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Abstract—The resolution enhancement of an image is always
desirable, for almost all situations, but mainly if the image
has the purpose of visual analysis. The hardware development
for increasing the image resolution at its capture still has a
higher cost than the algorithm solutions for super-resolution (SR).
Like image restoration, super-resolution is also an ill-conditioned
inverse problem. This work analyses the iterative restoration
methods (Van Cittert, Tikhonov-Miller and Conjugate Gradient)
which propose solutions for the ill-conditioning problem and
compares them with the IBP method (Iterative Back Projection)
proposed by Irani-Peleg [1] and Komatsu et al. [2]. The analysis
of the found similarities is the basis of a generalization, that other
iterative restoration methods can have their properties adapted,
such as regularization of the ill-conditioning, noise reduction and
other degradations and the increase of the convergence rate can
be incorporated to the techniques of super-resolution.

Keywords-super-resolution, image restoration; iterative
restoration, iterative back-projection.

I. INTRODUCTION

The search of higher resolution images comes from two
major purposes: to improve pictorial information for human
interpretation and preprocessing information for automatic
procedures, such as segmentation, classification or recognition.
The super-resolution (SR) objective is to obtain a higher
resolution image from low resolution ones. The application
of SR techniques cover a wide range of purposes, from
surveillance and radar to telescope and microscope images.
Nowadays, with the popularization of high resolution TV, the
SR techniques are used as a part of decoded images. In general
terms, the strategy that characterizes SR comprises three major
steps:

1) Low Resolution Image acquirement: A sequence of Low
Resolution (LR) images is obtained from one scene with
geometric non-integer displacements between images,
two by two (considering a pixel as unit distance).

2) Registration or Motion Compensation: The geometric
transformations are estimated to fit the LR acquired
images to the High Resolution (HR) spatial grid of the
desired result.

3) HR Image Reconstruction: The reconstruction problem
solution is found from images obtained by previous step.
The research of this paper is concentrated in this step.

Fig. 1. Block diagram of SR image degradation process.

The SR formation model can be represented by the block
diagram of Fig. 1.

The degradation process responsible for the kth LR image
can be described as:

g(k) = AHR(k)f + ω(k), ∀k = 1, 2, · · · ,K (1)

where A is the downsampling matrix, H the blurring matrix,
R(k) the displacement from kth LR image, g(k) the lexico-
graphic representation of kth observed LR image and f is the
lexicographic representation of the HR image.

Choosing matrices D(k) in the way to represent the blurring,
displacement and downsampling, such as D(k) = HR(k)A, (1)
can be rewritten as [3], [4]:

g(k) = D(k)f + ω(k), ∀k = 1, 2, · · · ,K (2)

The system described by (2) is an ill-conditioned inverse
problem and as such kind of problem, the iterative solution
must be regularized.

A. Related work

The SR research field started with Huang and Tsay [5]
seminal work and since then has spread considerably. Ap-
proaches using Frequency Domain [6], [7], [8], Bayesian [3],
Example-Based [9], [10], [11], [12], Set Theoretic [13], [14]
and Interpolation [15] have been applied to SR techniques.
The research arm that supports this paper starts with Keren
and Peleg [16] work exploring sub pixel displacement of LR
images to get a HR image and laid the foundation of further
work of Irani and Peleg.

The method developed by Irani and Peleg [1] obtained
HR images with a technique similar to the back-projection
reconstruction method used in computer-aided tomography.
Each HR image pixel is a sum of different projections of the



same LR image area, determined by the image blurring and
displacement. Komatsu et al [2], in a similar way, adapted this
same method on LR images obtained from different sensors
with different aperture cameras, in other words, different
lattices(either uniform or not) to create a HR image over a
uniform pixel distribution.

Bannore [15], also based on [1], used several interpolation
methods to incorporate different characteristics to the IBP
method and evaluated the results.

