining a subdivision scheme that converges to a continuous
curve living on S.

In the planar case the subdivision curve is a conic Bézier
spline curve. Results are extended to triangulated surfaces
showing that the scheme is suitable for designing curves on
these surfaces and may be useful for trimming and segmenta-
tion, see Figure 1.

B. Our contribution

The main contribution of this paper is the definition of
geodesic conic curves as the limit of a carefully designed
subdivision scheme. This scheme is obtained from a natural
generalization of de Casteljau rational algorithm, where linear
interpolation is substituted by geodesic interpolation and the
subdivision parameter is chosen in such away that the left
and right segments have the same weighs in the standard
representation. The resulting scheme is based in the shoulder
point and it is very simple. Its implementation is straight-
forward if an efficient procedure for computing geodesic
curves is available.We also provide a rigorous analysis of
the convergence and smoothness of the scheme, showing that
under mild conditions the geodesic conic subdivision curve is
C1 continuous if the surface is C2.

In comparison with other subdivision schemes for gener-
ating curves on surfaces, the proposed scheme has very nice
properties. It can be used to design curves on surfaces with rel-
ative complex topology, having eventually very close branches
(without self-intersections) and with a finite number of holes.
Moreover, the scheme has free parameters that are very useful
to control the shape of the subdivision curve. Finally, it enjoys
the convex hull property and in consequence the subdivision
curve has not undesirable oscillations or inflection points.

The rest of the paper is organized as follows. In section 2
we introduce the notation and the classical planar subdivision
scheme for conics. In section 3 we define the geodesic conic
subdivision scheme on surfaces and analyze its convergence
and smoothness. Section 4 is devoted to geodesic conic curves
on triangulated surfaces. We include in this section details of
the user interface and several examples. Finally, in section 5
we give concluding remarks.

II. BASIC THEORY: THE SUBDIVISION SCHEME FOR
CONICS

A rational Bézier curve of degree n is a parametric curve
which is described by n+1 control points, bi ∈ Rm, m = 2, 3
and n+ 1 weights ωi. For t ∈ [0, 1] the curve has the form

c(t) =

∑n
i=0 ωibiB

n
i (t)∑n

i=0 ωiBn
i (t)

where Bn
i (t), i = 0, 1, ..., n are the Bernstein Bézier basis

functions of degree n, [7]. Conics are rational Bézier curves

of degree n = 2. It has been shown [16] that without
loss of generality we may assume that any nondegenerate
conic may be written in standard representation, where ω0 =
ω2 = 1. Since in what follows all Bézier conics are in
standard representation, for the sake of simplicity we will
not mention explicitly the whole set of homogeneous weights
ωi, i = 0, 1, 2 and we will denote the weight ω1 > 0 by
ω > 0. The intersection point between the segment of c(t)
inside the triangle with vertices b0, b1, b2 and the line passing
through b1 and b0+b2

2 is called shoulder point [7]. If c(t) is in
the standard representation then the shoulder point s is c( 1

2 ).
Rational Bézier curves may be evaluated by de Casteljau

algorithm [5]. In the case of conics this algorithm is described
as follows.

procedure DECASTELJAU(b0, b1, b2,ω0, ω1, ω2,t)
for i = 0, 1, 2 do

b0i (t) = bi, ω0
i (t) = ωi

end for
for j = 1, 2 do

for i = 0, ..., 2− j do
ωj
i (t) = (1− t)ωj−1

i (t) + tωj−1
i+1 (t)

bji (t) = (1−t)ωj−1
i

(t)

ωj
i
(t)

bj−1i (t)+t
ωj−1

i+1
(t)

ωj
i
(t)

bj−1i+1 (t)

end for
end for
return c(t) = b20(t) . Point for the parameter value t

end procedure

The intermediate Bézier points bji (t) of the above algorithm
may be used to subdivide the curve c at parameter value
t ∈ (0, 1). More precisely, the left segment of c corresponding
to the parameter values in the interval [0, t] is a quadratic
rational Bézier curve c10(u), u ∈ [0, 1] with control polygon
b0, b

1
0(t), b20(t) and weights 1, ω1

0(t), ω2
0(t). Similarly, the right

segment of c corresponding to the parameter values in (t, 1)
is a quadratic rational Bézier curve c11(u), u ∈ [0, 1] with
control polygon b20(t), b11(t), b2, and weights ω2

0(t), ω1
1(t), 1.

Algorithm BASICCLASSICSUBD describes the basic subdivi-
sion.

procedure BASICCLASSICSUBD(b0, b1, b2, ω0, ω1, ω2, t)
DECASTELJAU(b0, b1, b2, ω0, ω1, ω2, t)
P0 ← [b0, b

1
0(t), b20(t)], Ω0 ← [1, ω1

0(t), ω2
0(t)]

P1 ← [b20(t), b11(t), b2], Ω1 ← [ω2
0(t), ω1

1(t), 1]
return {P0,Ω0, P1,Ω1}

end procedure

This process may be repeated, subdividing each conic seg-
ment c10(u), c11(u) in a parameter value u ∈ (0, 1), for instance
u = 1

2 . If we use this subdivision, after j steps we obtain 2j

control polygons (and the corresponding weights) that allow to
represent a segment of the (unique) conic curve c(t), t ∈ [0, 1]
as a Bézier rational quadratic curve. When j → ∞, this
sequence of control polygons tends to the conic curve. In this
paper, we will refer to this subdivision scheme, based on the
dyadic parameters, as the classic subdivision scheme. Recall



that even if we start with the standard representation of c, if
we subdivide it in t = 1

2 using the classic scheme, then c10( 1
2 )

is not necessarily neither the shoulder point of c10(u) nor the
point c( 1

4 ) (by the same reason c11( 1
2 ) is not necessarily neither

the shoulder point of c11(u) nor the point c( 3
4 )), see [5].

A different scheme, converging to the same curve, may
be obtained if we make a standardization of the conics
in each step. In fact, since the weight ω2

0(t) in Algorithm
BASICCLASSICSUBD is not necessarily equal to 1, to write
the left and the right segment of the conic in the standard form
we have to introduce the following substitutions [6],

ω1
0(t)← ω1

0(t)√
ω2
0(t)

, ω1
1(t)← ω1

1(t)√
ω2
0(t)

, ω2
0(t)← 1 (1)

For a rational Bézier conic in standard representation the
Farin points q0, q1 are characterized by the fact that ω =
ratio(bi, qi, bi+1), i = 0, 1. In terms of the control points
bi, i = 0, 1, 2, they can be expressed as

q0 =
b0 + ωb1

1 + ω
, q1 =

b2 + ωb1
1 + ω

(2)

From Algorithm DECASTELJAU it is easy to check that q0 =
b10( 1

2 ) and q1 = b11( 1
2 ). Moreover, ω1

0 = ω1
1 = ω2

0 = 1+ω
2 and

after the standardization (1) we obtain,

ω1
0 = ω1

1 =

√
1 + ω

2
(3)

Hence, if we subdivide a rational Bézier conic curve c in
the standard representation at the shoulder point s = c( 1

2 ),
then we obtain two arcs of the same conic that can be
written in the standard Bézier representation. The left arc
c10(u), u ∈ [0, 1] corresponding to the interval t ∈ [0, 12 ]

has control points b0, q0, s and weights 1,
√

1+ω
2 , 1, while

the right arc c11(u), u ∈ [0, 1] corresponding to the interval
t ∈ [ 12 , 1] has control points s, q1, b2, and weights 1,

√
1+ω
2 , 1.

Observe that the weighs of both segments are the same.
Algorithm BASICSHOULDERPSUBD describe this subdivision
step.

procedure BASICSHOULDERPSUBD(b0, b1, b2, ω)
q0 ← b0+ωb1

1+ω , q1 ← b2+ωb1
1+ω , s← q0+q1

2 , ω1 ←
√

1+ω
2

P̃0 ← [b0, q0, s], Ω̃0 ← [1, ω1, 1]
P̃1 ← [s, q1, b2], Ω̃1 ← [1, ω1, 1]
return {P̃0, Ω̃0, P̃1, Ω̃1}

end procedure

This process may be repeated, subdividing c10(u) and c11(u)
in their shoulder points by means of the Algorithm BASIC-
SHOULDERPSUBD. We call this scheme Basic shoulder point
subdivision scheme. For j → ∞, the sequence of control
polygons obtained tends to the conic curve.