B. Technique overview

The central point of this work is to adapt image restoration
techniques to SR, and can be reached by analysing the
similarities between the Van Cittert with Reblurring restoration
method and the Iterative Back Projection (IBP) SR method.
The generalization of these similarities (section II-C) enables
to adapt other restoration techniques (Tikhonov-Miller and
Conjugate Gradient) for SR and create new methods that
incorporate regularization features to SR - as ringing artifact
reduction methods incorporated in section V . From the
positive results obtained, we suggest that other adaptations can
be made to create new super resolution methods. Beyond the
obtained results, this paper opens up the possibility to apply
other restoration techniques to the SR problem.

II. DRAWING AN ANALOGY BETWEEN IRANI-PELEG AND
VAN CITTERT WITH REBLURRING

A. Irani-Peleg IBP Method

The Irani-Peleg SR method can be divided in two parts. The
first one is to generate a HR image from LR image projections,
and can be represented algebraically by (3):

fi+1 = fi + c

n∑
k=1

(D
(k)
BP )

2(g(k) − g(k)i ) (3)

The term (D
(k)
BP )

2 is the back-projection matrix that creates
a projection from the difference (g(k) − g(k)i ) in a HR image
and c is a normalizing constant.

The second part of the IBP method is to obtain the LR im-
ages from imaging process simulation, and can be represented
by equation (4):

g
(k)
i = D

(k)
PSF fi (4)

where D(k)
PSF is the matrix that extracts de value of each pixel

in g(k)i from the area in fi that influences then.
The choice of DBP is not unique and can be done arbi-

trarily, unlike D(k)
PSF which represents a sensor characteristic.

According to the authors, a good choice is (D
(k)
BP )

2 = D
(k)
PSF ,

if D(k)
PSF is symmetric and real.

Taking an initial guess of f0 as a sum of g(k) projections,
the entire method can be described by:

f̂0 = c

n∑
k=1

(D
(k)
BP )

2g(k)

f̂i+1 = c

n∑
k=1

(D
(k)
BP )

2(g(k) −D(k)
PSF fi) (5)

In order to compensate for the fact that noise is ignored in
(5), when the step represented by (1) is done, the highest and
the lowest discrepant values of each g(k)i pixel are discharged,
providing in this way a some sort of regularization to noise
amplification.

B. Van Cittert with Reblurring

The following framework can represent the restoration prob-
lem: g, the image to be restored, can be represented by blurring
(H) and noise (ω) over an image f [17], [18], [19] in the
following way:

g = Hf + ω (6)

One of the iterative solutions of (6) applies a reblurring
matrix over Van Cittert iteration as [17]:

f̂0 = 0

f̂i+1 = f̂k + βHt(g −Hf̂k) (7)

According to [17], the method converges if:

0 < β <
2

|λmax|2
(8)

where λmax is the largest eigenvalue of H . We must observe
that λmax 6= 0 is a requirement, in other words, H must be
invertible. It is easy to verify that if (8) converges, the limiting
solution is the inverse filter.

C. Similarities

There is a clear resemblance between the restoration prob-
lem, represented by (6) and a SR problem, represented by
(2). Therefore, it is no surprise that an analogy between the
pair (1), (2) and (7) for iterative methods can be drawn. It is
easy to see that if we find a symmetric matrix Di capable of
performing the role of DPSF in (2), Dt can do the same for
DBP and the Irani-Peleg/Van Cittert matrix formulation for
SR will be given by:

f̂0 = c

n∑
k=1

(D(k))tg(k)

f̂i+1 = fi + βc

n∑
k=1

(D(k))t(g(k) −D(k)fi) (9)

If a is the rate of up-sampling and n is the quantity of
images used in the process, the normalized constant c can be
given by:



c =
a2

n
(10)

Another adjustment that is made in (10) consists of incor-
porating the relaxation parameter β to control the convergence
speed.

D. IBP/Van Cittert Matrix Formulation for SR Algorithm

The method represented by (9) can be described by the
following algorithm steps:

1) Generating the initial guess: f̂0 is obtained by the sum of
the initial LR images properly oversampled, registered
and deblurred.

2) Simulating Imaging Process: The n LR images ĝ(k)i are
obtained almost like a inverse process of previous step:
blurring, registering and subsampling f̂i (The terms ĝ(k)i

can be defined as D(k)fi and were suppressed in (9) for
simplification).