Summarizing, if we apply Algorithm BASICCLASSICSUBD
with t = 1

2 and Algorithm BASICSHOULDERPSUBD to the
standard Bézier representation of a conic, we obtain the same

control polygons but with different weights. Hence, if we
repeat the process and subdivide in u = 1

2 with Algorithm
BASICCLASSICSUBD the control polygons of the segments
c10(u) and c11(u) previously obtained, then the results are
different from those obtained subdividing at the shoulder point
with Algorithm BASICSHOULDERPSUBD the control polygon
of the curves c10(u) and c11(u). In other words, the sequence of
control polygons generated by the classic subdivision scheme
and the shoulder subdivision scheme are different, as shown
in Figure 2.

Fig. 2. Control polygon P 0 (blue) and the polygonal curves P 2 after two
subdivision steps. Left:P 0 and the polygonal curve P 2 (black) obtained with
the classic subdivision. Center:P 0 and the polygonal curve P 2 (red) obtained
with the shoulder point scheme. Right: P 0 and both polygonal curves P 2,
zoom of the central region.

Applying recursively the shoulder point subdivision, we
obtain the following subdivision scheme that generates in the
limit a piecewise conic curve.

Given a sequence of points on the plane

P 0 = {P 0
0 , P

0
1 , P

0
2 , ..., P

0
2n−1, P

0
2n}

and a local tension parameter ω0
i > 0 associated to the sub-

sequence P 0
i , P

0
i+1, P

0
i+2, i = 0, 2, ..., 2n− 2, the subdivision

rule is based on the recurrences (2) and (3). More precisely,
for the P 0

i , P
0
i+1, P

0
i+2, with i even and w0

i > 0, it is given by
( see Figure 3),

P

P

P

P

P

j

j

j

j+1

j+1

j+1

j+1

j+1

i

i+1

i+2

2i

2i+1 2i+2

2i+3

2i+4

=

=

P
P

P

Fig. 3. Control polygons of two consecutive steps

Shoulder point conic subdivision

P j+1
2i = P j

i (4)

P j+1
2i+1 = (1− γj+1

2i ) P j
i + γj+1

2i P j
i+1 (5)

P j+1
2i+3 = γj+1

2i P j
i+1 + (1− γj+1

2i ) P j
i+2 (6)

P j+1
2i+2 =

1

2
P j+1
2i+1 +

1

2
P j+1
2i+3 (7)

where the tension parameters of the step j + 1 are computed
as follows,

ωj+1
2i = ωj+1

2i+2 =

√
1 + ωj

i

2
, γj+1

2i = γj+1
2i+2 =

ωj+1
2i

1 + ωj+1
2i



From the previous relations it is straightforward to obtain
the following recursion

γj+1
2i =

1

1 +
√

2(1− γji )
(8)

starting with

γ0i =
ω0
i

1 + ω0
i

(9)

Remarks
The points P j+1

2i+1 and P j+1
2i+3 play the role of the Farin points

for the subsequence P j
i , P

j
i+1, P

j
i+2. Moreover, if the points

of the subsequences P 0
2i−1, P

0
2i, P

0
2i+1, i = 1, ..., n − 1 are

collinear, then the subdivision curve is a G1-continuous conic
Bézier spline. Observe that ω0

i > 0 implies 0 < γ0i <
1. Futhermore, from (9) and (8) it is easy to check that
limj→∞ γjm = 1

2 .

III. THE CONIC SUBDIVISION SCHEME ON SURFACES

In this section we introduce geodesic conic curves on
surfaces as the limit of a subdivision scheme, which can be
considered as a natural generalization of the shoulder point
conic subdivision scheme (4)-(7). Observe that the shoulder
point scheme is also well defined if the points of the initial
polygon P 0 are in R3. Nevertheless, if they are on a surface
S and we apply directly the shoulder point subdivision, the
new points P 1 are not necessarily on S. A way of solving
this problem is substituting straight lines in affine space by
geodesic lines on the surface.

A. Definition of the scheme

Assume that S is an smooth surface and Q0, Q1 two
points in S. We denote by cg(Q0, Q1) the shortest geodesic
curve with initial point Q0 and final point Q1 and denote by
dg(Q0, Q1) the arc-length of cg(Q0, Q1).

Definition 1. Geodesic polygon.
The geodesic polygon with vertices Q0, Q1, ..., Qn on a sur-
face S is the piecewise curve composed by the geodesic
shortest curves cg(Qi, Qi+1), i = 0, ..., n− 1.

Let
P 0 = {P 0

0 , P
0
1 , P

0
2 , ..., P

0
2n−1, P

0
2n} (10)

be a sequence of points on a surface S and denote by
ω0
i > 0 a local tension parameter associated to the sub-

sequence P 0
i , P

0
i+1, P

0
i+2, i = 0, 2, ..., 2n − 2. Moreover

for 0 ≤ t ≤ 1, the point R ∈ cg(Q0, Q1), such that
dg(Q0, R) = t dg(Q0, Q1) is denoted by

(1− t)Q0 ⊕ tQ1

Given an affinely invariant linear scheme M
expressed in terms of averages, the geodesic analogue
of M is defined in [19] as the subdivision scheme
obtained replacing the linear interpolation operator
at(Q0, Q1) := (1− t)Q0 + tQ1 by the geodesic interpolation
operator gat(Q0, Q1) := (1− t)Q0 ⊕ tQ1.

Fig. 4. Left: 3 points of on a sphere, the control polygon and the geodesic
subdivision conic curve after 10 steps using w0 = {0.75, 1, 2, 5}. Middle:
The control polygon and the conic geodesic spline composed by 3 segments
computed by 10 geodesic subdivision steps using w0

i = 1 for i = 1, 2, 3.
Right: the same conic geodesic spline on the sphere.

The geodesic conic subdivision scheme on the surface S is
defined as follows.

Geodesic conic subdivision

P j+1
2i = P j

i (11)

P j+1
2i+1 = (1− γj+1

2i )P j
i ⊕ γ

j+1
2i P j

i+1 (12)

P j+1
2i+3 = γj+1

2i P j
i+1 ⊕ (1− γj+1

2i )P j
i+2 (13)

P j+1
2i+2 =

1

2
P j+1
2i+1 ⊕

1

2
P j+1
2i+3 (14)

where the parameter γj+1
2i is computed using the recurrences

(9) and (8), see Figure 4.
It is clear from the previous definition that the geodesic

conic subdivision scheme (11)-(14) is the geodesic analogue
of the shoulder point conic subdivision scheme (4)-(7).

Remark
The geodesic analogue of the classic conic scheme depends
on the subdivision parameter t. Since geodesic curves are
strongly dependent on the geometry of the surface, the limit
curve generated by the geodesic analogue of the classic conic
scheme is different for each value of t. Defining the geodesic
conic subdivision scheme as the geodesic analogue of the
shoulder point scheme has the advantage that we remove the
dependence on the subdivision parameter t, thus for fixed
initial polygon on S, we obtain an unique subdivision curve.

B. Convergence and smoothness analysis

Without loss of generality we restrict the analysis of the con-
vergence to a subpolygon P 0

i , P
0
i+1, P

0
i+2, i = 0, 2, ..., 2n−2,

of the initial polygon (10). To prove the convergence and
the smoothness of the geodesic conic subdivision scheme we
will use the strategy introduced in [19] for linear stationary
subdivision schemes, since as remarked in [19] their sufficient
conditions remain valid for non-stationary schemes, if the
factors used in averaging rules are bounded. This holds true
for the factors 1

2 , γ
j+1
2i of our subdivision scheme (4)-(7).

According to the results in [19], if T is a geodesic scheme
analogue to an affinely invariant linear scheme M , to prove
the convergence of T and the continuity of its limit curve it
is enough to show that M is 0-admissible.



Given a vector of points P = (Pi), we denote by ∆Pi =
Pi+1−Pi the vector constructed as the difference of two points
of vector P and we denote maxi ‖∆Pi‖ by ‖∆P‖∞.

Definition 2. 0-admissible scheme [19]
A linear subdivision scheme M is 0-admissible, if it is affinely
invariant and fulfills the following convergence condition for
all j and P 0 with a factor µ0 < 1

‖∆M jP 0‖∞ ≤ (µ0)j‖∆P 0‖∞ (15)

where ‖∆M jP 0‖∞ is the maximum Euclidean distance be-
tween two consecutive points of the polygon M jP 0.

Since our geodesic conic subdivision scheme is the geodesic
analogue of the shoulder point subdivision scheme, which is
linear and invariant by affine transformations, to prove the
convergence of the scheme (11)-(14) and the continuity of its
limit curve, it is sufficient to show that condition (15) holds for
the scheme (4)-(7). In Lemma 1 we show that the Euclidean
distance between two consecutive points in the polygon of
the step j + 1 is strongly related with the Euclidean distance
between two consecutive points in the polygon of the previous
step. This relation is used in Proposition 1 to prove that the
scheme (4)-(7) satisfies a condition like (15).