3) Calculating the Back-Projection Contributions: The BP
contributions of each image is the diference between the
observed LR image g(k) and the simulated LR image
ĝ
(k)
i .

4) Applying the Back-Projection Contributions on the Esti-
mated HR Image: Each BP contribution is added to the
last estimated HR image f̂i.

5) Repeat to Convergence: Repeat the steps 2 to 4 until
convergence of f̂i.

Fig. 2 represents graphically the described algorithm:

III. ADAPTATION OF TIKHONOV-MILLER RESTORATION
METHOD

A. Tikhonov-Miller Restoration

A possible regularization form of (7) is given by Tikhonov-
Miller and can be represented by:

f̂ = (HtH + αCtC)−1Htg (11)

with C and α the regularization matrix and coefficient, respec-
tively.

Observe that, when α→ 0, (11) is identical to (7). We can
also notice that matrix D acts as a low pass filter and matrix
C as a high pass filter. For the iterative version of (11) we
have:

f̂0 = βHtg

f̂i+1 = f̂ + β((HtH + αCtC)f̂i −Htg)

= (I − αβCtC)f̂i + βHt(g −Hf̂i) (12)

If α = 0, (12) is equal to (7).
The iteration will converge if:

0 < β <
2

|λmax|
(13)

where λmax is the largest eigenvalue of (HtH + αCtC).

Fig. 2. Block diagram of IBP/Van Cittert matrix formulation for SR
algorithm.

B. Tikhonov-Miller Super-Resolution (TMSR)

Following the generalization developed in section II-C, the
SR form of (12) is given by:

f̂0 = c

n∑
k=1

(D(k))tg(k)

f̂i+1 = (I − αβCtC)fi

+ βc

n∑
k=1

(D(k))t(g(k) −D(k)fi) (14)

This adaptation goal is the robust regularization incorpo-
rated to control the noise amplification, a very helpful tool
when the number of LR images available is small and the
situation cannot afford to discharge any calculated pixel of
g
(k)
i = D(k)fi as proposed in IBP method.

C. TMSR Algorithm

The method represented by (14) is very similar to the
one described in section II-D, only the regularization part is
embedded:

1) Generating the initial guess: f̂0 is obtained by the sum of
the initial LR images properly oversampled, registered
and deblurred.



2) Simulating Imaging Process: The n LR images ĝ(k)i are
obtained almost like an inverse process of previous step:
blurring, registering and subsampling f̂i.

3) Calculating the Back-Projection Contributions: The BP
contributions of each image is the diference between the
observed LR image g(k) and the simulated LR image
ĝ
(k)
i .

4) Regularizing the Estimated HR Image: Multiplying the
estimated HR image f̂i by the matrix (I − αβCtC).

5) Applying the Back-Projection Contributions on the Reg-
ularized Estimated HR Image: Each BP contribution is
added to the last regularized estimated HR image f̂i.

6) Repeat to Convergence: repeat the steps 2 to 5 until
convergence of f̂i.

Fig. 3 represents graphically the described algorithm:

Fig. 3. Block diagram of TMSR algorithm.

IV. ADAPTATION OF CONJUGATE GRADIENT
RESTORATION METHOD

A. Conjugate Gradient Restoration

This method has been successfully used in optimization
theory to reach a faster convergence. The basic form of the
algorithm is given by:

ri = −(HtH + αCtC)f̂i +Htg

pi = ri + γipi+1

f̂i+1 = f̂ + βipi (15)

The term ri is the steepest descent direction and γi is a
weight coefficient. At each iteration f̂i is updated by a product
of γi and ri in the direction of pi.

The optimal value for γi and βi are given by:

γi =
||ri||2

||ri−1||2
(16)

βi =
rtipi

||Dpi||2 + α||Cpi||2
(17)

For γi → 0 the iteration (15) becomes (12).