Denote by P j = {P j
2ji, ..., P

j
2j(i+2)} the set of points

on the surface S obtained applying j-times the shoulder
point conic subdivision algorithm (4)-(7) to the subpolygon
P 0
i , P

0
i+1, P

0
i+2, with i even.

Lemma 1. The Euclidean distance between two consecutive
points of the polygons P j and P j+1 generated by the shoulder
point subdivision scheme (4)-(7) are related by

‖∆P j+1
2i ‖ = γj+1

2i ‖∆P
j
i ‖ (16)

‖∆P j+1
2i+1‖ ≤

(1− γj+1
2i

2

)
(‖∆P j

i ‖+ ‖∆P j
i+1‖) (17)

‖∆P j+1
2i+2‖ ≤

(1− γj+1
2i

2

)
(‖∆P j

i ‖+ ‖∆P j
i+1‖) (18)

‖∆P j+1
2i+3‖ = γj+1

2i ‖∆P
j
i+1‖ (19)

Proof, see Figure 3
The equality (16) holds immediately from the subdivision rules
(4) and (5). Analogously, we may prove the equality (19).
From (5) and (7) we obtain

∆P j+1
2i+1 =

(1− γj+1
2i

2

)
(∆P j

i + ∆P j
i+1)

Thus, applying the triangle inequality we get (17). Using
a similar argument we obtain the inequality (18) from (6)
and (7). �

Proposition 1. Applying j-times the subdivision rules (4)-(7)
of the shoulder point conic subdivision scheme to the initial
polygon P 0

i , P
0
i+1, P

0
i+2, with local tension parameter ω0

i > 0,
it holds that there exists µ0 ∈ (0, 1) such that

‖∆P j+1‖∞ ≤ (µ0)j‖∆P 0‖∞ (20)

Proof
Let us denote max{γj+1

2i , 1− γj+1
2i } by αj+1

2i . Since ω0
i > 0,

we have 0 < γj+1
2i < 1 and this implies 0 < αj+1

2i < 1 for
j ≥ 0.

Using the recurrence (9) - (8) it is not difficult to check that,
if ω0

i ≥ 1, then 0 < γ0i ≤ 1
2 and the following inequalities

hold

0 < γji ≤ γj+1
2i <

1

2
1

2
< 1− γj+1

2i ≤ 1− γji < 1 (21)

αj+1
2i = 1− γj+1

2i < 1 (22)

and if 0 < ω0
i ≤ 1, then 1

2 < γ0i ≤ 1 and the following
inequalities hold

1

2
< γj+1

2i ≤ γji < 1 (23)

αj+1
2i = γj+1

2i < 1 (24)

Thus, for ω0
i ≥ 0, from (21)-(24), we get

0 < αj+1
2i ≤ α

j
i < 1 (25)

For any j ≥ 0, using the relations (16)–(19) and (25) with
Iji = [2ji , 2j(i+ 2)− 1] we obtain,

max
r∈Ij+1

i

‖∆P j+1
r ‖ ≤ αj+1

2j+1i max
r∈Ij

i

‖∆P j
r ‖

≤ αj+1
2j+1iα

j
2ji max

r∈Ij−1
i

‖∆P j−1
r ‖

...

≤ αj+1
2j+1i...α

1
2i max{‖∆P 0

i ‖, ‖∆P 0
i+1‖}

≤ (α1
2i)

j+1 max{‖∆P 0
i ‖, ‖∆P 0

i+1‖}
≤ (α1

2i)
j‖∆P 0‖∞ (26)

Thus condition (20) holds with µ0 = α1
2i < 1. �

Theorem 1. The geodesic conic subdivision scheme (11)-(14)
with local tension parameters ω0

i > 0 applied to the initial
polygon P 0 = {P 0

i , i = 0, ..., 2n} with vertices on a C2

continuous surface S converges to a continuous limit curve
for ‖∆P 0‖∞ sufficiently small.

Proof
The geodesic conic subdivision scheme is the geodesic ana-
logue of the shoulder point conic subdivision scheme. More-
over, the invariance by affine transformations and the inequal-
ity (26) means that shoulder point scheme is 0-admissible
(and therefore it converges to a continuous curve [3]). Hence,
the geodesic conic subdivision scheme also converges to a
continuous curve for polygons P 0 such that ‖∆P 0‖∞ is
sufficiently small, see Theorem 7 in [19]. �

In the rest of this section we focus on the proof of the C1

continuity of the subdivision curve.

Definition 3. Dilatation factor [4]
Let M be a linear subdivision scheme, affinely invariant. We
say that M has dilatation factor N > 1, if for all polygons
P = (Pi) and Q = (Qi), with Qi = Pi+r it holds

(MQ)i = (MP )i+Nr (27)



The shoulder point subdivision scheme is linear and affine
invariant. Moreover, it is easy to check that it satisfies the
condition (27) with r = 2 and N = 2. Thus, its dilation factor
is N = 2.

Definition 4. 1-admissible scheme [19]
A linear subdivision scheme M is 1-admissible, if it is 0-
admissible with µ0 < 1/

√
N , where N is the dilatation factor

of the scheme, and for all j and P 0, M satisfies additionally
the following smoothness condition with µ1 < 1

N j‖∆2M jP 0‖∞ ≤ (µ1)j‖∆2P 0‖∞ (28)

where ∆2Pk := ∆Pk+1 −∆Pk = Pk+1 − 2Pk + Pk−1 for a
vector of points P = (Pk).

Theorem 7 in [19] states that the geodesic analogue of
a linear 1-admissible subdivision scheme converges to a C1

curve for all polygons P 0 with ‖∆P 0‖∞ small enough. Since
the dilatation factor of the scheme (11)-(14) is N = 2, to use
the previously mentioned sufficient condition we have to prove
that the inequality (15) holds for µ0 <

1√
2

and that there is
µ1 < 1 such that (28) also holds.

Lemma 2. Denote by P j+1 = MP j the polygon generated
by applying the shoulder point subdivision scheme (4)-(7) to a
polygon P j . For any ε > 0, exists j0 such that for all j > j0
it holds

‖∆P j+1‖∞ ≤ (
1

2
+ ε)‖∆P j‖∞ (29)

Proof
After a straightforward computation using the subdivision
rules (4)-(7), we get a set of relations for the first differences
∆P j+1

m and ∆P j
m. From these relations, the following inequal-

ities hold,

‖∆P j+1
2i ‖ = γj+1

2i ‖∆P j
i ‖

‖∆P j+1
2i+1‖ ≤ (

1− γj+1
2i

2
)(‖∆P j

i ‖+ ‖∆P j
i+1‖)

‖∆P j+1
2i+2‖ = ‖∆P j+1

2i+1‖
‖∆P j+1

2i+3‖ ≤ γj+1
2i ‖∆P j

i+1‖

Since limj→∞ γjm = 1
2 , we get that for any ε > 0, exists j0,

such that for j > j0 inequality (29) holds. �

Lemma 3. For any ε > 0, exists j0, such that for all j >
j0, the following inequality holds for the second difference
operator ∆2 applied to the polygons P j+1 = MP j and P j

‖∆2P j+1‖∞ ≤ (
1

4
+ ε)‖∆2P j‖∞ (30)

Proof
From the recursion for the first differences obtained in the
previous Lemma we get,

∆2P j+1
2i = a0∆2P j

i − b0∆P j
i ,

∆2P j+2
2i+1 = 0

∆2P j+2
2i+2 = a2∆2P j

i − b2∆P j
i

where

a0 =
1− γj+1

2i

2
, b0 = 1− 2γj+1

2i

a2 =
1− γj+1

2i

2
, b2 = 1− 2γj+1

2i

Observe that limj→∞ b0 = limj→∞ b2 = 0 and furthermore
limj→∞ a0 = limj→∞ a2 = 1

4 . Consequently for any ε > 0,
exists j0 such that for j > j0 (30) holds. �

Proposition 2. For any initial polygon P 0, there exists an
integer number j0 > 0, such that the subdivision scheme M
satisfies the following convergence condition for all j > 0,
with factor µ0 <

1√
2

‖∆(M)jP j0‖∞ ≤ (µ0)
j‖∆P j0‖∞ (31)

where P j0 = M j0P 0.

Proof
After Lemma 2, for any given ε > 0, exists and integer number
j0 > 0, such that for all j > 0,

‖∆(M)jP j0‖∞ ≤ (
1

2
+ ε)‖∆P j−1+j0‖∞.