B. Conjugate Gradient Super-Resolution (CGSR)

The algorithm implementation for SR can be described as:

ri = −c
n∑

k=1

(D(k)tD(k) + αCtC)f̂i +D(k)tg(k)

pi = ri + γipi+1

f̂i+1 = f̂i + βipi (18)

The optimized values of γi and βi are:

γi =
||ri||2

||ri−1||2
(19)

βi =
rtipi

||(c
∑n

k=1D
(k))pi||2 + α||Cpi||2

(20)

This method brings the same advantages as TMSR associ-
ated with a fast convergence.

C. Algorithm of CGSR

Although the Conjugated Gradient and Tikhonov-Miller
algorithm for restoration have the same idea, the algebraic
formulation of the equations (18), (19) and (20) masks the
structure of the algorithms described in sections II-D and III-C,
so the algorithm will be described in a different way:

1) Generating the initial guess: f̂0 is obtained by the sum of
the initial LR images properly oversampled, registered
and deblurred.

2) Calculating ri.
3) Calculating γi.
4) Calculating pi.
5) Calculating βi.
6) Calculating fi+1.
7) Repeat steps 2 to 6 until convergence.
Fig. 4 represents graphically the described algorithm:

V. RINGING ARTIFACT REDUCTION

The use of regularization to stabilize the inversion of the ill-
conditioned matrix D usually causes a regularization error that
can be recognized as ringing and others artifacts. Lagendijk
and Biemond [17] proposed an adaptive constrained iterative
restoration method, including two diagonal matrices S and R
such as:

f̂ = (HtIRH + αCtISC)
−1HtIRg (21)

where IS and R are diagonal matrices composed by the
coefficients:



Fig. 4. Block diagram of CGSR algorithm.

sij =
1

1 + µmax
[
0, σ2

g − σ2
ω

] (22)

rij =
1

1 + (µmax
[
0, σ2

g − σ2
ω

]
)−1

(23)

σ2
g is the local variance around g(i, j) pixel and σ2

ω the
variance of the whole image g. Incorporating this restriction
on TMSR, we have:

f̂0 = c

n∑
k=1

(D(k))tIRg
(k)

f̂i+1 = (I − αβCtISC)fi

+ βc

n∑
k=1

(D(k))tIR(g
(k) −D(k)fi) (24)

For CGSR:

ri = −c
n∑

k=1

(D(k)tIRD
(k) + αCtISC)f̂i +D(k)tIRg

(k)

pi = ri + γipi+1

f̂i+1 = f̂i + βipi (25)

The optimized values of β and γ are:

γi =
||ri||2R
||ri−1||2R

(26)

βi =
rtipi

||(c
∑n

k=1D
(k))pi||2R + α||Cpi||2S

(27)

where the operation || · ||2Q is the weighted l-2 norm with qij
coeficients of diagonal matrix IQ.

VI. EXPERIMENT

The algorithms were implemented in Matlab and tested
with four 128x128 pixels images LR images synthesized from
256x256 Lena image (Fig. 5(a)). The choice of work with
synthetic images is due to the fact that to work with real
images it would be necessary to tackle the problem of blur
identification and precise registration, and that is not the
focus of this work. The final result is very dependent on
the correct parametrization of blur and registration. So for
better comparison among the methods, the results obtained
from synthetic images were selected.

In all methods the Laplacian operator was chosen for C,
given in the spatial domain as:

C =

 0.00 −0.25 0.00
−0.25 1.00 −0.25
0.00 −0.25 0.00

 (28)

Although the matrix representation of the SR problem is
elegant and clean, the size of the matrices D and C are quite
worrying. Fortunately the matrices are sparse and the Matlab
has functions to deal with this case.

For the first experiment, the original image was blurred
(defocussing with radius R=2 pixels), displaced (0.25 pixel in
four different directions), downsampled (with 2 factor), and
added noise (zero mean and standard deviation sd = 0.0316)
to produce the LR images (Fig. 5(b)).

(a) (b)

Fig. 5. (a) original image (256x256 pixels); (b) one of four synthetic observed
images (128x128 pixels), downsampled (factor 0.5), with defocussing blur
(R=2) and noise (standard deviation=0.0316), shown zoomed 2x.

To simulate the IBP method, TMSR was applied with β =
1, α = 0 (Fig. 6(a)). The difference between this simulation
and the real IBP is that no discard was made to minimize the
noise.

The TMSR (Fig. 7) and CGSR (Fig. 8) methods were tested
with (a) and without (b) adaptive constraints. Is interesting to
notice that, in the constrained adaptive iteration image, there
is a noise reduction only in the smooth areas, but not near the
edges, in an attempt to preserve the contrast characteristics of
the observed images.



Fig. 6. (a) IBP result simulated by TMSR with β = 1, α = 0.

(a) (b)

Fig. 7. (a) TMSR with β = 1, α = 0.5; (b) TMSR with adaptive constraints,
β = 1, α = 0.5 and µ = 100. .

The graphic on Fig. 9 shows the behavior of ISNR for each
method. Although the TMSR results are better than CGSR
method, CGSR reaches the convergence significantly faster
than TMSR.

The second experiment differs from the first in blur size
(R=4) and almost no noise (zero mean and standard deviation
SD = 0.0032) to generate the inicial LR images (Fig. 10).
We can observe how noise destabilize the presented methods
comparing this and previous results.

With less noise and a larger blurring, is possible to observe
better the ringing artifact (Fig. 11, Fig. 12(a) and Fig. 13(a)).
On there conditions the IBP works better but the method does

(a) (b)

Fig. 8. (a) CGSR with β = 1, α = 0.125; (b) CGSR with adaptive
constraints, β = 1, α = 0.125 and µ = 100.

Fig. 9. Comparative graphic of the ISNR behavior of the tested methods

Fig. 10. One of four synthetic observed images (128x128 pixels), down-
sampled (factor 0.5), with defocussing blur (R=4) and noise (standard devia-
tion=0.0032) zoomed 2x.

not converge.

Fig. 11. IBP result simulated by TMSR with β = 1, α = 0

The third experiment ( Fig. 8 and Fig. 9) differs from the
first in blur (motion with 8 pixels in a π/4 angle) and almost
no noise (zero mean and standard deviation sd = 0.0032)
(Fig. 15).

Is interesting to observe that when the blur kernel is larger,
the ringing problem and also the effect of the constrained



(a) (b)

Fig. 12. (a) TMSR with β = 1, α = 0.125; (b) TMSR with adaptive
constraints, β = 1, α = 0.125 and µ = 100. .

(a) (b)

Fig. 13. (a) CGSR with β = 1, α = 0.125; (b) CGSR with adaptive
constraints, β = 1, α = 0.125 and µ = 100.

adaptive iterations method become more evident.

VII. RESULTS AND DISCUSSION

This work presents an interpretation of Irani-Peleg and
Komatsu et al SR methods as a super- resolution adaptation of
Van-Cittert iterative restoration method. The generalization is

Fig. 14. Comparative graphic of the ISNR behavior of the tested methods

(a)

Fig. 15. One of four synthetic observed images (128x128 pixels), down-
sampled (factor 0.5), with defocussing blur (R=4) and noise (standard devia-
tion=0.0032) zoomed 2x.

(a)

Fig. 16. (a) IBP result simulated by TMSR with β = 1, α = 0

made by inserting in the iterations projections of registered LR
images in a similar way to the back-projection of CAT image
reconstruction, in the restoration iterations. This strategy is
exploited in a Tikhonov-Miller adaptation for SR proposal
method and in a constrained adaptive iterative restoration
method for ringing reduction as well. The proof that this
generalization is possible opens up a range of new super-
resolution approaches using well known and tested iterative
restoration methods to improve SR methods such as Higher
Convergence Order and POCS, for instance.

(a) (b)

Fig. 17. (a) TMSR with β = 1, α = 0.5; (b) TMSR with adaptive
constraints, β = 1, α = 0.5 and µ = 100. .



(a) (b)

Fig. 18. (a) CGSR with β = 1, α = 0.125; (b) CGSR with adaptive
constraints, β = 1, α = 0.125 and µ = 100.

Fig. 19. Comparative graphic of the ISNR behavior of the tested methods
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