Since we may assume that ε has been selected, such that µ0 =
1
2 + ε ≤ 2

3 <
1√
2

, then for all j > 0 holds

‖∆(M)
j
P j0‖∞ = ‖∆P j+j0‖∞ ≤ µ0‖∆P j−1+j0‖∞

≤ (µ0)
2‖∆P j−2+j0‖∞

≤ ... ≤ (µ0)
j‖∆P j0‖∞

�

Proposition 3. For any initial polygon P 0, there exists an
integer number j0 > 0, such that the subdivision scheme M
satisfies the following smoothness condition for all j > 0 with
factor µ1 < 1:

‖2j∆2(M)
j
P j0‖∞ ≤ (µ1)

j‖∆2P j0‖∞ (32)

Proof
After Lemma 3, for any given ε > 0, exists and integer number
j0 > 0, such that

‖2 ∆2(M)jP j0‖∞ = ‖2∆2P j+j0‖

≤ (
1

2
+ 2ε)‖∆2P j−1+j0‖∞

We may further assume that ε has been selected, such that
µ1 = 1

2 + 2ε < 1. Hence, for all j > 0 it holds

‖2j∆2(M)jP j0‖∞ = ‖2j∆2P j+j0‖
≤ µ1‖2j−1∆2P j−1+j0‖∞
≤ (µ1)

2‖2j−2∆2P j−2+j0‖∞
≤ ... ≤ (µ1)

j‖∆2P j0‖∞

�
Remark

The smallest value of j0 such that the inequality (29) holds
in the proof of Lemma 2 depends on γjm and it is small, due



to the fast convergence of γjm to 1
2 for j →∞. For instance,

if ω0
0 = 20, then after 3 iterations we already get γ30 = 0.52.

The inequalities (31) and (32) do not necessarily hold for the
initial polygon P 0. Nevertheless, since the subdivision curve
is the same starting from P j0 or from P 0, we conclude from
Propositions 2 and 3 that the scheme M obtained applying the
subdivision rules (4)-(7) is 1−admissible.

Theorem 2. The geodesic conic subdivision scheme (11)-(14)
with local tension parameters ω0

i > 0 applied to the initial
polygon P 0 = {P 0

i , i = 0, ..., 2n} with vertices on a C2

continuous surface S converges to a C1 continuous limit curve
for ‖∆P 0‖∞ sufficiently small.

Proof
From Propositions 2 and 3 the scheme M is 1−admissible.
Hence, from Theorem 7 in [19] we conclude that the limit
curve of the geodesic analogue of subdivision scheme M is
C1 continuous, for all polygons P 0 such that ‖∆P 0‖∞ is
sufficiently small. �

IV. THE SUBDIVISION SCHEME ON TRIANGULATED
SURFACES

Geodesic Bézier polynomial curves on triangulated surfaces
were introduced in [14] by means of a subdivision algorithm
which is the geodesic analogue of the classical de Casteljau
algorithm. More precisely, for a value of t ∈ [0, 1] previously
selected and a control polygon P 0 = {P 0

0 , P
0
1 , ..., P

0
n} with

vertices in a triangulated surface S, the geodesic Bézier curve
of degree n is defined in [14] as the limit curve of the classic
Bézier subdivision applied to P 0, substituting linear interpola-
tion by geodesic interpolation. Since geodesic curves depend
on the geometry of the surface, changing the subdivision
parameter t may lead to a different curve. In [14] authors select
a midpoint subdivision scheme, i.e. in the step j the Bézier
control polygons for the intervals [ i

2j ,
i+1
2j ], i = 0, ..., 2j − 1

are computed.
In this section we use a similar approach to compute

geodesic conic curves on triangulated surfaces, extending the
method proposed in the previous section for a smooth surface
to a triangulated surface. As we previously saw, unlike the
geodesic Bézier curves, the geodesic conic curves don’t de-
pend on the parameter t, since the subdivision algorithm (11)-
(14) is the geodesic analogue of the shoulder point subdivision
scheme (4)-(7).

A. Discrete geodesic curves

The key for the implementation of the geodesic conic
subdivision algorithm when S in a triangulated surface is
to compute geodesic curves on S. Due to the increasing
development of discrete surface models different definitions of
geodesic curves on polyhedral surfaces have been introduced.
Such curves are called discrete geodesics and we are partic-
ulary interested in shortest geodesic curves passing through
two prescribed points.

The problem of computing shortest geodesic curves on
meshes have been extensively treated, see for instance [11]

and references therein. We implemented the geodesic conic
subdivision scheme (11)-(14) using the method proposed in
[13] to compute shortest geodesic curves passing through
two prescribed points. This method is an iterative algorithm
that performs the geodesic computation in two steps. The
first step uses the Fast Marching Method [11] to compute
an initial approximation to the shortest geodesic. The initial
approximation is a polygonal curve with nodes on the edges
or vertices of the triangulation. In the second step, the position
of the node with the largest error is corrected and the error
at neighboring nodes is updated. The process is repeated until
a small error is obtained. The error at a node is computed
taking into account the discrete geodesic curvature, see [14].
The position of a node on the initial approximation is corrected
by unfolding a subset of faces adjacent to it.

B. Convex hull property

It is not trivial to give a proper definition of convex set in a
curved geometry. However, we can find in [14] definitions of
convex set and convex hull that are appropriated for the study
of geodesic conic curves.

The Convex Hull property of geodesic conic curves is
obtained in the same way as done in [14]. Particularly, the
adaptive version of de Casteljau’s algorithm relies on this
property.

C. User interface and results

The geodesic conic subdivision scheme is very useful to
design curves on a surface. In this section we describe how
to perform the interaction with the user in an intuitive and
friendly way. To obtain a smooth conic spline curve the points
P 0
2i−1, P

0
2i, P

0
2i+1, i = 0, 1, ..., n − 1 of the initial control

polygon have to lie on the same geodesic curve. Since this
kind of “collinearity” is not natural for the user, we introduce
a simple preprocessing step. Denote by Q0, Q1, ..., Qn the
points selected by the user on the surface S. Then, we
construct the geodesic control polygon P 0 as follows,

P 0
0 = Q0

P 0
2i−1 = Qi, i = 1, ...n− 1

P 0
2i = (1− βi)Qi ⊕ βiQi+1, i = 1, ...n− 2

P 0
2n−2 = Qn

where 0 < βi < 1. In other words, the vertices P 0
2i are on

the geodesic curve passing through P 0
2i−1 and P 0

2i+1 for i =
1, ..., n − 1. In our experiments we set βi = 0.5 for i =
1, ..., n − 2 and also w0

2i = 1 for each segment with control
polygon P 0

2i, P
0
2i+1, P

0
2i+2, i = 0, 1, ..., n − 2. We apply the

geodesic conic subdivision rules (11)-(14) and stop at some
prescribed level of subdivision or when control polygons can
be considered as geodesic segments. In terms of the algorithm
proposed in [14] the last condition means that each control
vertex has an error smaller than a prescribed tolerance.

Figure 5, 6 and 7 show the performance of the geodesic
conic subdivision scheme on a triangulated surface and the
advantages of using this kind of curves:



• local control: changing the position of any vertex of the
control polygon only affects at most two segments of the
geodesic conic spline.

• geometric handles: the weight w0
i > 0 is a geometric

handle that allows to control the geometry of the section
of the spline with control polygon P 0

i , P
0
i+1, P

0
i+2. A

value of w0
i close to 0 generates a conic subdivision

segment close to the curve cg(P 0
i , P

0
i+2). On the other

hand, a large value of w0
i > 0 produces a subdivision

segment close to the geodesic polygon with vertices
P 0
i , P

0
i+1, P

0
i+2.

Fig. 5. The initial geodesic control polygon (red) on a triangulated surface
and the vertices (green) of the geodesic conic subdivision curve with all
weights equal to 0.5. Left: after 3 steps , Right: after 6 steps

Fig. 6. Left: Initial control polygon on a triangulated surface (in red the points
Q0, ..., Q5, in blue the points P2, P4, P6) middle and right: the geodesic
subdivision curve of first and second steps with all weights equal to 1.

Fig. 7. Initial polygon on a triangulated surface and the geodesic conic
subdivision curves obtained with three values of the weight, w0

0 = 0.5, 1, 4.

V. CONCLUSIONS

A new subdivision scheme for designing curves on surfaces

has been proposed. It can be considered as a natural general-
ization of conic Bézier curves. The limit curve of this scheme
is a C1 continuous curve if the surface is C2 continuous. The
scheme depends on free parameters that are very useful to
control the shape of the subdivision curve, which also enjoys
the convex hull property. These geometric handles make the
curves generated for the proposed scheme a suitable tool for
designing, editing and trimming on surfaces.
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